https://www.usa.gov/government-workshttps://www.usa.gov/government-works
After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations.
The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Sunday to Saturday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities.
The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities.
For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-15 means the average/sum/coverage of the elements captured from that given facility starting and including Sunday, November 15, 2020, and ending and including reports for Saturday, November 21, 2020.
Reported elements include an append of either “_coverage”, “_sum”, or “_avg”.
The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”.
A story page was created to display both corrected and raw datasets and can be accessed at this link: https://healthdata.gov/stories/s/nhgk-5gpv
This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020.
Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect.
For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied.
For recent updates to the dataset, scroll to the bottom of the dataset description.
On May 3, 2021, the following fields have been added to this data set.
On May 8, 2021, this data set has been converted to a corrected data set. The corrections applied to this data set are to smooth out data anomalies caused by keyed in data errors. To help determine which records have had corrections made to it. An additional Boolean field called is_corrected has been added.
On May 13, 2021 Changed vaccination fields from sum to max or min fields. This reflects the maximum or minimum number reported for that metric in a given week.
On June 7, 2021 Changed vaccination fields from max or min fields to Wednesday reported only. This reflects that the number reported for that metric is only reported on Wednesdays in a given week.
On September 20, 2021, the following has been updated: The use of analytic dataset as a source.
On January 19, 2022, the following fields have been added to this dataset:
On April 28, 2022, the following pediatric fields have been added to this dataset:
On October 24, 2022, the data includes more analytical calculations in efforts to provide a cleaner dataset. For a raw version of this dataset, please follow this link: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/uqq2-txqb
Due to changes in reporting requirements, after June 19, 2023, a collection week is defined as starting on a Sunday and ending on the next Saturday.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.
Note: May 3,2024: Due to incomplete or missing hospital data received for the April 21,2024 through April 27, 2024 reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on May 3, 2024.
This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.
Reporting information:
Notes: June 1, 2023: Due to incomplete or missing hospital data received for the May 21, 2023, through May 27, 2023, reporting period, the COVID-19 Hospital Admissions Level could not be calculated for the Commonwealth of the Northern Mariana Islands (CNMI) and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on June 1, 2023.
June 8, 2023: Due to incomplete or missing hospital data received for the May 28, 2023, through June 3, 2023, reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and American Samoa (AS) and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on June 8, 2023.
June 15, 2023: Due to incomplete or missing hospital data received for the June 4, 2023, through June 10, 2023, reporting period,
The National Health Interview Survey (NHIS) is the principal source of information on the health of the civilian noninstitutionalized population of the United States and is one of the major data collection programs of the National Center for Health Statistics (NCHS) which is part of the Centers for Disease Control and Prevention (CDC). The National Health Survey Act of 1956 provided for a continuing survey and special studies to secure accurate and current statistical information on the amount, distribution, and effects of illness and disability in the United States and the services rendered for or because of such conditions. The survey referred to in the Act, now called the National Health Interview Survey, was initiated in July 1957. Since 1960, the survey has been conducted by NCHS, which was formed when the National Health Survey and the National Vital Statistics Division were combined. NHIS data are used widely throughout the Department of Health and Human Services (DHHS) to monitor trends in illness and disability and to track progress toward achieving national health objectives. The data are also used by the public health research community for epidemiologic and policy analysis of such timely issues as characterizing those with various health problems, determining barriers to accessing and using appropriate health care, and evaluating Federal health programs. The NHIS also has a central role in the ongoing integration of household surveys in DHHS. The designs of two major DHHS national household surveys have been or are linked to the NHIS. The National Survey of Family Growth used the NHIS sampling frame in its first five cycles and the Medical Expenditure Panel Survey currently uses half of the NHIS sampling frame. Other linkage includes linking NHIS data to death certificates in the National Death Index (NDI). While the NHIS has been conducted continuously since 1957, the content of the survey has been updated about every 10-15 years. In 1996, a substantially revised NHIS questionnaire began field testing. This revised questionnaire, described in detail below, was implemented in 1997 and has improved the ability of the NHIS to provide important health information.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations.
The following dataset provides state-aggregated data for hospital utilization. These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities.
The file will be updated regularly and provides the latest values reported by each facility within the last four days for all time. This allows for a more comprehensive picture of the hospital utilization within a state by ensuring a hospital is represented, even if they miss a single day of reporting.
No statistical analysis is applied to account for non-response and/or to account for missing data.
The below table displays one value for each field (i.e., column). Sometimes, reports for a given facility will be provided to more than one reporting source: HHS TeleTracking, NHSN, and HHS Protect. When this occurs, to ensure that there are not duplicate reports, prioritization is applied to the numbers for each facility.
On June 26, 2023 the field "reporting_cutoff_start" was replaced by the field "date".
On April 27, 2022 the following pediatric fields were added:
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: This dataset has been limited to show metrics for Ramsey County, Minnesota.
This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.
Reporting information: As of December 15, 2022, COVID-19 hospital data are required to be reported to NHSN, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Prior to December 15, 2022, hospitals reported data directly to the U.S. Department of Health and Human Services (HHS) or via a state submission for collection in the HHS Unified Hospital Data Surveillance System (UHDSS). While CDC reviews these data for errors and corrects those found, some reporting errors might still exist within the data. To minimize errors and inconsistencies in data reported, CDC removes outliers before calculating the metrics. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks. Many hospital subtypes, including acute care and critical access hospitals, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are included in the metric calculations provided in this report. Psychiatric, rehabilitation, and religious non-medical hospital types are excluded from calculations. Data are aggregated and displayed for hospitals with the same Centers for Medicare and Medicaid Services (CMS) Certification Number (CCN), which are assigned by CMS to counties based on the CMS Provider of Services files. Full details on COVID-19 hospital data reporting guidance can be found here: https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf
Calculation of county-level hospital metrics: County-level hospital data are derived using calculations performed at the Health Service Area (HSA) level. An HSA is defined by CDC’s National Center for Health Statistics as a geographic area containing at least one county which is self-contained with respect to the population’s provision of routine hospital care. Every county in the United States is assigned to an HSA, and each HSA must contain at least one hospital. Therefore, use of HSAs in the calculation of local hospital metrics allows for more accurate characterization of the relationship between health care utilization and health status at the local level. Data presented at the county-level represent admissions, hospital inpatient and ICU bed capacity and occupancy among hospitals within the selected HSA. Therefore, admissions, capacity, and occupancy are not limited to residents of the selected HSA. For all county-level hospital metrics listed below the values are calculated first for the entire HSA, and then the HSA-level value is then applied to each county within the HSA. For all county-level hospital metrics listed below the values are calculated first for the entire HSA, and then the HSA-level value is then applied to each county within the HSA.
