100+ datasets found
  1. C

    Bioinformatics for Researchers in Life Sciences: Tools and Learning...

    • data.iadb.org
    csv, pdf
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IDB Datasets (2025). Bioinformatics for Researchers in Life Sciences: Tools and Learning Resources [Dataset]. http://doi.org/10.60966/kwvb-wr19
    Explore at:
    csv(355108), pdf(2989058), csv(276253)Available download formats
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    IDB Datasets
    License

    Attribution-NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0)https://creativecommons.org/licenses/by-nc-nd/3.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2020 - Jan 1, 2021
    Description

    The COVID-19 pandemic has shown that bioinformatics--a multidisciplinary field that combines biological knowledge with computer programming concerned with the acquisition, storage, analysis, and dissemination of biological data--has a fundamental role in scientific research strategies in all disciplines involved in fighting the virus and its variants. It aids in sequencing and annotating genomes and their observed mutations; analyzing gene and protein expression; simulation and modeling of DNA, RNA, proteins and biomolecular interactions; and mining of biological literature, among many other critical areas of research. Studies suggest that bioinformatics skills in the Latin American and Caribbean region are relatively incipient, and thus its scientific systems cannot take full advantage of the increasing availability of bioinformatic tools and data. This dataset is a catalog of bioinformatics software for researchers and professionals working in life sciences. It includes more than 300 different tools for varied uses, such as data analysis, visualization, repositories and databases, data storage services, scientific communication, marketplace and collaboration, and lab resource management. Most tools are available as web-based or desktop applications, while others are programming libraries. It also includes 10 suggested entries for other third-party repositories that could be of use.

  2. Dataset for practice session 1 in bioinformatics

    • figshare.com
    txt
    Updated Jul 17, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elena Sugis (2016). Dataset for practice session 1 in bioinformatics [Dataset]. http://doi.org/10.6084/m9.figshare.3490211.v3
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jul 17, 2016
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Elena Sugis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset for the practice in the data preprocessing and unsupervised learning in the introduction to bioinformatics course

  3. Recommended contents for bioinformatics courses embedded in a study path...

    • plos.figshare.com
    xls
    Updated Jun 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roberto Marangoni; Vitoantonio Bevilacqua; Mario Cannataro; Bruno Hay Mele; Giancarlo Mauri; Anna Marabotti (2023). Recommended contents for bioinformatics courses embedded in a study path belonging to an MSc degree in the computer science-engineering scientific area. [Dataset]. http://doi.org/10.1371/journal.pcbi.1010846.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 7, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Roberto Marangoni; Vitoantonio Bevilacqua; Mario Cannataro; Bruno Hay Mele; Giancarlo Mauri; Anna Marabotti
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Recommended contents for bioinformatics courses embedded in a study path belonging to an MSc degree in the computer science-engineering scientific area.

  4. c

    Global Bioinformatics Service Market Report 2025 Edition, Market Size,...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research, Global Bioinformatics Service Market Report 2025 Edition, Market Size, Share, CAGR, Forecast, Revenue [Dataset]. https://www.cognitivemarketresearch.com/bioinformatics-service-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the Global Bioinformatics Services Market Size was USD XX Billion in 2023 and is set to achieve a market size of USD XX Billion by the end of 2031 growing at a CAGR of XX% from 2024 to 2031.

    • The global Bioinformatics services Market will expand significantly by XX% CAGR between 2024 and 2031.

    • Based on technology, Because of the growing number of platform applications and the need for improved tools for drug development, the bioinformatics platforms segment dominated the market.

    • In terms of service type, The sequencing services segment held the largest share and is anticipated to grow over the coming years

    • Based on application, The genomic segment dominated the bioinformatics market

    • Based on End-user, academic institutes and research centers segment hold the largest share.

    • Based on speciality segment, The medical bioinformatics segment holds the large share and is anticipated to expand at a substantial CAGR during the forecast period.

    • The North America region accounted for the highest market share in the Global Bioinformatics Services Market. CURRENT SCENARIO OF THE BIOINFORMATICS SERVICES

    Driving Factors of the Bioinformatics Services Market

    Expansive uses of bioinformatics across multiple sectors is propelling the market's growth.
    

    Several industries, such as the food, bioremediation, agriculture, forensics, and consumer industries, are also using bioinformatics services to improve the quality of their products and supply chain processes. Companies in a variety of sectors are rapidly utilizing bioinformatics services such as data integration, manipulation, lead generation, data management, in silico analysis, and advanced knowledge discovery.

    • Bioinformatics Approaches in Food Sciences

    In order to meet the needs of food production, food processing, enhancing the quality and nutritional content of food sources, and many other areas, bioinformatics plays a significant role in forecasting and evaluating the intended and undesired impacts of microorganisms on food, genomes, and proteomics research. Furthermore, bioinformatics techniques can be applied to produce crops with high yields and resistance to disease, among other desirable qualities. Additionally, there are numerous databases with information about food, including its components, nutritional value, chemistry, and biology.

