Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
An Open Context "predicates" dataset item. Open Context publishes structured data as granular, URL identified Web resources. This "Variables" record is part of the "Avkat Archaeological Project" data publication.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Geopspatial Fabric provides a consistent, documented, and topologically connected set of spatial features that create an abstracted stream/basin network of features useful for hydrologic modeling.The GIS vector features contained in this Geospatial Fabric (GF) data set cover the lower 48 U.S. states, Hawaii, and Puerto Rico. Four GIS feature classes are provided for each Region: 1) the Region outline ("one"), 2) Points of Interest ("POIs"), 3) a routing network ("nsegment"), and 4) Hydrologic Response Units ("nhru"). A graphic showing the boundaries for all Regions is provided at http://dx.doi.org/doi:10.5066/F7542KMD. These Regions are identical to those used to organize the NHDPlus v.1 dataset (US EPA and US Geological Survey, 2005). Although the GF Feature data set has been derived from NHDPlus v.1, it is an entirely new data set that has been designed to generically support regional and national scale applications of hydrologic models. Definition of each type of feature c ...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IMPORTANT: This is the source of the feature layer template in the LearnArcGIS Lesson: Prepare for SAR Incidents and for the MapSAR Solution. If this layer is cloned or copied, the owner of the items needs to update the item details to reflect this. Purpose: This is a feature layer template for use in missing person search operations. It is based on the MapSAR (ArcGIS Desktop) Data Model but simplified for use in web maps and apps. Please see MapSAR GitHub for more information on this project.Maps are at the core of any Search and Rescue (SAR) operation. Geographic information system (GIS) software allows rescue personnel to quickly generate maps that depict specific aspects of the operation and show what is happening on the ground over time. The maps and operations data can be shared over a network to supply an enhanced common operating picture throughout the Incident Command Post (ICP). A team of GIS and SAR professionals from Sierra Madre Search and Rescue Team, Esri, Sequoia and Kings Canyon National Park, Yosemite National Park, Grand Canyon National Park, and the Mountaineer Rescue Group came together to develop the tools and instructions to fit established SAR workflows. The goal is to meet the critical need to provide standards, documents, and training to the international SAR community and establish more widespread and effective integration of GIS into operations.See Comments below for updates to the data model.
The Transboundary Geospatial Fabric (TGF) is a dataset of spatial modeling units consistent with the Geospatial Fabric for National Hydrologic Modeling (abbreviated within this document as GFv1, Viger and Bock, 2014). These features were derived from National Hydrography Dataset Plus High Resolution data (NHDPlus HR, U.S. Geological Survey [USGS], 2018) in the following conterminous United States (CONUS) - Canada transboundary four-digit Hydrologic Units (HUC4): 0101, 0105, 0108, 0901, 0902, 0903, 0904, 1005, 1006, 1701, 1702, and 1711. The data described here include the following vector feature classes: points of interest (POIs), a stream network (nsegment), major waterbodies (waterbodies), and hydrologic response units (nhru). These feature classes are contained within the Environmental Systems Research Institute (ESRI) geodatabase format (TGF.gdb).
Summary This feature class documents the fire history on CMR from 1964 - present. This is 1 of 2 feature classes, a polygon and a point. This data has a variety of different origins which leads to differing quality of data. Within the polygon feature class, this contains perimeters that were mapped using a GPS, hand digitized, on-screen digitized, and buffered circles to the estimated acreage. These 2 files should be kept together. Within the point feature class, fires with only a location of latitude/longitude, UTM coordinate, TRS and no estimated acreage were mapped using a point location. GPS started being used in 1992 when the technology became available. Records from FMIS (Fire Management Information System) were reviewed and compared to refuge records. Polygon data in FMIS only occurs from 2012 to current and many acreage estimates did not match. This dataset includes ALL fires no matter the size. This feature class documents the fire history on CMR from 1964 - present. This is 1 of 2 feature classes, a polygon and a point. This data has a variety of different origins which leads to differing quality of data. Within the polygon feature class, this contains perimeters that were mapped using a GPS, hand digitized, on-screen digitized, and buffered circles to the estimated acreage. These 2 files should be kept together. Within the point feature class, fires with only a location of latitude/longitude, UTM coordinate, TRS and no estimated acreage were mapped using a point location. GPS started being used in 1992 when the technology became available. Data origins include: Data origins include: 1) GPS Polygon-data (Best), 2) GPS Lat/Long or UTM, 3)TRS QS, 4)TRS Point, 6)Hand digitized from topo map, 7) Circle buffer, 8)Screen digitized, 9) FMIS Lat/Long. Started compiling fire history of CMR in 2007. This has been a 10 year process.FMIS doesn't include fires polygons that are less than 10 acres. This dataset has been sent to FMIS for FMIS records to be updated with correct information. The spreadsheet contains 10-15 records without spatial information and weren't included in either feature class. Fire information from 1964 - 1980 came from records Larry Eichhorn, BLM, provided to CMR staff. Mike Granger, CMR Fire Management Officer, tracked fires on an 11x17 legal pad and all this information was brought into Excel and ArcGIS. Frequently, other information about the fires were missing which made it difficult to back track and fill in missing data. Time was spent verifiying locations that were occasionally recorded incorrectly (DMS vs DD) and converting TRS into Lat/Long and/or UTM. CMR is divided into 2 different UTM zones, zone 12 and zone 13. This occasionally caused errors in projecting. Naming conventions caused confusion. Fires are frequently names by location and there are several "Soda Creek", "Rock Creek", etc fires. Fire numbers were occasionally missing or incorrect. Fires on BLM were included if they were "Assists". Also, fires on satellite refuges and the district were also included. Acreages from GIS were compared to FMIS acres. Please see documentation in ServCat (URL) to see how these were handled.
