8 datasets found
  1. n

    FEMA National Flood Hazard Layer Viewer

    • data.gis.ny.gov
    Updated Mar 29, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ShareGIS NY (2023). FEMA National Flood Hazard Layer Viewer [Dataset]. https://data.gis.ny.gov/datasets/fema-national-flood-hazard-layer-viewer
    Explore at:
    Dataset updated
    Mar 29, 2023
    Dataset authored and provided by
    ShareGIS NY
    Description

    The National Flood Hazard Layer (NFHL) is a geospatial database that contains current effective flood hazard data. FEMA provides the flood hazard data to support the National Flood Insurance Program. You can use the information to better understand your level of flood risk and type of flooding.The NFHL is made from effective flood maps and Letters of Map Change (LOMC) delivered to communities. NFHL digital data covers over 90 percent of the U.S. population. New and revised data is being added continuously. If you need information for areas not covered by the NFHL data, there may be other FEMA products which provide coverage for those areas.In the NFHL Viewer, you can use the address search or map navigation to locate an area of interest and the NFHL Print Tool to download and print a full Flood Insurance Rate Map (FIRM) or FIRMette (a smaller, printable version of a FIRM) where modernized data exists. Technical GIS users can also utilize a series of dedicated GIS web services that allow the NFHL database to be incorporated into websites and GIS applications. For more information on available services, go to the NFHL GIS Services User Guide.You can also use the address search on the FEMA Flood Map Service Center (MSC) to view the NFHL data or download a FIRMette. Using the “Search All Products” on the MSC, you can download the NFHL data for a County or State in a GIS file format. This data can be used in most GIS applications to perform spatial analyses and for integration into custom maps and reports. To do so, you will need GIS or mapping software that can read data in shapefile format.FEMA also offers a download of a KMZ (keyhole markup file zipped) file, which overlays the data in Google Earth™. For more information on using the data in Google Earth™, please see Using the National Flood Hazard Layer Web Map Service (WMS) in Google Earth™.

  2. a

    FEMA's National Flood Hazard Layer Viewer

    • opendata-volusiacountyfl.hub.arcgis.com
    Updated May 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Volusia (2025). FEMA's National Flood Hazard Layer Viewer [Dataset]. https://opendata-volusiacountyfl.hub.arcgis.com/datasets/femas-national-flood-hazard-layer-viewer
    Explore at:
    Dataset updated
    May 21, 2025
    Dataset authored and provided by
    County of Volusia
    Description

    In the NFHL Viewer, you can use the address search or map navigation to locate an area of interest and the NFHL Print Tool to download and print a full Flood Insurance Rate Map (FIRM) or FIRMette (a smaller, printable version of a FIRM) where NFHL data exists. Technical GIS users can also utilize a series of dedicated GIS web services that allow the NFHL database to be incorporated into websites and GIS applications. For more information on available services, go to the NFHL GIS Services User Guide.You can also use the address search on the FEMA Flood Map Service Center (MSC) to view the NFHL data or download a FIRMette. Using the “Search All Products” on the MSC, you can download the NFHL data for a County or State in a GIS file format. This data can be used in most GIS applications to perform spatial analyses and for integration into custom maps and reports. To do so, you will need GIS or mapping software that can read data in shapefile format.FEMA also offers a download of a KMZ (keyhole markup file zipped) file, which overlays the data in Google Earth™. For more information on using the data in Google Earth™, please see Using the National Flood Hazard Layer Web Map Service (WMS) in Google Earth™.

  3. C

    Colorado Google Flood Crisis Map

    • data.colorado.gov
    • data.wu.ac.at
    application/rdfxml +5
    Updated Sep 18, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OIT - Governor's Office of Information Technology (2013). Colorado Google Flood Crisis Map [Dataset]. https://data.colorado.gov/Public-Safety/Colorado-Google-Flood-Crisis-Map/4js5-jrc6
    Explore at:
    application/rdfxml, xml, json, application/rssxml, csv, tsvAvailable download formats
    Dataset updated
    Sep 18, 2013
    Dataset authored and provided by
    OIT - Governor's Office of Information Technology
    Area covered
    Colorado
    Description