Metric details: Time period: data for the previous MMWR week (Sunday-Saturday) will update weekly on Thursdays as soon as they are reviewed and verified, usually before 8 pm ET. Updates will occur the following day when reporting coincides with a federal holiday. Note: Weekly updates might be delayed due to delays in reporting. All data are provisional. Because these provisional counts are subject to change, including updates to data reported previously, adjustments can occur. Data may be updated since original publication due to delays in reporting (to account for data received after a given Thursday publication) or data quality corrections. New hospital admissions (count): Total number of admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction New Hospital Admissions Rate Value (Admissions per 100k): Total number of new admissions of patients with laboratory-confirmed COVID-19 in the past week (including both adult and pediatric admissions) for the entire jurisdiction divided by 2019 intercensal population estimate for that jurisdiction multiplied by 100,000. (Note: This metric is used to determine each county’s COVID-19 Hospital Admissions Level for a given week). New COVID-19 Hospital Admissions Rate Level: qualitative value of new COVID-19 hospital admissions rate level [Low, Medium, High, Insufficient Data] New hospital admissions percent change from prior week: Percent change in the current weekly total new admissions of patients with laboratory-confirmed COVID-19 per 100,000 population compared with the prior week. New hospital admissions percent change from prior week level: Qualitative value of percent change in hospital admissions rate from prior week [Substantial decrease, Moderate decrease, Stable, Moderate increase, Substantial increase, Insufficient data] COVID-19 Inpatient Bed Occupancy Value: Percentage of all staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 (including both adult and pediatric patients) within the in the entire jurisdiction is calculated as an average of valid daily values within the past week (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (patients hospitalized with confirmed COVID-19) and denominators (staffed inpatient beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction. COVID-19 Inpatient Bed Occupancy Level: Qualitative value of inpatient beds occupied by COVID-19 patients level [Minimal, Low, Moderate, Substantial, High, Insufficient data] COVID-19 Inpatient Bed Occupancy percent change from prior week: The absolute change in the percent of staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the average occupancy of patients with confirmed COVID-19 in staffed inpatient beds in the past week, compared with the prior week, in the entire jurisdiction. COVID-19 ICU Bed Occupancy Value: Percentage of all staffed inpatient beds occupied by adult patients with confirmed COVID-19 within the entire jurisdiction is calculated as an average of valid daily values within the past week (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (adult patients hospitalized with confirmed COVID-19) and denominators (staffed adult ICU beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction. COVID-19 ICU Bed Occupancy Level: Qualitative value of ICU beds occupied by COVID-19 patients level [Minimal, Low, Moderate, Substantial, High, Insufficient data] COVID-19 ICU Bed Occupancy percent change from prior week: The absolute change in the percent of staffed ICU beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the average occupancy of patients with confirmed COVID-19 in staffed adult ICU beds for the past week, compared with the prior week, in the in the entire jurisdiction. For all metrics, if there are no data in the specified locality for a given week, the metric value is displayed as “insufficient data”.
To rapidly monitor recent changes in the use of telemedicine, the National Center for Health Statistics (NCHS) and the Health Resources and Services Administration’s Maternal and Child Health Bureau (HRSA MCHB) partnered with the Census Bureau on an experimental data system called the Household Pulse Survey. This 20-minute online survey was designed to complement the ability of the federal statistical system to rapidly respond and provide relevant information about the impact of the coronavirus pandemic in the U.S. The U.S. Census Bureau, in collaboration with five federal agencies, launched the Household Pulse Survey to produce data on the social and economic impacts of the COVID-19 pandemic on American households. The Household Pulse Survey was designed to gauge the impact of the pandemic on employment status, consumer spending, food security, housing, education disruptions, and dimensions of physical and mental wellness. The survey was designed to meet the goal of accurate and timely estimates. It was conducted by an internet questionnaire, with invitations to participate sent by email and text message. The sample frame is the Census Bureau Master Address File Data. Housing units linked to one or more email addresses or cell phone numbers were randomly selected to participate, and one respondent from each housing unit was selected to respond for him or herself. Estimates are weighted to adjust for nonresponse and to match Census Bureau estimates of the population by age, sex, race and ethnicity, and educational attainment. All estimates shown meet the NCHS Data Presentation Standards for Proportions.
Big “p” policy changes at the state and federal level are certainly important to health equity, such as eligibility for and generosity of Medicaid benefits. Medicaid expansion has significantly expanded the number of people who are eligible for Medicaid and the creation of the health insurance exchanges (Marketplace) under the Affordable Care Act created a very visible avenue through which people can learn that they are eligible. Although many applications are now submitted online, physical access to state, county, and tribal government Medicaid offices still plays a critical role in understanding eligibility, getting help in applying, and navigating required documentation for both initial enrollment and redetermination of eligibility. However, as more government functions have moved online, in-person office locations and/or staff may have been cut to reduce costs, and gentrification has shifted where minoritized, marginalized, and/or low-income populations live, it is unclear if this key local connection point between residents and Medicaid has been maintained. Our objective was to identify and geocode all Medicaid offices in the United States for pairing with other spatial data (e.g., demographics, Medicaid participation, health care use, health outcomes) to investigate policy-relevant research questions. Three coders identified Medicaid office addresses in all 50 states and the District of Columbia by searching state government websites (e.g., Department of Health and Human Services or analogous state agency) during late 2021 and early 2022 for the appropriate Medicaid agency and its office locations, which were then reviewed for accuracy by a fourth coder. Our corpus of Medicaid office addresses was then geocoded using the Census Geocoder from the US Census Bureau (https://geocoding.geo.census.gov/geocoder/) with unresolved addresses investigated and/or manually geocoded using Google Maps. The corpus was updated in August through December 2023 following the end of the COVID-19 public health emergency by a fifth coder as several states closed and/or combined offices during the pandemic. After deduplication (e.g., where multiple counties share a single office) and removal of mailing addresses (e.g., PO Boxes), our dataset includes 3,027 Medicaid office locations. 1 (December 19, 2023) – original version 2 (January 25, 2024) – added related publication (Data in Brief), corrected two records that were missing negative signs in longitude 3 (February 6, 2024) – corrected latitude and longitude for one office (1340 State Route 9, Lake George, NY 12845) 4 (March 4, 2024) – added one office for Vermont after contacting relevant state agency (280 State Road, Waterbury, VT 05671)
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY This dataset represents San Francisco COVID-19 related deaths by day. This data may not be immediately available for recently reported deaths. Data updates as more information becomes available. Because of this, death totals for previous days may increase or decrease. More recent data is less reliable.
B. HOW THE DATASET IS CREATED As of January 1, 2023, COVID-19 deaths are defined as persons who had COVID-19 listed as a cause of death or a significant condition contributing to their death on their death certificate. This definition is in alignment with the California Department of Public Health and the national https://preparedness.cste.org/wp-content/uploads/2022/12/CSTE-Revised-Classification-of-COVID-19-associated-Deaths.Final_.11.22.22.pdf">Council of State and Territorial Epidemiologists. Death data is provided by the California Department of Public Health.