This data set consists of 6 classes of zoning features: zoning districts, special purpose districts, special purpose district subdistricts, limited height districts, commercial overlay districts, and zoning map amendments.
All previously released versions of this data are available at BYTES of the BIG APPLE - Archive.
This document links to the ArcGIS Server REST endpoint for NG9-1-1 boundary geometry. See the Working with VGIN Feature Services document for guidance in using these in desktop mapping software.Feature services are supported in ArcGIS Pro. ArcMap support started in version 10.1. If you are working with a version of ArcGIS Desktop 10.0 or older, please contact us at NG911GIS@vita.virginia.gov for support.Note: these service offerings are being updated and may not be immediately available. Please contact us at NG911GIS@vita.virginia.gov if you have questions or concerns. Link updated to the new https://vginmaps.vdem.virginia.gov/arcgis/rest/ environment 5 September 2024.Additional resources and recommendations on GIS related topics are available on the VGIN 9-1-1 & GIS page.
This document explains Virginia Geographic Information Network (VGIN) map and feature services and how to work with them in ArcGIS Desktop and ArcGIS Pro. Instructions cover connecting to the server, adding services to a map, and extracting data from feature services. Particular focus is on the provisioning and PSAP boundary polygons used in NG9-1-1 deployment. The steps listed also apply to other VGIN feature services and publicly-facing or shared feature services from other sources.Feature services are supported in ArcGIS Pro. ArcMap support started in version 10.1. If you are working with a version of ArcGIS Desktop 10.0 or older, please contact us at NG911GIS@vdem.virginia.gov for support.Document updated October 2022 to reflect changes to https://vgin.vdem.virginia.gov/Additional resources and recommendations on GIS related topics are available on the VGIN 9-1-1 & GIS page.
CDFW BIOS GIS Dataset, Contact: Eric Haney, Description: Beginning in 1998, a multi-agency cooperative project was aimed at collecting, archiving, and standardizing the electronic formats of information generated by fisheries resource management agencies and tribes throughout California. Major data categories include adult abundance population estimates, actual fish and/or carcass counts, counts of fish collected at dams, weirs, or traps, harvest data and redd counts. This shapefile, in general, was generated from fully routed 1:100,000 hydrography.
Data was digitized from 1:31,680 mylar overlays of mylar orthophoto quads using ARC/INFO. Data available from the United States Department of Agriculture Forest Service.
USGS developed The National Map Gazetteer as the Federal and national standard (ANSI INCITS 446-2008) for geographic nomenclature based on the Geographic Names Information System (GNIS). The National Map Gazetteer contains information about physical and cultural geographic features, geographic areas, and locational entities that are generally recognizable and locatable by name (have achieved some landmark status) and are of interest to any level of government or to the public for any purpose that would lead to the representation of the feature in printed or electronic maps and/or geographic information systems. The dataset includes features of all types in the United States, its associated areas, and Antarctica, current and historical, but not including roads and highways. The dataset holds the federally recognized name of each feature and defines the feature location by state, county, USGS topographic map, and geographic coordinates. Other attributes include names or spellings other than the official name, feature classification, and historical and descriptive information. The dataset assigns a unique, permanent feature identifier, the Feature ID, as a standard Federal key for accessing, integrating, or reconciling feature data from multiple data sets. This dataset is a flat model, establishing no relationships between features, such as hierarchical, spatial, jurisdictional, organizational, administrative, or in any other manner. As an integral part of The National Map, the Gazetteer collects data from a broad program of partnerships with federal, state, and local government agencies and other authorized contributors. The Gazetteer provides data to all levels of government and to the public, as well as to numerous applications through a web query site, web map, feature and XML services, file download services, and customized files upon request. The National Map download client allows free downloads of public domain geographic names data by state in a pipe-delimited text format. For additional information on the GNIS, go to https://www.usgs.gov/tools/geographic-names-information-system-gnis. See https://apps.nationalmap.gov/help/ for assistance with The National Map viewer, download client, services, or metadata. Data Refreshed March, 2025
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) tools market size was valued at approximately USD 10.8 billion in 2023, and it is projected to reach USD 21.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.9% from 2024 to 2032. The increasing demand for spatial data analytics and the rising adoption of GIS tools across various industries are significant growth factors propelling the market forward.