    Genome Canada is proud to partner with five Institutes where there are five funding pools within this opportunity and Genome Canada is partnering on the Bioinformatics, Computational Biology and Health Data Sciences pool. (Source:https://genomecanada.ca/genome-canada-partners-with-cihr-to-launch-health-research-training-platform-2024-25/)

    • Bioinformatics in agriculture

    Bioinformatics is becoming more and more crucial in the gathering, storing, and processing of genomic data in the field of agricultural genomics, or agri-genomics. Generally referred to as agri-informatics, some of the various applications of bioinformatics tools and methods in agriculture focus on improving plant resistance against biotic and abiotic stressors as well as enhancing the nutritional quality in depleted soils. Beyond these uses, computer software-assisted gene discovery has enabled researchers to create focused strategies for seed quality enhancement, incorporate extra micronutrients into plants for improved human health, and create plants with phytoremediation potential.

    India/UK-based Agri-Genomics startup, Piatrika Biosystems has raised $1.2 Million in a seed round led by Ankur Capital. The company is bringing sustainable seeds and agri chemicals to market faster and cheaper. The investment will be used to build a strong Product Development team, also for more profound research, and to accelerate the productionising and commercialization of MVP. (Source:https://pressroom.icrisat.org/agri-genomics-startup-piatrika-biosystems-raises-12-million-in-seed-funding-led-by-ankur-capital)

    This expansion in the application areas of bioinformatics services is likely to drive the overall market growth. Bioinformatics services such as data integration, manipulation, lead discovery, data management, in silico analysis, and advanced knowledge discovery are increasingly being adopted by companies across various industries. ...

  5. b

    bioinformatics services Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Sep 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). bioinformatics services Report [Dataset]. https://www.datainsightsmarket.com/reports/bioinformatics-services-471778
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Sep 6, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    CA
    Variables measured
    Market Size
    Description

    The global bioinformatics services market is poised for significant expansion, projected to reach a market size of approximately $10,500 million by 2025, with an anticipated Compound Annual Growth Rate (CAGR) of around 18% through 2033. This robust growth is fueled by the escalating demand for advanced data analysis in life sciences research, particularly in genomics, proteomics, and drug discovery. The increasing volume of biological data generated through high-throughput sequencing and other omics technologies necessitates sophisticated bioinformatics tools and expertise to extract meaningful insights. Key drivers include the burgeoning pharmaceutical and biotechnology sectors' reliance on bioinformatics for accelerating drug development pipelines, identifying novel therapeutic targets, and personalizing medicine. Furthermore, the growing adoption of precision medicine and the expanding applications of bioinformatics in fields like agriculture and environmental science are contributing to market momentum. The market is segmented across various applications, with Genomics and Drug Discovery Services holding a dominant share due to their critical role in understanding biological mechanisms and developing new treatments. Sequencing Services and Data Analysis represent core components, forming the foundation for many downstream applications. While the market exhibits strong growth potential, certain restraints such as the scarcity of skilled bioinformatics professionals and the high cost associated with advanced computational infrastructure could pose challenges. However, these are being mitigated by increased investment in training programs and the rise of cloud-based bioinformatics solutions. Leading companies like Illumina, Thermo Fisher Scientific, and Eurofins Scientific are actively investing in research and development, acquisitions, and strategic collaborations to strengthen their market position and offer comprehensive bioinformatics solutions across diverse applications. Here is a comprehensive report description on bioinformatics services, incorporating your specified values, companies, segments, and timeframes.

  6. D

    Bioinformatics Software Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Bioinformatics Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/bioinformatics-software-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Bioinformatics Software Market Outlook



    The global bioinformatics software market size was valued at approximately USD 10 billion in 2023, and it is projected to reach around USD 25 billion by 2032, growing at a robust CAGR of 11% during the forecast period. This remarkable growth is fueled by the increased application of bioinformatics in drug discovery and development, the rising demand for personalized medicine, and the ongoing advancements in sequencing technologies. The convergence of biology and information technology has led to the optimization of biological data management, propelling the market's expansion as it transforms the landscape of biotechnology and pharmaceutical research. The rapid integration of artificial intelligence and machine learning techniques to process complex biological data further accentuates the growth trajectory of this market.



    An essential growth factor for the bioinformatics software market is the burgeoning demand for sequencing technologies. The decreasing cost of sequencing has led to a massive increase in the volume of genomic data generated, necessitating advanced software solutions to manage and interpret this data efficiently. This demand is particularly evident in genomics and proteomics, where bioinformatics software plays a critical role in analyzing and visualizing large datasets. Additionally, the adoption of cloud computing in bioinformatics offers scalable resources and cost-effective solutions for data storage and processing, further fueling market growth. The increasing collaboration between research institutions and software companies to develop innovative bioinformatics tools is also contributing positively to market expansion.



    Another significant driver is the growth of personalized medicine, which relies heavily on bioinformatics for the analysis of individual genetic information to tailor therapeutic strategies. As healthcare systems worldwide move towards precision medicine, the demand for bioinformatics software that can integrate genetic, phenotypic, and environmental data becomes more pronounced. This trend is not only transforming patient care but also significantly impacting drug development processes, as pharmaceutical companies aim to create more effective and targeted therapies. The strategic partnerships and collaborations between biotech firms and bioinformatics software providers are critical in advancing personalized medicine and enhancing patient outcomes.