It takes time to process this data. Because of this, death totals may increase or decrease over time.
Data are continually updated to maximize completeness of information and reporting on San Francisco COVID-19 deaths.
C. UPDATE PROCESS Updates automatically at 06:30 and 07:30 AM Pacific Time on Wednesday each week.
Dataset will not update on the business day following any federal holiday.
D. HOW TO USE THIS DATASET This dataset shows new deaths and cumulative deaths by date of death. New deaths are the count of deaths on that specific date. Cumulative deaths are the running total of all San Francisco COVID-19 deaths up to the date listed.
Use the Deaths by Population Characteristics Over Time dataset to see deaths by different subgroups including race/ethnicity, age, and gender.
E. CHANGE LOG
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Telemedicine Use in the Last 4 Weeks’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/95ab0669-fd60-42fe-936a-e57dff75b8ee on 11 February 2022.
--- Dataset description provided by original source is as follows ---
To rapidly monitor recent changes in the use of telemedicine, the National Center for Health Statistics (NCHS) and the Health Resources and Services Administration’s Maternal and Child Health Bureau (HRSA MCHB) partnered with the Census Bureau on an experimental data system called the Household Pulse Survey. This 20-minute online survey was designed to complement the ability of the federal statistical system to rapidly respond and provide relevant information about the impact of the coronavirus pandemic in the U.S.
The U.S. Census Bureau, in collaboration with five federal agencies, launched the Household Pulse Survey to produce data on the social and economic impacts of the COVID-19 pandemic on American households. The Household Pulse Survey was designed to gauge the impact of the pandemic on employment status, consumer spending, food security, housing, education disruptions, and dimensions of physical and mental wellness.
The survey was designed to meet the goal of accurate and timely estimates. It was conducted by an internet questionnaire, with invitations to participate sent by email and text message. The sample frame is the Census Bureau Master Address File Data. Housing units linked to one or more email addresses or cell phone numbers were randomly selected to participate, and one respondent from each housing unit was selected to respond for him or herself. Estimates are weighted to adjust for nonresponse and to match Census Bureau estimates of the population by age, sex, race and ethnicity, and educational attainment. All estimates shown meet the NCHS Data Presentation Standards for Proportions.
--- Original source retains full ownership of the source dataset ---
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.
Note: May 3,2024: Due to incomplete or missing hospital data received for the April 21,2024 through April 27, 2024 reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on May 3, 2024.
This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States as of the initial date of reporting for each weekly metric. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.
Reporting information:
Notes: June 15, 2023: Due to incomplete or missing hospital data received for the June 4, 2023, through June 10, 2023, reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and AS and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on June 15, 2023.
July 10, 2023: Due to incomplete or missing hospital data received for the June 25, 2023, through July 1, 2023, reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and AS and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on July 10, 2023.
July 17, 2023: Due to incomplete or missing hospital data received for the July 2, 2023, through July 8, 2023, reporting
http://novascotia.ca/opendata/licence.asphttp://novascotia.ca/opendata/licence.asp
[ARCHIVED] The following spreadsheet is created through a consolidation of inputs from several Provincial departments involved in federal-provincial negotiations. The data set includes expired as well as active agreements. It is intended as a working document for department staff. As such we do not warrant the completeness or accuracy of the information provided. The data do not include federal transfer payments or agreements that are not cost-shared between the federal and Nova Scotia government (e.g., Equalization, Canadian Health Transfer, Canadian Social Transfer, etc).
Note: In these datasets, a person is defined as up to date if they have received at least one dose of an updated COVID-19 vaccine. The Centers for Disease Control and Prevention (CDC) recommends that certain groups, including adults ages 65 years and older, receive additional doses. Starting on July 13, 2022, the denominator for calculating vaccine coverage has been changed from age 5+ to all ages to reflect new vaccine eligibility criteria. Previously the denominator was changed from age 16+ to age 12+ on May 18, 2021, then changed from age 12+ to age 5+ on November 10, 2021, to reflect previous changes in vaccine eligibility criteria. The previous datasets based on age 12+ and age 5+ denominators have been uploaded as archived tables. Starting June 30, 2021, the dataset has been reconfigured so that all updates are appended to one dataset to make it easier for API and other interfaces. In addition, historical data has been extended back to January 5, 2021. This dataset shows full, partial, and at least 1 dose coverage rates by zip code tabulation area (ZCTA) for the state of California. Data sources include the California Immunization Registry and the American Community Survey’s 2015-2019 5-Year data. This is the data table for the LHJ Vaccine Equity Performance dashboard. However, this data table also includes ZTCAs that do not have a VEM score. This dataset also includes Vaccine Equity Metric score quartiles (when applicable), which combine the Public Health Alliance of Southern California’s Healthy Places Index (HPI) measure with CDPH-derived scores to estimate factors that impact health, like income, education, and access to health care. ZTCAs range from less healthy community conditions in Quartile 1 to more healthy community conditions in Quartile 4. The Vaccine Equity Metric is for weekly vaccination allocation and reporting purposes only. CDPH-derived quartiles should not be considered as indicative of the HPI score for these zip codes. CDPH-derived quartiles were assigned to zip codes excluded from the HPI score produced by the Public Health Alliance of Southern California due to concerns with statistical reliability and validity in populations smaller than 1,500 or where more than 50% of the population resides in a group setting. These data do not include doses administered by the following federal agencies who received vaccine allocated directly from CDC: Indian Health Service, Veterans Health Administration, Department of Defense, and the Federal Bureau of Prisons. For some ZTCAs, vaccination coverage may exceed 100%. This may be a result of many people from outside the county coming to that ZTCA to get their vaccine and providers reporting the county of administration as the county of residence, and/or the DOF estimates of the population in that ZTCA are too low. Please note that population numbers provided by DOF are projections and so may not be accurate, especially given unprecedented shifts in population as a result of the pandemic.
The U.S. Census Bureau, in collaboration with five federal agencies, launched the Household Pulse Survey to produce data on the social and economic impacts of Covid-19 on American households. The Household Pulse Survey was designed to gauge the impact of the pandemic on employment status, consumer spending, food security, housing, education disruptions, and dimensions of physical and mental wellness. The survey was designed to meet the goal of accurate and timely weekly estimates. It was conducted by an internet questionnaire, with invitations to participate sent by email and text message. The sample frame is the Census Bureau Master Address File Data. Housing units linked to one or more email addresses or cell phone numbers were randomly selected to participate, and one respondent from each housing unit was selected to respond for him or herself. Estimates are weighted to adjust for nonresponse and to match Census Bureau estimates of the population by age, gender, race and ethnicity, and educational attainment. All estimates shown meet the NCHS Data Presentation Standards for Proportions.