    The Governor's Office of Information Technology (OIT) is managing the Colorado Google Flood Crisis Map Colorado Google Flood Crisis Map. In partnership with the Department of Public Safety, OIT is overseeing the Statewide Digital Trunked Radio System (DTRS) which bridges state, county, local and tribal communications. Since the flooding emergency began, the DTRS system has processed more than 4.7 million radio calls and dispatched more than 150 mobile radio units to the Colorado National Guard and various search and rescue teams. Additionally, the DTRS team has deployed technicians to conduct repairs and damage assessments to the state’s 200+ DTRS towers, some of which are located in the flood zones. OIT’s Geographic Information Systems team is assisting in the coordination of aggregating data with Federal Emergency Management Agency (FEMA) and other agencies. For more information, visit www.colorado.gov/oit.

  4. n

    Data from: Seaside, Oregon, Tsunami Pilot Study Modernization of FEMA Flood...

    • cmr.earthdata.nasa.gov
    shtml
    Updated Apr 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Seaside, Oregon, Tsunami Pilot Study Modernization of FEMA Flood Hazard Maps: GIS Data [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C2231549323-CEOS_EXTRA.html
    Explore at:
    shtmlAvailable download formats
    Dataset updated
    Apr 20, 2017
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Description

    The Federal Emergency Management Agency (FEMA) Federal Insurance Rate Map (FIRM) guidelines do not currently exist for conducting and incorporating tsunami hazard assessments that reflect the substantial advances in tsunami research achieved in the last two decades; this conclusion is the result of two FEMA-sponsored workshops and the associated Tsunami Focused Study (Chowdhury and others, 2005). Therefore, as part of FEMA's Map Modernization Program, a Tsunami Pilot Study was carried out in the Seaside/Gearhart, Oregon, area to develop an improved Probabilistic Tsunami Hazard Analysis (PTHA) methodology and to provide recommendations for improved tsunami hazard assessment guidelines (Tsunami Pilot Study Working Group, 2006). The Seaside area was chosen because it is typical of many coastal communities in the section of the Pacific Coast from Cape Mendocino to the Strait of Juan de Fuca, and because State agencies and local stakeholders expressed considerable interest in mapping the tsunami threat to this area. The study was an interagency effort by FEMA, U.S. Geological Survey, and the National Oceanic and Atmospheric Administration (NOAA), in collaboration with the University of Southern California, Middle East Technical University, Portland State University, Horning Geoscience, Northwest Hydraulics Consultants, and the Oregon Department of Geological and Mineral Industries. We present the spatial (geographic information system, GIS) data from the pilot study in standard GIS formats and provide files for visualization in Google Earth, a global map viewer.

    [Summary provided by the USGS.]

  5. d

    Data from: San Francisco Bay Levees

    • datadiscoverystudio.org
    Updated Jun 27, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). San Francisco Bay Levees [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/d9277126184c44c6a4b9383e8897c2a6/html
    Explore at:
    Dataset updated
    Jun 27, 2018
    Area covered
    Description

    Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information

  6. n

    North Carolina Effective Flood Zones

    • nconemap.gov
    • hub.arcgis.com
    • +1more
    Updated May 6, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of North Carolina - Emergency Management (2019). North Carolina Effective Flood Zones [Dataset]. https://www.nconemap.gov/maps/a178aae74ee347d786e853e5a442eea2
    Explore at:
    Dataset updated
    May 6, 2019
    Dataset authored and provided by
    State of North Carolina - Emergency Management
    Area covered
    Description

    North Carolina Effective Flood zones: In 2000, the Federal Emergency Management Agency (FEMA) designated North Carolina a Cooperating Technical Partner State, formalizing an agreement between FEMA and the State to modernize flood maps. This partnership resulted in creation of the North Carolina Floodplain Mapping Program (NCFMP). As a CTS, the State assumed primary ownership and responsibility of the Flood Insurance Rate Maps (FIRMs) for all North Carolina communities as part of the National Flood Insurance Program (NFIP). This project includes conducting flood hazard analyses and producing updated, Digital Flood Insurance Rate Maps (DFIRMs). Floodplain management is a process that aims to achieve reduced losses due to flooding. It takes on many forms, but is realized through a series of federal, state, and local programs and regulations, in concert with industry practice, to identify flood risk, implement methods to protect man-made development from flooding, and protect the natural and beneficial functions of floodplains. FIRMs are the primary tool for state and local governments to mitigate areas of flooding. Individual county databases can be downloaded from https://fris.nc.gov Updated Jan 17th, 2025.