    The increasing prevalence of complex diseases such as cancer and neurological disorders necessitates comprehensive research efforts, driving the need for robust bioinformatics software. These diseases require multi-omics approaches for better understanding, diagnosis, and treatment, where bioinformatics tools are indispensable. The ongoing research and development activities in this area, supported by government funding and private investments, are fostering innovation in bioinformatics solutions. Furthermore, the development of user-friendly and intuitive software interfaces is expanding the market beyond specialized research labs to include clinical settings and hospitals, broadening the potential user base and enhancing market penetration.



    From a regional perspective, North America currently leads the bioinformatics software market, thanks to its advanced technological infrastructure, significant investment in healthcare R&D, and the presence of numerous key market players. The region accounted for the largest market share in 2023 and is expected to maintain its dominance throughout the forecast period. Meanwhile, the Asia Pacific region is anticipated to exhibit the highest CAGR, driven by increasing investments in biotechnology and pharmaceutical research, expanding healthcare infrastructure, and the rising adoption of bioinformatics in emerging economies like China and India. Europe's market growth is also significant, supported by substantial funding for genomic research and a strong focus on precision medicine initiatives.



    Lifesciences Data Mining and Visualization are becoming increasingly vital in the bioinformatics software market. As the volume of biological data continues to grow exponentially, the need for sophisticated tools to mine and visualize this data is paramount. These tools enable researchers to uncover hidden patterns and insights from complex datasets, facilitating breakthroughs in genomics, proteomics, and other life sciences fields. The integration of advanced data mining techniques with visualization capabilities allows for a more intuitive

  7. n

    Bioinformatics Links Directory

    • neuinfo.org
    • scicrunch.org
    • +3more
    Updated Jan 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Bioinformatics Links Directory [Dataset]. http://identifiers.org/RRID:SCR_008018
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    Database of curated links to molecular resources, tools and databases selected on the basis of recommendations from bioinformatics experts in the field. This resource relies on input from its community of bioinformatics users for suggestions. Starting in 2003, it has also started listing all links contained in the NAR Webserver issue. The different types of information available in this portal: * Computer Related: This category contains links to resources relating to programming languages often used in bioinformatics. Other tools of the trade, such as web development and database resources, are also included here. * Sequence Comparison: Tools and resources for the comparison of sequences including sequence similarity searching, alignment tools, and general comparative genomics resources. * DNA: This category contains links to useful resources for DNA sequence analyses such as tools for comparative sequence analysis and sequence assembly. Links to programs for sequence manipulation, primer design, and sequence retrieval and submission are also listed here. * Education: Links to information about the techniques, materials, people, places, and events of the greater bioinformatics community. Included are current news headlines, literature sources, educational material and links to bioinformatics courses and workshops. * Expression: Links to tools for predicting the expression, alternative splicing, and regulation of a gene sequence are found here. This section also contains links to databases, methods, and analysis tools for protein expression, SAGE, EST, and microarray data. * Human Genome: This section contains links to draft annotations of the human genome in addition to resources for sequence polymorphisms and genomics. Also included are links related to ethical discussions surrounding the study of the human genome. * Literature: Links to resources related to published literature, including tools to search for articles and through literature abstracts. Additional text mining resources, open access resources, and literature goldmines are also listed. * Model Organisms: Included in this category are links to resources for various model organisms ranging from mammals to microbes. These include databases and tools for genome scale analyses. * Other Molecules: Bioinformatics tools related to molecules other than DNA, RNA, and protein. This category will include resources for the bioinformatics of small molecules as well as for other biopolymers including carbohydrates and metabolites. * Protein: This category contains links to useful resources for protein sequence and structure analyses. Resources for phylogenetic analyses, prediction of protein features, and analyses of interactions are also found here. * RNA: Resources include links to sequence retrieval programs, structure prediction and visualization tools, motif search programs, and information on various functional RNAs.

  8. Bioinformatics Market Analysis, Size, and Forecast 2025-2029: North America...

    • technavio.com
    pdf
    Updated Jun 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Bioinformatics Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, Italy, and UK), APAC (China, India, and Japan), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/bioinformatics-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    Europe, France, North America, Canada, United Kingdom, United States, Germany
    Description

    Snapshot img

    Bioinformatics Market Size 2025-2029

    The bioinformatics market size is valued to increase by USD 15.98 billion, at a CAGR of 17.4% from 2024 to 2029. Reduction in cost of genetic sequencing will drive the bioinformatics market.