The primary objective of the 2018 NDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the NDHS collected information on fertility, awareness and use of family planning methods, breastfeeding practices, nutritional status of women and children, maternal and child health, adult and childhood mortality, women’s empowerment, domestic violence, female genital cutting, prevalence of malaria, awareness and behaviour regarding HIV/AIDS and other sexually transmitted infections (STIs), disability, and other health-related issues such as smoking.
The information collected through the 2018 NDHS is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population. The 2018 NDHS also provides indicators relevant to the Sustainable Development Goals (SDGs) for Nigeria.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49 years resident in the household, and all children aged 0-5 years resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2018 NDHS is the Population and Housing Census of the Federal Republic of Nigeria (NPHC), which was conducted in 2006 by the National Population Commission. Administratively, Nigeria is divided into states. Each state is subdivided into local government areas (LGAs), and each LGA is divided into wards. In addition to these administrative units, during the 2006 NPHC each locality was subdivided into convenient areas called census enumeration areas (EAs). The primary sampling unit (PSU), referred to as a cluster for the 2018 NDHS, is defined on the basis of EAs from the 2006 EA census frame. Although the 2006 NPHC did not provide the number of households and population for each EA, population estimates were published for 774 LGAs. A combination of information from cartographic material demarcating each EA and the LGA population estimates from the census was used to identify the list of EAs, estimate the number of households, and distinguish EAs as urban or rural for the survey sample frame. Before sample selection, all localities were classified separately into urban and rural areas based on predetermined minimum sizes of urban areas (cut-off points); consistent with the official definition in 2017, any locality with more than a minimum population size of 20,000 was classified as urban.
The sample for the 2018 NDHS was a stratified sample selected in two stages. Stratification was achieved by separating each of the 36 states and the Federal Capital Territory into urban and rural areas. In total, 74 sampling strata were identified. Samples were selected independently in every stratum via a two-stage selection. Implicit stratifications were achieved at each of the lower administrative levels by sorting the sampling frame before sample selection according to administrative order and by using a probability proportional to size selection during the first sampling stage.
For further details on sample selection, see Appendix A of the final report.
Computer Assisted Personal Interview [capi]
Four questionnaires were used for the 2018 NDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s standard Demographic and Health Survey (DHS-7) questionnaires, were adapted to reflect the population and health issues relevant to Nigeria. Comments were solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. In addition, information about the fieldworkers for the survey was collected through a self-administered Fieldworker Questionnaire.
The processing of the 2018 NDHS data began almost immediately after the fieldwork started. As data collection was completed in each cluster, all electronic data files were transferred via the IFSS to the NPC central office in Abuja. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors. Secondary editing, carried out in the central office, involved resolving inconsistencies and coding the open-ended questions. The NPC data processor coordinated the exercise at the central office. The biomarker paper questionnaires were compared with electronic data files to check for any inconsistencies in data entry. Data entry and editing were carried out using the CSPro software package. The concurrent processing of the data offered a distinct advantage because it maximised the likelihood of the data being error-free and accurate. Timely generation of field check tables allowed for effective monitoring. The secondary editing of the data was completed in the second week of April 2019.
A total of 41,668 households were selected for the sample, of which 40,666 were occupied. Of the occupied households, 40,427 were successfully interviewed, yielding a response rate of 99%. In the households interviewed, 42,121 women age 15-49 were identified for individual interviews; interviews were completed with 41,821 women, yielding a response rate of 99%. In the subsample of households selected for the male survey, 13,422 men age 15-59 were identified and 13,311 were successfully interviewed, yielding a response rate of 99%.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2018 Nigeria Demographic and Health Survey (NDHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2018 NDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2018 NDHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Note: A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Standardisation exercise results from anthropometry training - Height and weight data completeness and quality for children - Height measurements from random subsample of measured children - Sibship size and sex ratio of siblings - Pregnancy-related mortality trends - Data collection period - Malaria prevalence according to rapid diagnostic test (RDT)
Note: See detailed data quality tables in APPENDIX C of the report.
Brazil has made significant progress in human development over the last decade, thanks to a series of policy innovations, and equity of access has increased considerably. In health, consolidation of government health financing, the organization of the sector into a country-wide system (Unified Health System, or SUS) and the greater emphasis on primary care have been critical for these improvements.
Increasing the efficiency and effectiveness in the use of health resources to contain rising costs is perhaps the greatest challenge facing the Brazilian health system.
Brazil’s federal structure and the decentralized nature of the SUS make the financial flows difficult to track and monitor. Despite continuous upgrading, existing information systems do not permit accurate identification of how resources are allocated within the context of SUS, nor how expenditures are executed and services provided at the health unit level. Information is lacking regarding how much SUS as a whole (including the federal, state and municipal governments) spends on hospital and primary care. The levels of efficiency in health service provision are not systematically documented.
This study assesses how the processes of allocation, transfer and utilization of resources are conducted at the different levels of the system. The study provides valuable information regarding the reality of the executing units of the system and how these relate to the central levels. It also seeks to identify problems related to financial flows, analyze how resources are used at the local level, and estimate their impact on the efficiency and quality of health services in general. In this respect, the study provides a basis for improving the entire cycle of public resource management processes (i.e., planning, budgeting, budget execution, input management, and health service production) in the health sector.
The survey was based on a sample of six states, 17 municipalities in those six states, and 49 hospitals and 20 outpatient units in the sampled municipalities. While the sample is not statistically representative of SUS as a whole because of its small size, an effort was made to capture a variety of situations found in the Brazilian federation so that the findings would exemplify typical conditions found in SUS.
States of Amazonas, Ceará, Mato Grosso, Rio de Janeiro, Rio Grande do Sul and São Paulo.
Sample survey data [ssd]
The sample selected for the study was designed in order to highlight the regional variations between the health units and at the same time to keep logistical costs to a minimum. For these reasons, a non-randomized sampling in three stages was chosen: first, the sample covered states, second, the municipalities located in those states, and third, health units located within the municipalities. This sampling structure was chosen in order to permit tracking of the resource flows within a particular state and the cross-referencing of information at the three levels of the research.
Initially, the sample took into account six states with their respective state health secretariats, 18 municipalities and 76 health units (52 hospitals and 24 outpatient clinics). As a result of data collection being abandoned in one particular municipality as well as in a number of health units, and given the difficulty of accessing certain information, the final sample encompassed 17 municipalities (Municipal Health Secretariats), 49 hospitals (public and philanthropic), and 20 outpatient clinics (state and municipal).
Although the resulting sample reflects the very different circumstances existing within Unified Health System (SUS), it is too small for each stratum of units and consequently does not allow statistical extrapolation of the results.
In the sampling exercise, states were selected to represent each of the six Brazilian major regions (for the southeast region two states were included given the population density and a high concentration of health establishments). One of the main criteria for selection was to reflect the diversity in size and different characteristics of the states, municipalities and health units.