One of the primary growth factors for the GIS tools market is the surging demand for spatial data analytics. Spatial data plays a critical role in numerous sectors, including urban planning, environmental monitoring, disaster management, and natural resource exploration. The ability to visualize and analyze spatial data provides organizations with valuable insights, enabling them to make informed decisions. Advances in technology, such as the integration of artificial intelligence (AI) and machine learning (ML) with GIS, are enhancing the capabilities of these tools, further driving market growth.
Moreover, the increasing adoption of GIS tools in the construction and agriculture sectors is fueling market expansion. In construction, GIS tools are used for site selection, route planning, and resource management, enhancing operational efficiency and reducing costs. Similarly, in agriculture, GIS tools aid in precision farming, crop monitoring, and soil analysis, leading to improved crop yields and sustainable farming practices. The ability of GIS tools to provide real-time data and analytics is particularly beneficial in these industries, contributing to their widespread adoption.
The growing importance of location-based services (LBS) in various applications is another key driver for the GIS tools market. LBS are extensively used in navigation, logistics, and transportation, providing real-time location information and route optimization. The proliferation of smartphones and the development of advanced GPS technologies have significantly increased the demand for LBS, thereby boosting the GIS tools market. Additionally, the integration of GIS with other technologies, such as the Internet of Things (IoT) and Big Data, is creating new opportunities for market growth.
Regionally, North America holds a significant share of the GIS tools market, driven by the high adoption of advanced technologies and the presence of major market players. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, owing to increasing investments in infrastructure development, smart city projects, and the growing use of GIS tools in emerging economies such as China and India. Europe, Latin America, and the Middle East & Africa are also expected to contribute to market growth, driven by various government initiatives and increasing awareness of the benefits of GIS tools.
The GIS tools market can be segmented by component into software, hardware, and services. The software segment is anticipated to dominate the market due to the increasing demand for advanced GIS software solutions that offer enhanced data visualization, spatial analysis, and decision-making capabilities. GIS software encompasses a wide range of applications, including mapping, spatial data analysis, and geospatial data management, making it indispensable for various industries. The continuous development of user-friendly and feature-rich software solutions is expected to drive the growth of this segment.
Hardware components in the GIS tools market include devices such as GPS units, remote sensing devices, and plotting and digitizing tools. The hardware segment is also expected to witness substantial growth, driven by the increasing use of advanced hardware devices that provide accurate and real-time spatial data. The advancements in GPS technology and the development of sophisticated remote sensing devices are key factors contributing to the growth of the hardware segment. Additionally, the integration of hardware with IoT and AI technologies is enhancing the capabilities of GIS tools, further propelling market expansion.
The services segment includes consulting, integration, maintenance, and support services related to GIS tools. This segment is expected to grow significantly, driven by the increasing demand for specialized services that help organizations effectively implement and manage GIS solutions. Consulting services assist organizations in selecting the right GIS tools and optimizing their use, while integration services ensure seamless integr
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The Geological Atlas of the Western Canada Sedimentary Basin was designed primarily as a reference volume documenting the subsurface geology of the Western Canada Sedimentary Basin. This GIS dataset is one of a collection of shapefiles representing part of Chapter 15 of the Atlas, Permian Strata of the Western Canada Sedimentary Basin, Figure 16, Permian Lithology: Carbonate. Shapefiles were produced from archived digital files created by the Alberta Geological Survey in the mid-1990s, and edited in 2005-06 to correct, attribute and consolidate the data into single files by feature type and by figure.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The Geological Atlas of the Western Canada Sedimentary Basin was designed primarily as a reference volume documenting the subsurface geology of the Western Canada Sedimentary Basin. This GIS dataset is one of a collection of shapefiles representing part of Chapter 17 of the Atlas, Paleographic Evolution of the Western Canada Foreland Basin, Figure 11, Cardium Paleogeography. Shapefiles were produced from archived digital files created by the Alberta Geological Survey in the mid-1990s, and edited in 2005-06 to correct, attribute and consolidate the data into single files by feature type and by figure.