    Market Insights

    North America dominated the market and accounted for a 43% growth during the 2025-2029.
    By Application - Molecular phylogenetics segment was valued at USD 4.48 billion in 2023
    By Product - Platforms segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 309.88 million 
    Market Future Opportunities 2024: USD 15978.00 million
    CAGR from 2024 to 2029 : 17.4%
    

    Market Summary

    The market is a dynamic and evolving field that plays a pivotal role in advancing scientific research and innovation in various industries, including healthcare, agriculture, and academia. One of the primary drivers of this market's growth is the rapid reduction in the cost of genetic sequencing, making it increasingly accessible to researchers and organizations worldwide. This affordability has led to an influx of large-scale genomic data, necessitating the development of sophisticated bioinformatics tools for Next-Generation Sequencing (NGS) data analysis. Another significant trend in the market is the shortage of trained laboratory professionals capable of handling and interpreting complex genomic data. This skills gap creates a demand for user-friendly bioinformatics software and services that can streamline data analysis and interpretation, enabling researchers to focus on scientific discovery rather than data processing. For instance, a leading pharmaceutical company could leverage bioinformatics tools to optimize its drug discovery pipeline by analyzing large genomic datasets to identify potential drug targets and predict their efficacy. By integrating these tools into its workflow, the company can reduce the time and cost associated with traditional drug discovery methods, ultimately bringing new therapies to market more efficiently. Despite its numerous benefits, the market faces challenges such as data security and privacy concerns, data standardization, and the need for interoperability between different software platforms. Addressing these challenges will require collaboration between industry stakeholders, regulatory bodies, and academic institutions to establish best practices and develop standardized protocols for data sharing and analysis.

    What will be the size of the Bioinformatics Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free SampleBioinformatics, a dynamic and evolving market, is witnessing significant growth as businesses increasingly rely on high-performance computing, gene annotation, and bioinformatics software to decipher regulatory elements, gene expression regulation, and genomic variation. Machine learning algorithms, phylogenetic trees, and ontology development are integral tools for disease modeling and protein interactions. cloud computing platforms facilitate the storage and analysis of vast biological databases and sequence datas, enabling data mining techniques and statistical modeling for sequence assembly and drug discovery pipelines. Proteomic analysis, protein folding, and computational biology are crucial components of this domain, with biomedical ontologies and data integration platforms enhancing research efficiency. The integration of gene annotation and machine learning algorithms, for instance, has led to a 25% increase in accurate disease diagnosis within leading healthcare organizations. This trend underscores the importance of investing in advanced bioinformatics solutions for improved regulatory compliance, budgeting, and product strategy.

    Unpacking the Bioinformatics Market Landscape

    Bioinformatics, an essential discipline at the intersection of biology and computer science, continues to revolutionize the scientific landscape. Evolutionary bioinformatics, with its molecular dynamics simulation and systems biology approaches, enables a deeper understanding of biological processes, leading to improved ROI in research and development. For instance, next-generation sequencing technologies have reduced sequencing costs by a factor of ten, enabling genome-wide association studies and transcriptome sequencing on a previously unimaginable scale. In clinical bioinformatics, homology modeling techniques and protein-protein interaction analysis facilitate drug target identification, enhancing compliance with regulatory requirements. Phylogenetic analysis tools and comparative genomics studies contribute to the discovery of novel biomarkers and the development of personalized treatments. Bioimage informatics and proteomic data integration employ advanced sequence alignment algorithms and functional genomics tools to unlock new insights from complex

  9. D

    Bioinformatics In Healthcare Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Oct 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Bioinformatics In Healthcare Market Research Report 2033 [Dataset]. https://dataintelo.com/report/bioinformatics-in-healthcare-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Oct 1, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Bioinformatics in Healthcare Market Outlook



    According to our latest research, the global bioinformatics in healthcare market size reached USD 12.4 billion in 2024, reflecting robust adoption across clinical, research, and pharmaceutical domains. The market is expected to expand at a CAGR of 13.2% from 2025 to 2033, reaching a projected value of USD 36.6 billion by 2033. This impressive growth trajectory is fueled by escalating investments in genomics, rising demand for personalized medicine, and the integration of advanced computational tools in healthcare. The bioinformatics in healthcare market is witnessing a paradigm shift as organizations increasingly leverage data-driven insights to accelerate drug discovery, improve diagnostics, and enhance patient outcomes.




    A primary driver for the rapid expansion of the bioinformatics in healthcare market is the surging volume of biological and clinical data being generated worldwide. The proliferation of next-generation sequencing (NGS) technologies, coupled with decreasing costs of genome sequencing, has resulted in an unprecedented influx of genetic information. This wealth of data demands sophisticated bioinformatics solutions to manage, analyze, and interpret complex datasets efficiently. As a result, healthcare institutions, research centers, and pharmaceutical companies are investing heavily in advanced bioinformatics platforms and software to unlock actionable insights from vast genomic and proteomic repositories. This trend is further amplified by the growing recognition of the pivotal role bioinformatics plays in bridging the gap between raw biological data and clinical application.




    Another significant growth factor is the expanding application of bioinformatics in personalized medicine and targeted therapeutics. With the healthcare industry shifting towards precision medicine, there is an urgent need for tools that can integrate and analyze multi-omics data—spanning genomics, transcriptomics, proteomics, and metabolomics. Bioinformatics enables the identification of disease biomarkers, prediction of drug responses, and customization of treatment regimens based on individual patient profiles. This has not only improved patient outcomes but has also optimized healthcare resource utilization. The increasing prevalence of chronic diseases, rising cancer incidence, and the demand for tailored therapies are propelling the adoption of bioinformatics in clinical diagnostics and drug development, thus driving overall market growth.




