The risk of natural disasters, many of which are amplified by climate change, requires the protection of emergency evacuation routes to permit evacuees safe passage. California has recognized the need through the AB 747 Planning and Zoning Law, which requires each county and city in California to update their - general plans to include safety elements from unreasonable risks associated with various hazards, specifically evacuation routes and their capacity, safety, and viability under a range of emergency scenarios. These routes must be identified in advance and maintained so they can support evacuations. Today, there is a lack of a centralized database of the identified routes or their general assessment. Consequently, this proposal responds to Caltrans’ research priority for “GIS Mapping of Emergency Evacuation Routes.†Specifically, the project objectives are: 1) create a centralized GIS database, by collecting and compiling available evacuation route GIS layers, and the safety eleme..., The project used the following public datasets: • Open Street Map. The team collected the road network arcs and nodes of the selected localities and the team will make public the graph used for each locality. • National Risk Index (NRI): The team used the NRI obtained publicly from FEMA at the census tract level. • American Community Survey (ACS): The team used ACS data to estimate the Social Vulnerability Index at the census block level. Then the author developed a measurement to estimate the road network performance risk at the node level, by estimating the Hansen accessibility index, betweenness centrality and the NRI. Create a set of CSV files with the risk for more than 450 localities in California, on around 18 natural hazards. I also have graphs of the RNP risk at the regional level showing the directionality of the risk., , # Data from: Improving public safety through spatial synthesis, mapping, modeling, and performance analysis of emergency evacuation routes in California localities
https://doi.org/10.5061/dryad.w9ghx3g0j
For this project’s analysis, the team obtained data from FEMA's National Risk Index, including the Social Vulnerability Index (SOVI).
To estimate SOVI, the team used data from the American Community Survey (ACS) to calculate SOVI at the census block level.
Using the graphs obtained from OpenStreetMap (OSM), the authors estimated the Hansen Accessibility Index (Ai) and the normalized betweenness centrality (BC) for each node in the graph.
The authors estimated the Road Network Performance (RNP) risk at the node level by combining NRI, Ai, and BC. They then grouped the RNP to determine the RNP risk at the regional level and generated the radial histogram. Finally, the authors calculated each ana...
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The risk of natural disasters, many of which are amplified by climate change, requires the protection of emergency evacuation routes to permit evacuees safe passage. California has recognized the need through the AB 747 Planning and Zoning Law, which requires each county and city in California to update their - general plans to include safety elements from unreasonable risks associated with various hazards, specifically evacuation routes and their capacity, safety, and viability under a range of emergency scenarios. These routes must be identified in advance and maintained so they can support evacuations. Today, there is a lack of a centralized database of the identified routes or their general assessment. Consequently, this proposal responds to Caltrans’ research priority for “GIS Mapping of Emergency Evacuation Routes.†Specifically, the project objectives are: 1) create a centralized GIS database, by collecting and compiling available evacuation route GIS layers, and the safety eleme..., The project used the following public datasets: • Open Street Map. The team collected the road network arcs and nodes of the selected localities and the team will make public the graph used for each locality. • National Risk Index (NRI): The team used the NRI obtained publicly from FEMA at the census tract level. • American Community Survey (ACS): The team used ACS data to estimate the Social Vulnerability Index at the census block level. Then the author developed a measurement to estimate the road network performance risk at the node level, by estimating the Hansen accessibility index, betweenness centrality and the NRI. Create a set of CSV files with the risk for more than 450 localities in California, on around 18 natural hazards. I also have graphs of the RNP risk at the regional level showing the directionality of the risk., , # Data from: Improving public safety through spatial synthesis, mapping, modeling, and performance analysis of emergency evacuation routes in California localities
https://doi.org/10.5061/dryad.w9ghx3g0j
For this project’s analysis, the team obtained data from FEMA's National Risk Index, including the Social Vulnerability Index (SOVI).
To estimate SOVI, the team used data from the American Community Survey (ACS) to calculate SOVI at the census block level.
Using the graphs obtained from OpenStreetMap (OSM), the authors estimated the Hansen Accessibility Index (Ai) and the normalized betweenness centrality (BC) for each node in the graph.
The authors estimated the Road Network Performance (RNP) risk at the node level by combining NRI, Ai, and BC. They then grouped the RNP to determine the RNP risk at the regional level and generated the radial histogram. Finally, the authors calculated each ana...