Municipalities were selected on the basis of size. State capitals were included, plus one middle-sized municipality per state (roughly 200,000 inhabitants) and at least one small-sized municipality (of approximately 50,000 inhabitants). The resulting sample of municipalities could be considered reasonably representative of the diverse nature of SUS.
The hospitals selected were required to meet the following requirements: to attend mainly to SUS users, to have a minimum of 50 beds, to possess reasonable information systems and to be broadly representative of SUS as such. Various hospitals were included in the sample that had been included in other recent studies which made it possible to cross-reference and compare information. The proposed distribution focused on public hospitals since the main thrust of the study concerned budget relationships and transfers of resources. This sample was stratified by size (medium-sized/big and small hospitals) and sphere, in order to try and obtain a sufficient number of units of each type to produce representative results. Efforts were also made to include hospitals with different characteristics such as those that undertake teaching and research and public hospitals administered under different kinds of management arrangements.
Face-to-face [f2f]
The questionnaires were applied in the course of interviews with state health secretaries or someone designated by them (normally a professional charged with a specific area with access to the necessary information); municipal health secretaries (or designates); directors of hospitals; and directors of outpatient departments/clinics. Moreover, concurrent side interviews were undertaken with staff from a number of different technical and administrative divisions with the aim of clarifying and amplifying the research findings. Finally, together with the application of the questionnaire, reports and other supporting documents were requested relating to budgets, plans, management reports, etc.
The internal structure of the questionnaires was common to all types of units researched (SES and SMS, hospitals and outpatient clinics), although obviously the content of each section is specific to each type of unit.
The basic format of the questionnaire was organized around planning and budget allocation and implementation processes and the main inputs used in health service delivery (i.e., materials and medical drugs, human resources and equipment/installations). The component sections of the questionnaire were the following: • Section A - Information from the secretariats or health units. This section gives the identity details of the units researched, the name of the person responsible for the unit and details about the profile and type of unit (in the case of hospitals and outpatient clinics, the number of beds and services on offer are included). • Section B - Budgetary planning and processes. This section examines the budget and planning process at its different stages, the degree of autonomy in the preparation and implementation stages of the budget, the delays in releasing and applying funds, the differences between the values requested, approved and executed, including the use of the ‘up-front’ payment/petty cash system. • Section C - Purchases, materials and drugs management. This section deals with information regarding the purchasing and storage systems, including pharmacy. Surveys were done basically to elucidate the physical condition of stocks, delays in bidding processes and the impact of these elements on service delivery. • Section D - Equipment and installations. This section examined the equipment estate, covering inter alia the frequency rate of breakdowns/breakages in addition to examining the physical conditions of installations. • Section E - Human resources. Information was sought in the section regarding the staff, its distribution, qualifications, absenteeism and any failure to comply with working hours. • Section F - Hospital and outpatient clinic expenditure. In this section data was sought on the expenditure by type and receipts by source, together with an analysis of the service providers and the impact of receipts from SUS on overall expenditure. • Section G - Hospital and outpatient clinic productivity. Data was collected regarding the productivity of the units and, wherever possible, performance and quality indicators were calculated.
Supplementary documentation requested included: • Municipal/State Health Agenda (2002-2003); • Municipal/State Health Plan (2002-2003); • Current Multi-Year Plan (referring to health); • Budget Guidelines Law (2002-2003); • Municipal/State Health Budget (2002-2003); • Documentary evidence of present budget execution (2002 and first half of 2003); • Municipal/State Balance Sheets, Annex 2, 6 (Health section),10 and 11, for 2002; • Management Reports (2002). • Personnel Allocation Chart • Organization chart of Institution
This is a MD iMAP hosted service layer. Find more information at http://imap.maryland.gov. The sample sites are color coded according to the Benthic Index of Biotic Integrity (BIBI) scores. Anything below a BIBI score of 3.0 is red (Poor) - 3.0-3.9 is yellow (Fair) - and 4.0-5.0 is green (Good).Begun as a pilot in 2000 - Maryland Stream Waders is a statewide volunteer stream monitoring program managed by Maryland Department of Natural Resources (DNR) - Monitoring and Nontidal Assessment Division. Stream Waders is the volunteer component of the Maryland Biological Stream Survey (MBSS).Goals of Stream Waders are: to increase the density of sampling sites for use in stream and watershed assessments; to improve stream stewardship ethics and encourage local action to improve watershed management; to educate the local community about the relationship between land use and stream quality; and to provide quality assured information on stream quality to state - local - and federal agencies - environmental organizations - and others.Stream Waders is designed to be seamless with the MBSS and several other stream sampling programs in Maryland. MBSS samples are collected at the watershed level (8-digit Hydrologic Unit Code (HUC); about 70 square miles each) - while Stream Waders volunteers sample at a smaller scale subwatersheds at the 12-digit HUC; about 8 square miles each). Thus - Stream Waders data should help 'fill the gaps' left in watershed areas not sampled by MBSS. Stream Waders sample - for the most part - in the sameoverall watersheds each year where MBSS crews sample. Last Updated: 09/2012 Feature Service Layer Link: https://mdgeodata.md.gov/imap/rest/services/Hydrology/MD_StreamHealth/FeatureServer ADDITIONAL LICENSE TERMS: The Spatial Data and the information therein (collectively "the Data") is provided "as is" without warranty of any kind either expressed implied or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct indirect incidental consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.
The Pakistan Demographic and Health Survey PDHS 2017-18 was the fourth of its kind in Pakistan, following the 1990-91, 2006-07, and 2012-13 PDHS surveys.
The primary objective of the 2017-18 PDHS is to provide up-to-date estimates of basic demographic and health indicators. The PDHS provides a comprehensive overview of population, maternal, and child health issues in Pakistan. Specifically, the 2017-18 PDHS collected information on:
The information collected through the 2017-18 PDHS is intended to assist policymakers and program managers at the federal and provincial government levels, in the private sector, and at international organisations in evaluating and designing programs and strategies for improving the health of the country’s population. The data also provides information on indicators relevant to the Sustainable Development Goals.
National coverage
The survey covered all de jure household members (usual residents), children age 0-5 years, women age 15-49 years and men age 15-49 years resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2017-18 PDHS is a complete list of enumeration blocks (EBs) created for the Pakistan Population and Housing Census 2017, which was conducted from March to May 2017. The Pakistan Bureau of Statistics (PBS) supported the sample design of the survey and worked in close coordination with NIPS. The 2017-18 PDHS represents the population of Pakistan including Azad Jammu and Kashmir (AJK) and the former Federally Administrated Tribal Areas (FATA), which were not included in the 2012-13 PDHS. The results of the 2017-18 PDHS are representative at the national level and for the urban and rural areas separately. The survey estimates are also representative for the four provinces of Punjab, Sindh, Khyber Pakhtunkhwa, and Balochistan; for two regions including AJK and Gilgit Baltistan (GB); for Islamabad Capital Territory (ICT); and for FATA. In total, there are 13 secondlevel survey domains.