    Strategic collaborations and investments by government agencies, academic institutions, and private enterprises are further catalyzing the bioinformatics in healthcare market. Initiatives such as the Human Genome Project and various national genomics programs have laid the foundation for large-scale data generation and sharing. Governments across North America, Europe, and Asia Pacific are launching funding programs to support bioinformatics infrastructure, skill development, and research. These efforts are enhancing data interoperability, standardization, and integration, thereby fostering innovation in the field. Moreover, the emergence of cloud-based bioinformatics platforms is democratizing access to computational resources, enabling smaller organizations and developing regions to participate in cutting-edge research and clinical applications.




    From a regional perspective, North America continues to dominate the bioinformatics in healthcare market, accounting for the largest revenue share in 2024. This leadership position is attributed to the presence of advanced healthcare infrastructure, significant R&D investments, and a strong ecosystem of academic and commercial players. Europe follows closely, driven by robust government support and a vibrant biotech sector. Meanwhile, Asia Pacific is emerging as the fastest-growing region, fueled by expanding healthcare expenditure, increasing adoption of genomic medicine, and a burgeoning talent pool in computational biology. Latin America and the Middle East & Africa are also experiencing steady growth, supported by improving healthcare systems and international collaborations.



    Solution Analysis



    The bioinformatics in healthcare market is segmented by solution into software, services, and platforms, each playing a critical role in the ecosystem. Bioinformatics software forms the backbone of data analysis, enabling researchers and clinicians to process and interpret complex biologi

  10. D

    Bioinformatics Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Bioinformatics Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-bioinformatics-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Bioinformatics Market Outlook



    The global bioinformatics market size was projected at $10.4 billion in 2023 and is anticipated to grow to $24.8 billion by 2032, with a compound annual growth rate (CAGR) of 10.2%. This rapid growth is primarily attributed to the increasing demand for bioinformatics tools in genomics and proteomics research, thereby enhancing data interpretation and analysis capabilities. Additionally, the surge in the adoption of cloud-based solutions and the increasing volume of biological data generated through research activities are key factors driving the market growth. Furthermore, the rising emphasis on precision medicine and personalized healthcare approaches plays a significant role in the expansion of this market.



    One of the major growth factors driving the bioinformatics market is the vast amount of biological data being generated, necessitating advanced data analysis and management tools. The advent of next-generation sequencing technologies has revolutionized genetic research, leading to exponential data generation. Bioinformatics provides the necessary computational solutions to manage, analyze, and interpret this data efficiently. Moreover, the increasing collaboration between biological scientists and computer experts is further accelerating the development of novel bioinformatics tools, enhancing their application across various domains. This interdisciplinary approach is not only improving research outcomes but also facilitating the discovery of new biological insights.



    Another significant growth driver is the rising investment in research and development in the field of genomics and proteomics. Governments and private organizations across the globe are investing heavily in life sciences research to understand complex biological processes and diseases better. These investments are expected to increase the demand for sophisticated bioinformatics tools and services. Additionally, the integration of artificial intelligence and machine learning with bioinformatics is opening new avenues for research, enabling more precise data analysis and prediction models. This technological convergence is expected to provide significant growth opportunities for the bioinformatics market during the forecast period.



    The increasing prevalence of chronic diseases and the growing need for personalized medicine are also contributing to the expansion of the bioinformatics market. Personalized medicine, which tailors healthcare to individual patients, relies heavily on bioinformatics to analyze genetic information and develop targeted therapies. As healthcare systems worldwide shift towards more personalized approaches, the demand for bioinformatics solutions is expected to rise significantly. Moreover, bioinformatics plays a crucial role in drug discovery and development processes, providing insights that accelerate the identification of potential drug targets and biomarkers.



    The role of Life Sciences Software in the bioinformatics market is becoming increasingly prominent as researchers and healthcare providers seek more sophisticated tools to manage and analyze complex biological data. These software solutions are essential for processing the vast amounts of data generated by modern research techniques, such as next-generation sequencing and mass spectrometry. By providing robust data management and analysis capabilities, Life Sciences Software enables researchers to gain deeper insights into genetic and proteomic information, facilitating the discovery of new therapeutic targets and the development of personalized medicine approaches. As the demand for precision medicine continues to grow, the importance of Life Sciences Software in bioinformatics is expected to rise, driving innovation and market expansion.



    Regionally, North America holds the largest share of the bioinformatics market due to the presence of a well-established healthcare infrastructure and significant investments in biotechnological research. The region is home to several leading bioinformatics companies and research institutions, which are at the forefront of innovation and technological advancements. Additionally, the Asia Pacific region is expected to witness the fastest growth during the forecast period, driven by increasing government funding for genomics research and the growing adoption of bioinformatics in emerging economies like China and India. The expansion of biopharmaceutical industries and a rising focus on precision medicine in these regions are further contributing to market growth.