  7. a

    CSDCIOP Structure Points

    • maine.hub.arcgis.com
    Updated Feb 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Maine (2020). CSDCIOP Structure Points [Dataset]. https://maine.hub.arcgis.com/maps/maine::csdciop-structure-points
    Explore at:
    Dataset updated
    Feb 26, 2020
    Dataset authored and provided by
    State of Maine
    Area covered
    Description

    Feature class that compare the elevations between seawall crests (extracted from available LiDAR datasets from 2010 and 2013) with published FEMA Base Flood Elevations (BFEs) from preliminary FEMA DFIRMS (Panels issued in 2018 and 2019) in coastal York and Cumberland counties (up through Willard Beach in South Portland). The dataset included the development of an inventory of coastal armor structures from a range of different datasets. Feature classes include the following:Steps to create the dataset included:Shoreline structures from the most recent NOAA EVI LANDWARD_SHORETYPE feature class were extracted using the boundaries of York and Cumberland counties. This included 1B: Exposed, Solid Man-Made structures, 8B: Sheltered, Solid Man-Made Structures; 6B: Riprap, and 8C: Sheltered Riprap. This resulted in the creation of Cumberland_ESIL_Structures and York_ESIL_Structures. Note that ESIL uses the MHW line as the feature base.Shoreline structures from the work by Rice (2015) were extracted using the York and Cumberland county boundaries. This resulted in the creation of Cumberland_Rice_Structures and York_Rice_Structures.Additional feature classes for structures were created for York and Cumberland county structures that were missed. This was Slovinsky_York_Structures and Slovinsky_Cumberland_Structures. GoogleEarth imagery was inspected while additional structures were being added to the GIS. 2012 York and Cumberland County imagery was used as the basemap, and structures were classified as bulkheads, rip rap, or dunes (if known). Also, whether or not the structure was in contact with the 2015 HAT was noted.MEDEP was consulted to determine which permit data (both PBR and Individual Permit, IP, data) could be used to help determine where shoreline stabilization projects may have been conducted adjacent to or on coastal bluffs. A file was received for IP data and brought into GIS (DEP_Licensing_Points). This is a point file for shoreline stabilization permits under NRPA.Clip GISVIEW.MEDEP.Permit_By_Rule_Locations to the boundaries of the study area and output DEP_PBR_Points.Join GISVIEW.sde>GISVIEW.MEDEP.PBR_ACTIVITY to the DEP_PBR_Points using the PBR_ID Field. Then, export this file as DEP_PBR_Points2. Using the new ACTIVITY_DESC field, select only those activities that relate to shoreline stabilization projects:PBR_ACTIVITY ACTIVITY_DESC02 Act. Adjacent to a Protected Natural Resource04 Maint Repair & Replacement of Structure08 Shoreline StabilizationSelect by Attributes > PBR_ACTIVITY IN (‘02’, ‘04’, ‘08’) select only those activities likely to be related to shoreline stabilization, and export the selected data as a DEP_PBR_Points3. Then delete 1 and 2, and rename this final product as DEP_PBR_Points.Next, visually inspect the Licensing and PBR files using ArcMap 2012, 2013 imagery, along with Google Earth imagery to determine the extents of armoring along the shoreline.Using EVI and Rice data as indicators, manually inspect and digitize sections of the coastline that are armored. Classify the seaward shoreline type (beach, mudflat, channel, dune, etc.) and the armor type (wall or bulkhead). Bring in the HAT line and, using that and visual indicators, identify whether or not the armored sections are in contact with HAT. Use Google Earth at the same time as digitizing in order to help constrain areas. Merge digitized armoring into Cumberland_York_Merged.Bring the preliminary FEMA DFIRM data in and use “intersect” to assign the different flood zones and elevations to the digitized armored sections. This