The 2017-18 PDHS followed a stratified two-stage sample design. The stratification was achieved by separating each of the eight regions into urban and rural areas. In total, 16 sampling strata were created. Samples were selected independently in every stratum through a two-stage selection process. Implicit stratification and proportional allocation were achieved at each of the lower administrative levels by sorting the sampling frame within each sampling stratum before sample selection, according to administrative units at different levels, and by using a probability-proportional-to-size selection at the first stage of sampling.
The first stage involved selecting sample points (clusters) consisting of EBs. EBs were drawn with a probability proportional to their size, which is the number of households residing in the EB at the time of the census. A total of 580 clusters were selected.
The second stage involved systematic sampling of households. A household listing operation was undertaken in all of the selected clusters, and a fixed number of 28 households per cluster was selected with an equal probability systematic selection process, for a total sample size of approximately 16,240 households. The household selection was carried out centrally at the NIPS data processing office. The survey teams only interviewed the pre-selected households. To prevent bias, no replacements and no changes to the pre-selected households were allowed at the implementing stages.
For further details on sample design, see Appendix A of the final report.
Face-to-face [f2f]
Six questionnaires were used in the 2017-18 PDHS: Household Questionnaire, Woman’s Questionnaire, Man’s Questionnaire, Biomarker Questionnaire, Fieldworker Questionnaire, and the Community Questionnaire. The first five questionnaires, based on The DHS Program’s standard Demographic and Health Survey (DHS-7) questionnaires, were adapted to reflect the population and health issues relevant to Pakistan. The Community Questionnaire was based on the instrument used in the previous rounds of the Pakistan DHS. Comments were solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. The survey protocol was reviewed and approved by the National Bioethics Committee, Pakistan Health Research Council, and ICF Institutional Review Board. After the questionnaires were finalised in English, they were translated into Urdu and Sindhi. The 2017-18 PDHS used paper-based questionnaires for data collection, while computerassisted field editing (CAFE) was used to edit the questionnaires in the field.
The processing of the 2017-18 PDHS data began simultaneously with the fieldwork. As soon as data collection was completed in each cluster, all electronic data files were transferred via IFSS to the NIPS central office in Islamabad. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors. Secondary editing was carried out in the central office, which involved resolving inconsistencies and coding the openended questions. The NIPS data processing manager coordinated the exercise at the central office. The PDHS core team members assisted with the secondary editing. Data entry and editing were carried out using the CSPro software package. The concurrent processing of the data offered a distinct advantage as it maximised the likelihood of the data being error-free and accurate. The secondary editing of the data was completed in the first week of May 2018. The final cleaning of the data set was carried out by The DHS Program data processing specialist and completed on 25 May 2018.
A total of 15,671 households were selected for the survey, of which 15,051 were occupied. The response rates are presented separately for Pakistan, Azad Jammu and Kashmir, and Gilgit Baltistan. Of the 12,338 occupied households in Pakistan, 11,869 households were successfully interviewed, yielding a response rate of 96%. Similarly, the household response rates were 98% in Azad Jammu and Kashmir and 99% in Gilgit Baltistan.
In the interviewed households, 94% of ever-married women age 15-49 in Pakistan, 97% in Azad Jammu and Kashmir, and 94% in Gilgit Baltistan were interviewed. In the subsample of households selected for the male survey, 87% of ever-married men age 15-49 in Pakistan, 94% in Azad Jammu and Kashmir, and 84% in Gilgit Baltistan were successfully interviewed.
Overall, the response rates were lower in urban than in rural areas. The difference is slightly less pronounced for Azad Jammu and Kashmir and Gilgit Baltistan. The response rates for men are lower than those for women, as men are often away from their households for work.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017-18 Pakistan Demographic and Health Survey (2017-18 PDHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017-18 PDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that
Welcome to the KDHE / KCC Chloride Contaminated Sites Viewer. This web app displays the Public Land Survey (PLSS) sections in Kansas that contain sites undergoing remediation for chloride contamination. This map does not show the exact area of contamination, but only highlights the legal boundary within which the contamination took place.Please note:Chloride contamination on state-led contaminated sites, voluntary sites, orphan sites, and state-led federal Superfund sites are regulated by the Bureau of Remediation at the Kansas Department of Health and Environment (affected sections are orange on the map).Chloride contamination resulting from oil and gas exploration and production activities are regulated by the Kansas Corporation Commission (KCC) through the Abandoned Oil and Gas Well/Site Remediation Program (affected sections are purple on the map).The remediation locations are approximate only.KDHE and KCC make no assurances of the accuracy or validity of information presented on this map. Data is updated as needed.For further information, please contact the Bureau of Remediation . More information about KDHE can be found on the Kansas Department of Health and Environment website .
The multi-country Study on Global Ageing and Adult Health (SAGE) is run by the World Health Organization's Multi-Country Studies unit in the Health Systems and Innovation Cluster. SAGE is part of the unit's Longitudinal Study Programme which is compiling longitudinal data on the health and well-being of adult populations, and the ageing process, through primary data collection and secondary data analysis. SAGE baseline data (Wave 0, 2002/3) was collected as part of WHO's World Health Survey http://www.who.int/healthinfo/survey/en/index.html (WHS). SAGE Wave 2 (2014/15) provides a comprehensive data set on the health and well-being of adults in six low and middle-income countries: China, Ghana, India, Mexico, Russian Federation and South Africa.
Objectives: To obtain reliable, valid and comparable health, health-related and well-being data over a range of key domains for adult and older adult populations in nationally representative samples To examine patterns and dynamics of age-related changes in health and well-being using longitudinal follow-up of a cohort as they age, and to investigate socio-economic consequences of these health changes To supplement and cross-validate self-reported measures of health and the anchoring vignette approach to improving comparability of self-reported measures, through measured performance tests for selected health domains To collect health examination and biomarker data that improves reliability of morbidity and risk factor data and to objectively monitor the effect of interventions
Additional Objectives: To generate large cohorts of older adult populations and comparison cohorts of younger populations for following-up intermediate outcomes, monitoring trends, examining transitions and life events, and addressing relationships between determinants and health, well-being and health-related outcomes To develop a mechanism to link survey data to demographic surveillance site data To build linkages with other national and multi-country ageing studies To improve the methodologies to enhance the reliability and validity of health outcomes and determinants data To provide a public-access information base to engage all stakeholders, including national policy makers and health systems planners, in planning and decision-making processes about the health and well-being of older adults
Methods: SAGE's first full round of data collection included both follow-up and new respondents in most participating countries. The goal of the sampling design was to obtain a nationally representative cohort of persons aged 50 years and older, with a smaller cohort of persons aged 18 to 49 for comparison purposes. In the older households, all persons aged 50+ years (for example, spouses and siblings) were invited to participate. Proxy respondents were identified for respondents who were unable to respond for themselves. Standardized SAGE survey instruments were used in all countries consisting of five main parts: 1) household questionnaire; 2) individual questionnaire; 3) proxy questionnaire; 4) verbal autopsy questionnaire; and, 5) appendices including showcards. A VAQ was completed for deaths in the household over the last 24 months. The procedures for including country-specific adaptations to the standardized questionnaire and translations into local languages from English follow those developed by and used for the World Health Survey.