    Pro

  11. c

    Bioinformatics Market size was USD 12.76 Billion in 2022!

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research, Bioinformatics Market size was USD 12.76 Billion in 2022! [Dataset]. https://www.cognitivemarketresearch.com/bioinformatics-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    Global Bioinformatics market size was USD 12.76 Billion in 2022 and it is forecasted to reach USD 29.32 Billion by 2030. Bioinformatics Industry's Compound Annual Growth Rate will be 10.4% from 2023 to 2030. What are the driving factors for the Bioinformatics market?

    The primary factors propelling the global bioinformatics industry are advances in genomics, rising demand for protein sequencing, and rising public-private sector investment in bioinformatics. Large volumes of data are being produced by the expanding use of next-generation sequencing (NGS) and other genomic technologies; these data must be analyzed using advanced bioinformatics tools. Furthermore, the global bioinformatics industry may benefit from the development of emerging advanced technologies. However, the bioinformatics discipline contains intricate algorithms and massive amounts of data, which can be difficult for researchers and demand a lot of processing power. What is Bioinformatics?

    Bioinformatics is related to genetics and genomics, which involves the use of computer technology to store, collect, analyze, and disseminate biological information, and data, such as DNA and amino acid sequences or annotations about these sequences. Researchers and medical professionals use databases that organize and index this biological data to better understand health and disease, and in some circumstances, as a component of patient care. Through the creation of software and algorithms, bioinformatics is primarily used to extract knowledge from biological data. Bioinformatics is frequently used in the analysis of genomics, proteomics, 3D protein structure modeling, image analysis, drug creation, and many other fields.

  12. G

    Structural Bioinformatics Software Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Sep 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Structural Bioinformatics Software Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/structural-bioinformatics-software-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Sep 1, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Structural Bioinformatics Software Market Outlook



    As per our latest research, the global Structural Bioinformatics Software market size reached USD 1.48 billion in 2024, demonstrating robust demand across biopharmaceutical research, drug discovery, and academic sectors. The market is experiencing a healthy compound annual growth rate (CAGR) of 10.2% and is forecasted to attain a value of USD 3.58 billion by 2033. This growth can be attributed to the rapid advancements in computational biology, the increasing adoption of artificial intelligence and machine learning in protein structure prediction, and the surge in drug development activities globally.




    One of the primary growth drivers for the Structural Bioinformatics Software market is the intensifying focus on precision medicine and personalized therapeutics. With the global pharmaceutical industry placing increasing emphasis on developing targeted therapies, there is a critical need for advanced software tools that can model, predict, and analyze complex biomolecular structures. These tools are pivotal for understanding protein-ligand interactions, predicting the effects of mutations, and identifying novel druggable targets. The integration of high-throughput sequencing data with structural bioinformatics platforms has further accelerated the pace of discovery, enabling researchers to move from raw data to actionable insights with unprecedented speed and accuracy.




    Another significant factor propelling the market is the evolution of computational power and cloud-based infrastructure. The exponential increase in available biological data, coupled with the complexity of protein folding and molecular dynamics simulations, demands scalable and high-performance computing resources. Cloud-based structural bioinformatics solutions have democratized access to sophisticated algorithms and databases, making them available to a broader range of users, including smaller biotech firms and academic labs. This shift has not only reduced the barriers to entry but also fostered greater collaboration and innovation in the field, as researchers can now share data, workflows, and results seamlessly across geographies.




    The market is also benefiting from heightened collaboration between academia, research organizations, and industry players. Public-private partnerships, government funding initiatives, and global consortia are fueling the development of next-generation structural bioinformatics platforms. These collaborations are focused on addressing critical challenges such as protein structure prediction, functional annotation, and molecular modeling. The emergence of open-source software and community-driven databases has further enriched the ecosystem, providing researchers with access to a wealth of curated data and cutting-edge analytical tools. As the field continues to evolve, the synergy between computational advancements and experimental validation is expected to drive the adoption of structural bioinformatics software across diverse end-user segments.



    Structure-Based Drug Design is an integral component of the drug discovery process, leveraging the detailed knowledge of the three-dimensional structure of biological targets to design more effective therapeutic agents. This approach utilizes advanced computational tools to model the interactions between drug candidates and their targets, allowing researchers to optimize binding affinity and selectivity. By focusing on the structural aspects of drug-target interactions, Structure-Based Drug Design enhances the precision and efficiency of the drug development pipeline, ultimately leading to the creation of more targeted and effective treatments. The integration of this methodology with structural bioinformatics software is revolutionizing the way researchers approach complex biological challenges, offering new avenues for innovation and discovery.




    From a regional perspective, North America remains the dominant market for structural bioinformatics software, accounting for the largest share in 2024, followed closely by Europe and the Asia Pacific region. The robust presence of leading pharmaceutical and biotechnology companies, coupled with significant investments in research and development, has established North America as a global innovation hub. Meanwhi

  13. Fields of occupation in medical biotechnology companies in Germany in 2022

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Fields of occupation in medical biotechnology companies in Germany in 2022 [Dataset]. https://www.statista.com/statistics/579724/occupation-fields-medical-biotechnology-companies-germany/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Germany
    Description

    This statistic shows the number of medical biotechnology companies¹ in Germany in 2022, by occupation field. That year, ** biotech companies focussing on bioinformatics were counted.