The Australian Antarctic Data Centre's topographic GIS data for the Vestfold Hills, Antarctica were originally mapped from aerial photography: refer to the metadata record 'Vestfold Hills Topographic GIS Dataset'. Since then various features have been added to this data. In some cases features have been 'eyed in' as more accurate data were not available. The eyeing in has been done based on advice from Australian Antarctic Division staff and using as a guide sources such as an aerial photograph, a map or a sketch.
The data are available for download as part of the Vestfold Hills GIS dataset from a Related URL.
The data are formatted according to the SCAR Feature Catalogue (see Related URL). Data that are part of this dataset have Dataset_id = 56 in the SCAR Feature Catalogue format. Dataset_id is an attribute in the attribute table. Data quality information for any feature can be searched for at the Related URL by entering the Qinfo (or Dqi) number of the feature at the 'Search datasets and quality' tab. Qinfo (or Dqi) is an attribute in the attribute table.
The Geospatial Fabric is a dataset of spatial modeling units for use within the National Hydrologic Model that covers the conterminous United States (CONUS), Alaska, and most major river basins that flow in from Canada. This U.S. Geological Survey (USGS) data release consists of the geospatial fabric features and other related datasets created to expand the National Hydrologic Model to Hawaii. This page contains data and information related to the GIS features of the Geospaital Fabric for National Hydrologic Model, Hawaii _domain. An Open Geospatial Consortium geopackage (GF_20.gpkg) contains 4 feature layers (layer names in parentheses): points of interest (poi), a stream network (nsegment), aggregated catchments (catchment), and hydrologic repsonse units (nhru). Features were derived from NHDPlus, version 2.0, and several hydroclimatic datasets representing _domain-specific processes and key drainage basins within the Hawaii. All data cover the National Hydrologic Model's (NHM) Hawaiin _domain. The NHM is a modeling infrastructure consisting of three main parts: 1) an underlying geospatial fabric of modeling units (hydrologic response units and stream segments) with an associated parameter database, 2) a model input data archive, and 3) a repository of the physical model simulation code bases (Regan and others, 2014). The pois represent hydro locations and points on the network. Segments are connected by the pois and are used to route streamflow and characterize upstream watershed conditions. The HRUs represent the spatial modeling units at which most of the physical processes (such as precipitation, runoff, evapotranspiration, and infiltration) are simulated. Some HRUs are connected to a corresponding segment, and may represent left and right-bank areas of each stream segment. See Regan and others (2018) and entities and attributes for more information.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
WSDOT template for Esri file geodatabase line feature class. Template has pre-defined attribute schema to help users create data that is more consistent or compliant with agency standards. Metadata has been created using the FGDC metadata style but stored in the ArcGIS format. Content presentation will change upon export to FGDC format.This service is maintained by the WSDOT Transportation Data, GIS & Modeling Office. If you are having trouble viewing the service, please contact Online Map Support at onlinemapsupport@wsdot.wa.gov.
The Geological Atlas of the Western Canada Sedimentary Basin was designed primarily as a reference volume documenting the subsurface geology of the Western Canada Sedimentary Basin. This GIS dataset is one of a collection of shapefiles representing part of Chapter 15 of the Atlas, Permian Strata of the Western Canada Sedimentary Basin, Figure 13, Permian Structure. Shapefiles were produced from archived digital files created by the Alberta Geological Survey in the mid-1990s, and edited in 2005-06 to correct, attribute and consolidate the data into single files by feature type and by figure.
The Geological Atlas of the Western Canada Sedimentary Basin was designed primarily as a reference volume documenting the subsurface geology of the Western Canada Sedimentary Basin. This GIS dataset is one of a collection of shapefiles representing part of Chapter 10 of the Atlas, Devonian Elk Point Group of the Western Canada Sedimentary Basin, Figure 2, Pre-Devonian Paleotopographic Features. Shapefiles were produced from archived digital files created by the Alberta Geological Survey in the mid-1990s, and edited in 2005-06 to correct, attribute and consolidate the data into single files by feature type and by figure.
In Minnesota, surface karst features (including but not restricted to sinkholes, caves, stream sinks, and karst springs) are observed to primarily occur where 50 feet or less of unconsolidated material overlie Paleozoic carbonate bedrock and St. Peter Sandstone, or the Mesoproterozoic Hinckley Sandstone. This product can be used to outline such areas in a GIS environment. The GIS coverage is a superposition of Bedrock Geology and Depth to Bedrock maps prepared by the Minnesota Geological Survey (MGS).
Two feature classes are included: surfacekarst_carbonate_sandstone and surfacekarst_carbonateonly. See Section 5 Overview for more details.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
An Open Context "predicates" dataset item. Open Context publishes structured data as granular, URL identified Web resources. This "Variables" record is part of the "Avkat Archaeological Project" data publication.