was done first for Cumberland, then for York Counties. Delete ancillary attributes, as needed. Resulting layer is Cumberland_Structure_FloodZones and York_Structure_FloodZones.Go to NOAA Digital Coast Data Layers and download newest LiDAR data for York and Cumberland county beach, dune, and just inland areas. This includes 2006 and newer topobathy data available from 2010 (entire coast), and selected areas from 2013 and 2014 (Wells, Scarborough, Kennebunk).Mosaic the 2006, 2010, 2013 and 2014 data (with 2013 and 2014 being the first dataset laying on top of the 2010 data) Mosaic this dataset into the sacobaydem_ftNAVD raster (this is from the MEGIS bare-earth model). This will cover almost all of the study area except for armor along several areas in York. Resulting in LidAR206_2010_2013_Mosaic.tif.Using the LiDAR data as a proxy, create a “seaward crest” line feature class which follows along the coast and extracts the approximate highest point (cliff, bank, dune) along the shoreline. This will be used to extract LiDAR data and compare with preliminary flood zone information. The line is called Dune_Crest.Using an added tool Points Along Line, create points at 5 m spacing along each of the armored shoreline feature lines and the dune crest lines. Call the outputs PointsonLines and PointsonDunes.Using Spatial Analyst, Extract LIDAR elevations to the points using the 2006_2010_2013 Mosaic first. Call this LidarPointsonLines1. Select those points which have NULL values, export as this LiDARPointsonLines2. Then rerun Extract Values to Points using just the selected data and the state MEGIS DEM. Convert RASTERVALU to feet by multiplying by 3.2808 (and rename as Elev_ft). Select by Attributes, find all NULL values, and in an edit session, delete them from LiDARPointsonLines. Then, merge the 2 datasets and call it LidarPointsonLines. Do the same above with dune lines and create LidarPointsonDunes.Next, use the Cumberland and York flood zone layers to intersect the points with the appropriate flood zone data. Create ….CumbFIRM and …YorkFIRM files for the dunes and lines.Select those points from the Dunes feature class that are within the X zone – these will NOT have an associated BFE for comparison with the Lidar data. Export the Dune Points as Cumberland_York_Dunes_XZone. Run NEAR and use the merged flood zone feature class (with only V, AE, and AO zones selected). Then, join the flood zone data to the feature class using FID (from the feature class) and OBJECTID (from the flood zone feature class). Export as Cumberland_York_Dunes_XZone_Flood. Delete ancillary columns of data, leaving the original FLD_ZONE (X), Elev_ft, NEAR_DIST (distance, in m, to the nearest flood zone), FLD_ZONE_1 (the near flood zone), and the STATIC_BFE_1 (the nearest static BFE).Do the same as above, except with the Structures file (Cumberland_York_Structures_Lidar_DFIRM_Merged), but also select those features that are within the X zone and the OPEN WATER. Export the points as Cumberland_York_Structures_XZone. Again, run the NEAR using the merged flood zone and only AE, VE, and AO zones selected. Export the file as Cumberland_York_Structures_XZone_Flood.Merge the above feature classes with the original feature classes. Add a field BFE_ELEV_COMPARE. Select all those features whose attributes have a VE or AE flood zone and use field calculator to calculate the difference between the Elev_ft and the BFE (subtracting the STATIC_BFE from Elev_ft). Positive values mean the maximum wall value is higher than the BFE, while negative values mean the max is below the BFE. Then, select the remaining values with switch selection. Calculate the same value but use the NEAR_STATIC_BFE value instead. Select by Attributes>FLD_ZONE=AO, and use the DEPTH value to enter into the above created fields as negative values. Delete ancilary attribute fields, leaving those listed in the _FINAL feature classes described above the process steps section.