  14. B

    Bioinformatics Services Market Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Oct 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Bioinformatics Services Market Report [Dataset]. https://www.marketresearchforecast.com/reports/bioinformatics-services-market-10291
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Oct 24, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The size of the Bioinformatics Services Market was valued at USD XX USD Billion in 2023 and is projected to reach USD XXX USD Billion by 2032, with an expected CAGR of 16.5% during the forecast period. Recent developments include: June 2023 – Psomagen added a new sequencing platform, the Pacific Bioscience Revio system, to offer services such as whole genome, whole exome, single cell and bulk RNAseq, microbiome, Olink Proteomics, and others., August 2023 – PacBio agreed to acquire Apton Biosystems, Inc., to accelerate the development of a next-generation, high-throughput short-read sequencer., March 2023 – Emmes, a Clinical Research Organization (CRO), acquired Essex Management. Essex offers bioinformatics and Health Information Technology (HIT) consulting services to government, private sector and academic organizations., November 2022 – Arima Genomics, Inc. partnered with Basepair to empower scientists with bioinformatic analysis., September 2021 – Dovetails Genomics expanded its epigenetic services in the areas of bioinformatics and target enrichment to offer a one-stop solution.. Key drivers for this market are: Growing Applications and Research Grants to Surge the Demand for These Services. Potential restraints include: Growing Applications and Research Grants to Surge the Demand for These Services. Notable trends are: Growing Applications and Research Grants to Surge the Demand for These Services.

  15. f

    Data from: Bioinformatics calls the school: Use of smartphones to introduce...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Feb 14, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rueda, Ana Julia Velez; Benítez, Guillermo I.; Parisi, Gustavo; Fornasari, María Silvina; Hasenahuer, Marcia Anahí; Marchetti, Julia; Palopoli, Nicolas (2019). Bioinformatics calls the school: Use of smartphones to introduce Python for bioinformatics in high schools [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000159463
    Explore at:
    Dataset updated
    Feb 14, 2019
    Authors
    Rueda, Ana Julia Velez; Benítez, Guillermo I.; Parisi, Gustavo; Fornasari, María Silvina; Hasenahuer, Marcia Anahí; Marchetti, Julia; Palopoli, Nicolas
    Description

    The dynamic nature of technological developments invites us to rethink the learning spaces. In this context, science education can be enriched by the contribution of new computational resources, making the educational process more up-to-date, challenging, and attractive. Bioinformatics is a key interdisciplinary field, contributing to the understanding of biological processes that is often underrated in secondary schools. As a useful resource in learning activities, bioinformatics could help in engaging students to integrate multiple fields of knowledge (logical-mathematical, biological, computational, etc.) and generate an enriched and long-lasting learning environment. Here, we report our recent project in which high school students learned basic concepts of programming applied to solving biological problems. The students were taught the Python syntax, and they coded simple tools to answer biological questions using resources at hand. Notably, these were built mostly on the students’ own smartphones, which proved to be capable, readily available, and relevant complementary tools for teaching. This project resulted in an empowering and inclusive experience that challenged differences in social background and technological accessibility.

  16. b

    Bioinformatic analyses and field data from the R/V Kilo Moana KM0701 cruise...

    • bco-dmo.org
    • search.dataone.org
    csv
    Updated Jan 26, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zackary I. Johnson; James Jeffrey Morris; Steven W. Wilhelm; Erik Zinser (2016). Bioinformatic analyses and field data from the R/V Kilo Moana KM0701 cruise in the South Pacific during 2007 (WP2 project) [Dataset]. https://www.bco-dmo.org/dataset/636508
    Explore at:
    csv(475 bytes)Available download formats
    Dataset updated
    Jan 26, 2016
    Dataset provided by
    Biological and Chemical Data Management Office
    Authors
    Zackary I. Johnson; James Jeffrey Morris; Steven W. Wilhelm; Erik Zinser
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Link, Site, CruiseId, Latitude, Longitude, Description
    Description