Content: - Household questionnaire 0000 Coversheet 0100 Sampling Information 0200 Geocoding and GPS Information 0300 Recontact Information 0350 Contact Record 0400 Household Roster 0450 Kish Tables and Household Consent 0500 Housing 0600 Household and Family Support Networks and Transfers 0700 Assets and Household Income 0800 Household Expenditures 0900 Interviewer Observations
Verbal Autopsy questionnaire Section 1: Information on the Deceased and Date/Place of Death Section 1A7: Vital Registration and Certification Section 2: Information on the Respondent Section 3A: Medical History Associated with Final Illness Section 3B: General Signs and Symptoms Associated with Final Illness Section 3E: History of Injuries/Accidents Section 3G: Health Service Utilization Section 4: Background Section 5A: Interviewer Observations
Individual questionnaire 1000 Socio-Demographic Characteristics 1500 Work History and Benefits 2000 Health State Descriptions 2500 Anthropometrics, Performance Tests and Biomarkers 3000 Risk Factors and Preventive Health Behaviours 4000 Chronic Conditions and Health Services Coverage 5000 Health Care Utilisation 6000 Social Networks 7000 Subjective Well-Being and Quality of Life (WHOQoL-8 and Day Reconstruction Method) 8000 Impact of Caregiving 9000 Interviewer Assessment
Proxy Questionnaire Section1 Respondent Characteristics and IQ CODE Section2 Health State Descriptions Section4 Chronic Conditions and Health Services Coverage Section5 Health Care Utilisation
National coverage
households and individuals
The household section of the survey covered all households in 31 of the 32 federal states in Mexico. Colima was excluded. Institutionalised populations are excluded. The individual section covered all persons aged 18 years and older residing within individual households. As the focus of SAGE is older adults, a much larger sample of respondents aged 50 years and older was selected with a smaller comparative sample of respondents aged 18-49 years.
Sample survey data [ssd]
In Mexico strata were defined by locality (metropolitan, urban, rural). All 211 PSUs selected for wave 1 were included in the wave 2 sample. A sub-sample of 211 PSUs was selected from the 797 WHS PSUs for the wave 1 sample. The Basic Geo-Statistical Areas (AGEB) defined by the National Institute of Statistics (INEGI) constitutes a PSU. PSUs were selected probability proportional to three factors: a) (WHS/SAGE Wave 0 50plus): number of WHS/SAGE Wave 0 50-plus interviewed at the PSU, b) (State Population): population of the state to which the PSU belongs, c) (WHS/SAGE Wave 0 PSU at county): number of PSUs selected from the county to which the PSU belongs for the WHS/SAGE Wave 0 The first and third factors were included to reduce geographic dispersion. Factor two affords states with larger populations a greater chance of selection.
All WHS/SAGE Wave 0 individuals aged 50 years or older in the selected rural or urban PSUs and a random sample 90% of individuals aged 50 years or older in metropolitan PSUs who had been interviewed for the WHS/SAGE Wave 0 were included in the SAGE Wave 1 ''primary'' sample. The remaining 10% of WHS/SAGE Wave 0 individuals aged 50 years or older in metropolitan areas were then allocated as a ''replacement'' sample for individuals who could not be contacted or did not consent to participate in SAGE Wave 1. A systematic sample of 1000 WHS/SAGE Wave 0 individuals aged 18-49 across all selected PSUs was selected as the ''primary'' sample and 500 as a ''replacement'' sample.
This selection process resulted in a sample which had an over-representation of individuals from metropolitan strata; therefore, it was decided to increase the number of individuals aged 50 years or older from rural and urban strata. This was achieved by including individuals who had not been part of WHS/SAGE Wave 0 (which became a ''supplementary'' sample), although the household in which they lived included an individual from WHS/SAGE Wave 0. All individuals aged 50 or over were included from rural and urban ''18-49 households'' (that is, where an individual aged 18-49 was included in WHS/SAGE Wave 0) as part of the ''primary supplementary'' sample. A systematic random sample of individuals aged 50 years or older was then obtained from urban and rural households where an individual had already been selected as part of the 50 years and older or 18-49 samples. These individuals then formed part of the ''primary supplementary'' sample and the remainder (that is, those not systematically selected) were allocated to the ''replacement supplementary'' sample. Thus, all individuals aged 50 years or older who lived in households in urban and rural PSUs obtained for SAGE Wave 1 were selected as either a primary or replacement participant. A final ''replacement'' sample for the 50 and over age group was obtained from a systematic sample of all individuals aged 50 or over from households which included the individuals already selected for either the 50 and over or 18-49. This sampling strategy also provided participants who had not been included in WHS/SAGE Wave 0, but lived in a household where an individual had been part of WHS/SAGE Wave 0 (that is, the ''supplementary'' sample), in addition to follow-up of individuals who had been included in the WHS/SAGE Wave 0 sample.
Strata: Locality = 3 PSU: AGEBs = 211 SSU: Households = 6549 surveyed TSU: Individual = 6342 surveyed
Face-to-face [f2f], CAPI
The questionnaires were based on the SAGE Wave 1 Questionnaires with some modification and new additions, except for verbal autopsy. SAGE Wave 2 used the 2012 version of the WHO Verbal Autopsy Questionnare. SAGE Wave 1 used an adapted version of the Sample Vital Registration iwth Verbal Autopsy (SAVVY) questionnaire. A Household questionnaire was administered to all households eligible for the study. A Verbal Autopsy questionnaire was administered to 50 plus households only. In follow-up 50 plus household if the death occured since the last wave of the study and in a new 50 plus household if the death occurred in the
The 2019 Pakistan Maternal Mortality Survey (2019 PMMS) was the first stand-alone maternal mortality survey conducted in Pakistan. A nationally representative sample of 1,396 primary sampling units were randomly selected. The survey was expected to result in about 14,000 interviews with ever-married women age 15-49.