  8. a

    CSDCIOP Dune Crest Points

    • maine.hub.arcgis.com
    Updated Feb 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Maine (2020). CSDCIOP Dune Crest Points [Dataset]. https://maine.hub.arcgis.com/maps/csdciop-dune-crest-points
    Explore at:
    Dataset updated
    Feb 26, 2020
    Dataset authored and provided by
    State of Maine
    Area covered
    Description

    Feature class that compares the elevations between sand dune crests (extracted from available LiDAR datasets from 2010 and 2013) with published FEMA Base Flood Elevations (BFEs) from preliminary FEMA DFIRMS (Panels issued in 2018 and 2019) in coastal York and Cumberland counties (up through Willard Beach in South Portland). Steps to create the dataset included:Shoreline structures from the most recent NOAA EVI LANDWARD_SHORETYPE feature class were extracted using the boundaries of York and Cumberland counties. This included 1B: Exposed, Solid Man-Made structures, 8B: Sheltered, Solid Man-Made Structures; 6B: Riprap, and 8C: Sheltered Riprap. This resulted in the creation of Cumberland_ESIL_Structures and York_ESIL_Structures. Note that ESIL uses the MHW line as the feature base.Shoreline structures from the work by Rice (2015) were extracted using the York and Cumberland county boundaries. This resulted in the creation of Cumberland_Rice_Structures and York_Rice_Structures.Additional feature classes for structures were created for York and Cumberland county structures that were missed. This was Slovinsky_York_Structures and Slovinsky_Cumberland_Structures. GoogleEarth imagery was inspected while additional structures were being added to the GIS. 2012 York and Cumberland County imagery was used as the basemap, and structures were classified as bulkheads, rip rap, or dunes (if known). Also, whether or not the structure was in contact with the 2015 HAT was noted.MEDEP was consulted to determine which permit data (both PBR and Individual Permit, IP, data) could be used to help determine where shoreline stabilization projects may have been conducted adjacent to or on coastal bluffs. A file was received for IP data and brought into GIS (DEP_Licensing_Points). This is a point file for shoreline stabilization permits under NRPA.Clip GISVIEW.MEDEP.Permit_By_Rule_Locations to the boundaries of the study area and output DEP_PBR_Points.Join GISVIEW.sde>GISVIEW.MEDEP.PBR_ACTIVITY to the DEP_PBR_Points using the PBR_ID Field. Then, export this file as DEP_PBR_Points2. Using the new ACTIVITY_DESC field, select only those activities that relate to shoreline stabilization projects:PBR_ACTIVITY ACTIVITY_DESC02 Act. Adjacent to a Protected Natural Resource04 Maint Repair & Replacement of Structure08 Shoreline StabilizationSelect by Attributes > PBR_ACTIVITY IN (‘02’, ‘04’, ‘08’) select only those activities likely to be related to shoreline stabilization, and export the selected data as a DEP_PBR_Points3. Then delete 1 and 2, and rename this final product as DEP_PBR_Points.Next, visually inspect the Licensing and PBR files using ArcMap 2012, 2013 imagery, along with Google Earth imagery to determine the extents of armoring along the shoreline.Using EVI and Rice data as indicators, manually inspect and digitize sections of the coastline that are armored. Classify the seaward shoreline type (beach, mudflat, channel, dune, etc.) and the armor type (wall or bulkhead). Bring in the HAT line and, using that and visual indicators, identify whether or not the armored sections are in contact with HAT. Use Google Earth at the same time as digitizing in order to help constrain areas. Merge digitized armoring into Cumberland_York_Merged.Bring the preliminary FEMA DFIRM data in and use “intersect” to assign the different flood zones and elevations to the digitized armored sections. This was done first for Cumberland, then for York Counties. Delete ancillary attributes, as needed. Resulting layer is Cumberland_Structure_FloodZones and York_Structure_FloodZones.Go to NOAA Digital Coast Data Layers and download newest LiDAR data for York and Cumberland county beach, dune, and just inland areas. This includes 2006 and newer topobathy data available from 2010 (entire coast), and selected areas from 2013 and 2014 (Wells, Scarborough, Kennebunk).Mosaic the 2006, 2010, 2013 and 2014 data (with 2013 and 2014 being the first dataset laying on top of the 2010 data) Mosaic this dataset into the sacobaydem_ftNAVD raster (this is from the MEGIS bare-earth model). This will cover almost all of the study area except for armor along several areas in York. Resulting in LidAR206_2010_2013_Mosaic.tif.Using the LiDAR data as a proxy, create a “seaward crest” line feature class which follows along the coast and extracts the approximate highest point (cliff, bank, dune) along the shoreline. This will be used to extract LiDAR data and compare with preliminary flood zone information. The line is called Dune_Crest.Using an added tool Points Along Line, create points at 5 m spacing along each of the armored shoreline feature lines and the dune crest lines. Call the outputs PointsonLines and PointsonDunes.Using Spatial Analyst, Extract LIDAR elevations to the points using the 2006_2010_2013 Mosaic first. Call this LidarPointsonLines1. Select those points which have NULL values, export as this LiDARPointsonLines2. Then rerun Extract Values to Points using just the selected data and the state MEGIS DEM. Convert RASTERVALU to feet by multiplying by 3.2808 (and rename as Elev_ft). Select by Attributes, find all NULL values, and in an edit session, delete them from LiDARPointsonLines. Then, merge the 2 datasets and call it LidarPointsonLines. Do the same above with dune lines and create LidarPointsonDunes.Next, use the Cumberland and York flood zone layers to intersect the points with the appropriate flood zone data. Create ….CumbFIRM and …YorkFIRM files for the dunes and lines.Select those points from the Dunes feature class that are within the X zone – these will NOT have an associated BFE for comparison with the Lidar data. Export the Dune Points as Cumberland_York_Dunes_XZone. Run NEAR and use the merged flood zone feature class (with only V, AE, and AO zones selected). Then, join the flood zone data to the feature class using FID (from the feature class) and OBJECTID (from the flood zone feature class). Export as Cumberland_York_Dunes_XZone_Flood. Delete ancillary columns of data, leaving the original FLD_ZONE (X), Elev_ft, NEAR_DIST (distance, in m, to the nearest flood zone), FLD_ZONE_1 (the near flood zone), and the STATIC_BFE_1 (the nearest static BFE).Do the same as above, except with the Structures file (Cumberland_York_Structures_Lidar_DFIRM_Merged), but also select those features that are within the X zone and the OPEN WATER. Export the points as Cumberland_York_Structures_XZone. Again, run the NEAR using the merged flood zone and only AE, VE, and AO zones selected. Export the file as Cumberland_York_Structures_XZone_Flood.Merge the above feature classes with the original feature classes. Add a field BFE_ELEV_COMPARE. Select all those features whose attributes have a VE or AE flood zone and use field calculator to calculate the difference between the Elev_ft and the BFE (subtracting the STATIC_BFE from Elev_ft). Positive values mean the maximum wall value is higher than the BFE, while negative values mean the max is below the BFE. Then, select the remaining values with switch selection. Calculate the same value but use the NEAR_STATIC_BFE value instead. Select by Attributes>FLD_ZONE=AO, and use the DEPTH value to enter into the above created fields as negative values. Delete ancilary attribute fields, leaving those listed in the _FINAL feature classes described above the process steps section.