    Bioinformatic analyses and field data associated w. Morris et al. 2016, JPR

    Served as links to the Morris contributed package and to GitHub

  17. B

    Bioinformatics Data Analysis Service Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Feb 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Bioinformatics Data Analysis Service Report [Dataset]. https://www.marketresearchforecast.com/reports/bioinformatics-data-analysis-service-17496
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Feb 1, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Bioinformatics Data Analysis Service market is estimated to be valued at USD XXX million in 2025 and is projected to grow at a compound annual growth rate (CAGR) of XX% during the forecast period from 2025 to 2033. The market growth is attributed to the increasing adoption of bioinformatics in various research fields, such as genomics, transcriptomics, and proteomics. The availability of large-scale genomic and transcriptomic data has led to the development of sophisticated bioinformatics tools and techniques for data analysis, interpretation, and visualization. Furthermore, the growing awareness of personalized medicine and the need for precision medicine are driving the demand for bioinformatics data analysis services. Key market trends include the increasing adoption of cloud-based platforms for bioinformatics analysis, the development of artificial intelligence (AI) and machine learning (ML) algorithms for data analysis, and the emergence of new bioinformatics software and tools. These trends are expected to continue to drive the growth of the Bioinformatics Data Analysis Service market in the coming years. Major players in the market include Illumina, Thermo Fisher Scientific, QIAGEN, Seven Bridges, DNAnexus, SOPHiA GENETICS, Geneious, Macrogen, BGI Genomics, and Biomatters, among others. These companies offer a wide range of bioinformatics data analysis services, including data management, analysis, interpretation, and visualization. The market is expected to be highly competitive in the coming years, with major players focusing on innovation and strategic partnerships to gain market share.

  18. f

    Data from: Advancing computational biology and bioinformatics research...

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    Updated Sep 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonchhe, Anup; Su, Andrew I.; Natoli, Ted; Macaluso, N. J. Maximilian; Briney, Bryan; Blasco, Andrea; Narayan, Rajiv; Lakhani, Karim R.; Paik, Jin H.; Endres, Michael G.; Sergeev, Rinat A.; Wu, Chunlei; Subramanian, Aravind (2019). Advancing computational biology and bioinformatics research through open innovation competitions [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000064443
    Explore at:
    Dataset updated
    Sep 27, 2019
    Authors
    Jonchhe, Anup; Su, Andrew I.; Natoli, Ted; Macaluso, N. J. Maximilian; Briney, Bryan; Blasco, Andrea; Narayan, Rajiv; Lakhani, Karim R.; Paik, Jin H.; Endres, Michael G.; Sergeev, Rinat A.; Wu, Chunlei; Subramanian, Aravind
    Description

    Open data science and algorithm development competitions offer a unique avenue for rapid discovery of better computational strategies. We highlight three examples in computational biology and bioinformatics research in which the use of competitions has yielded significant performance gains over established algorithms. These include algorithms for antibody clustering, imputing gene expression data, and querying the Connectivity Map (CMap). Performance gains are evaluated quantitatively using realistic, albeit sanitized, data sets. The solutions produced through these competitions are then examined with respect to their utility and the prospects for implementation in the field. We present the decision process and competition design considerations that lead to these successful outcomes as a model for researchers who want to use competitions and non-domain crowds as collaborators to further their research.

  19. app.R

    • figshare.com
    txt
    Updated Nov 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    soheil Yousefi (2022). app.R [Dataset]. http://doi.org/10.6084/m9.figshare.21436005.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Nov 1, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    soheil Yousefi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Enhancer Explorer application codes

  20. B

    Biological Data Analysis Service Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Biological Data Analysis Service Report [Dataset]. https://www.datainsightsmarket.com/reports/biological-data-analysis-service-1461376
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 23, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Biological Data Analysis Services market is booming, driven by personalized medicine and advancements in bioinformatics. Explore market size, growth trends, key players (Profacgen, CD ComputaBio, Eurofins Scientific), and regional analysis (North America, Europe, Asia-Pacific) in this comprehensive report covering biomarker identification, biological modeling, and more. Discover future projections and investment opportunities in this rapidly evolving field.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
IDB Datasets (2025). Bioinformatics for Researchers in Life Sciences: Tools and Learning Resources [Dataset]. http://doi.org/10.60966/kwvb-wr19

Bioinformatics for Researchers in Life Sciences: Tools and Learning Resources

Explore at:
csv(355108), pdf(2989058), csv(276253)Available download formats
Dataset updated
Apr 10, 2025
Dataset provided by
IDB Datasets
License

Attribution-NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0)https://creativecommons.org/licenses/by-nc-nd/3.0/
License information was derived automatically

Time period covered
Jan 1, 2020 - Jan 1, 2021
Description

The COVID-19 pandemic has shown that bioinformatics--a multidisciplinary field that combines biological knowledge with computer programming concerned with the acquisition, storage, analysis, and dissemination of biological data--has a fundamental role in scientific research strategies in all disciplines involved in fighting the virus and its variants. It aids in sequencing and annotating genomes and their observed mutations; analyzing gene and protein expression; simulation and modeling of DNA, RNA, proteins and biomolecular interactions; and mining of biological literature, among many other critical areas of research. Studies suggest that bioinformatics skills in the Latin American and Caribbean region are relatively incipient, and thus its scientific systems cannot take full advantage of the increasing availability of bioinformatic tools and data. This dataset is a catalog of bioinformatics software for researchers and professionals working in life sciences. It includes more than 300 different tools for varied uses, such as data analysis, visualization, repositories and databases, data storage services, scientific communication, marketplace and collaboration, and lab resource management. Most tools are available as web-based or desktop applications, while others are programming libraries. It also includes 10 suggested entries for other third-party repositories that could be of use.

Search
Clear search
Close search
Google apps
Main menu