The primary objective of the 2019 PMMS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the survey was designed and carried out with the purpose of assessing where Pakistan stands on maternal health indicators and how well the country is moving toward these targets. Overall aims of the 2019 PMMS were as follows: - To estimate national and regional levels of maternal mortality for the 3 years preceding the survey and determine whether the MMR has declined substantially since 2006-07 - To identify medical causes of maternal deaths and the biological and sociodemographic risk factors associated with maternal mortality - To assess the impact of maternal and newborn health services, including antenatal and postnatal care and skilled birth attendance, on prevention of maternal mortality and morbidity - To estimate the prevalence and determinants of common obstetric complications and morbidities among women of reproductive age during the 3 years preceding the survey
National coverage
Sample survey data [ssd]
The 2019 PMMS used a multistage and multiphase cluster sampling methodology based on updated sampling frames derived from the 6th Population and Housing Census, which was conducted in 2017 by the Pakistan Bureau of Statistics (PBS). The sampling universe consisted of urban and rural areas of the four provinces of Pakistan (Punjab, Sindh, Khyber Pakhtunkhwa, and Balochistan), Azad Jammu and Kashmir (AJK), Gilgit Baltistan (GB), Federally Administered Tribal Areas (FATA), and the Islamabad Capital Territory (ICT). A total of 153,560 households (81,400 rural and 72,160 urban) were selected using a two-stage and two-phase stratified systematic sampling approach. The survey was designed to provide representative results for most of the survey indicators in 11 domains: four provinces (by urban and rural areas with Islamabad combined with Punjab and FATA combined with Khyber Pakhtunkhwa), Azad Jammu and Kashmir (urban and rural), and Gilgit Baltistan. Restricted military and protected areas were excluded from the sample.
The sampled households were randomly selected from 1,396 primary sampling units (PSUs) (740 rural and 656 urban) after a complete household listing. In each PSU, 110 randomly selected households were administered the various questionnaires included in the survey. All 110 households in each PSU were asked about births and deaths during the previous 3 years, including deaths among women of reproductive age (15-49 years). Households that reported at least one death of a woman of reproductive age were then visited, and detailed verbal autopsies were conducted to determine the causes and circumstances of these deaths to help identify maternal deaths. In the second phase, 10 households in each PSU were randomly selected from the 110 households selected in the first phase to gather detailed information on women of reproductive age. All eligible ever-married women age 15-49 residing in these 10 households were interviewed to gather detailed information, including a complete pregnancy history.
Note: A detailed description of the sample design is provided in Appendix A of the final report.
Face-to-face [f2f]
Six questionnaires were used in the 2019 PMMS: the Short Household Questionnaire, the Long Household Questionnaire, the Woman’s Questionnaire, the Verbal Autopsy Questionnaire, the Community Questionnaire, and the Fieldworker Questionnaire. A Technical Advisory Committee was established to solicit comments on the questionnaires from various stakeholders, including representatives of government ministries and agencies, nongovernmental organisations, and international donors. The survey protocol was reviewed and approved by the National Bioethics Committee, the Pakistan Health Research Council, and the ICF Institutional Review Board. After being finalised in English, the questionnaires were translated into Urdu and Sindhi. The 2019 PMMS used paper-based questionnaires for data collection, while computer-assisted field editing (CAFE) was used to edit questionnaires in the field.
The processing of the 2019 PMMS data began simultaneously with the fieldwork. As soon as data collection was completed in each cluster, all electronic data files were transferred via the Internet File Streaming System (IFSS) to the NIPS central office in Islamabad. These data files were registered and checked for inconsistencies, incompleteness, and outliers. A double entry procedure was adopted by NIPS to ensure data accuracy. The field teams were alerted about any inconsistencies and errors. Secondary editing of completed questionnaires, which involved resolving inconsistencies and coding open-ended questions, was carried out in the central office. The survey core team members assisted with secondary editing, and the NIPS data processing manager coordinated the work at the central office. Data entry and editing were carried out using the CSPro software package. The concurrent processing of the data offered a distinct advantage because it maximised the likelihood of the data being error-free and accurate.
In the four provinces, the sample contained a total of 116,169 households. All households were visited by the field teams, and 110,483 households were found to be occupied. Of these households, 108,766 were successfully interviewed, yielding a household response rate of 98%. The subsample selected for the Long Household Questionnaire comprised 11,080 households, and interviews were carried out in 10,479 of these households. A total of 12,217 ever-married women age 15-49 were eligible to be interviewed based on the Long Household Questionnaire, and 11,859 of these women were successfully interviewed (a response rate of 97%).
In Azad Jammu and Kashmir, 16,755 households were occupied, and interviews were successfully carried out in 16,588 of these households (99%). A total of 1,707 ever-married women were eligible for individual interviews, of whom 1,666 were successfully interviewed (98%). In Gilgit Baltistan, 11,005 households were occupied, and interviews were conducted in 10,872 households (99%). A total of 1,219 ever-married women were eligible for interviews, of whom 1,178 were successfully interviewed (97%).
A total of 944 verbal autopsy interviews were conducted in Pakistan overall, 150 in Azad Jammu and Kashmir, and 88 in Gilgit Baltistan. The Verbal Autopsy Questionnaire was used in almost all of the interviews, and response rates were nearly 100%.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2019 Pakistan Maternal Mortality Survey (2019 PMMS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2019 PMMS is only one of many samples that could have been selected from the same population, using the same design and sample size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected by simple random sampling, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2019 PMMS sample was the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed using SAS programmes developed by ICF. These programmes use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios and use the Jackknife repeated replication method for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in Appendix B of the survey report.
Data Quality Tables
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations.
The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Sunday to Saturday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities.
The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities.
For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-15 means the average/sum/coverage of the elements captured from that given facility starting and including Sunday, November 15, 2020, and ending and including reports for Saturday, November 21, 2020.
Reported elements include an append of either “_coverage”, “_sum”, or “_avg”.
The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”.
A story page was created to display both corrected and raw datasets and can be accessed at this link: https://healthdata.gov/stories/s/nhgk-5gpv
This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020.
Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect.
For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied.
For recent updates to the dataset, scroll to the bottom of the dataset description.
On May 3, 2021, the following fields have been added to this data set.
On May 8, 2021, this data set has been converted to a corrected data set. The corrections applied to this data set are to smooth out data anomalies caused by keyed in data errors. To help determine which records have had corrections made to it. An additional Boolean field called is_corrected has been added.
On May 13, 2021 Changed vaccination fields from sum to max or min fields. This reflects the maximum or minimum number reported for that metric in a given week.
On June 7, 2021 Changed vaccination fields from max or min fields to Wednesday reported only. This reflects that the number reported for that metric is only reported on Wednesdays in a given week.
On September 20, 2021, the following has been updated: The use of analytic dataset as a source.
On January 19, 2022, the following fields have been added to this dataset:
On April 28, 2022, the following pediatric fields have been added to this dataset:
On October 24, 2022, the data includes more analytical calculations in efforts to provide a cleaner dataset. For a raw version of this dataset, please follow this link: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/uqq2-txqb
Due to changes in reporting requirements, after June 19, 2023, a collection week is defined as starting on a Sunday and ending on the next Saturday.