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ShareGIS NY (2023). FEMA National Flood Hazard Layer Viewer [Dataset]. https://data.gis.ny.gov/datasets/fema-national-flood-hazard-layer-viewer

FEMA National Flood Hazard Layer Viewer

Explore at:
Dataset updated
Mar 29, 2023
Dataset authored and provided by
ShareGIS NY
Description

The National Flood Hazard Layer (NFHL) is a geospatial database that contains current effective flood hazard data. FEMA provides the flood hazard data to support the National Flood Insurance Program. You can use the information to better understand your level of flood risk and type of flooding.The NFHL is made from effective flood maps and Letters of Map Change (LOMC) delivered to communities. NFHL digital data covers over 90 percent of the U.S. population. New and revised data is being added continuously. If you need information for areas not covered by the NFHL data, there may be other FEMA products which provide coverage for those areas.In the NFHL Viewer, you can use the address search or map navigation to locate an area of interest and the NFHL Print Tool to download and print a full Flood Insurance Rate Map (FIRM) or FIRMette (a smaller, printable version of a FIRM) where modernized data exists. Technical GIS users can also utilize a series of dedicated GIS web services that allow the NFHL database to be incorporated into websites and GIS applications. For more information on available services, go to the NFHL GIS Services User Guide.You can also use the address search on the FEMA Flood Map Service Center (MSC) to view the NFHL data or download a FIRMette. Using the “Search All Products” on the MSC, you can download the NFHL data for a County or State in a GIS file format. This data can be used in most GIS applications to perform spatial analyses and for integration into custom maps and reports. To do so, you will need GIS or mapping software that can read data in shapefile format.FEMA also offers a download of a KMZ (keyhole markup file zipped) file, which overlays the data in Google Earth™. For more information on using the data in Google Earth™, please see Using the National Flood Hazard Layer Web Map Service (WMS) in Google Earth™.

Search
Clear search
Close search
Google apps
Main menu