Facebook
Twitterhttps://langleycity.ca/open-data-licensehttps://langleycity.ca/open-data-license
This File Geodatabase download, (last updated September 25, 2024), contains all the feature classes within the Transportation Network. The City of Langley has compiled all the Transportation Network feature classes into one file geodatabase. File Geodatabase Feature Classes:Bicycle RoutesBridgesDisaster Response RoutesMediansRailwayRoadsSidewalksStreet Names
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was derived by the Bioregional Assessment Programme from the GEODATA TOPO 250K Series 3 dataset (GUID: a0650f18-518a-4b99-a553-44f82f28bb5f). The source dataset is identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.
This dataset is a copy of the original Geodata Topo 250k Series 3 data, converted from Personal (Microsoft Access) Databases, to ESRI File Geodatabases. This was done to ensure .mdb lock files would not restrict map makers from using the topographic data in their cartographic products. The data and folders are structured the same as the original dataset.
A new file geodatabase schema was created in the same structure as the original .mdb data (including database and feature dataset names and projections). Feature Classes were then copied from the .mdb format to the .gdb format, using ArcCatalog 10.0.
Bioregional Assessment Programme (2014) GEODATA TOPO 250K Series 3, File Geodatabase format (.gdb). Bioregional Assessment Derived Dataset. Viewed 13 March 2019, http://data.bioregionalassessments.gov.au/dataset/96ebf889-f726-4967-9964-714fb57d679b.
Facebook
TwitterWetlands in California are protected by several federal and state laws, regulations, and policies. This layer was extracted from the broader vegetation raster from the CA Nature project which was recently enhanced to include a more comprehensive definition of wetland. This wetlands dataset is used as an exclusion as part of the biological planning priorities in the CEC 2023 Land-Use Screens.This layer is featured in the CEC 2023 Land-Use Screens for Electric System Planning data viewer.For more information about this layer and its use in electric system planning, please refer to the Land Use Screens Staff Report in the CEC Energy Planning Library.
Facebook
TwitterDescriptionThis dataset is available for download from: Parcelization (File Geodatabase)Parcelization, a measure of size and density of parcels in a localized area, is a development feasibility factor that is used in evaluating substations’ ability to support new utility-scale resources in long-term energy planning. A statewide dataset of parcel boundaries are used to develop this index. The parcels are converted into a 90-meter raster, containing values of a unique identifier reflective of Parcel APN. A focal statistics tool is used to count the number of unique parcels within a 0.5 mile radius of each parcel. This output is provided here and is an intermediate output to the final parcelization map. Users who wish to use this information to produce the final map should overlay parcel boundary data and extract the mean raster value within each parcel. The map is limited to the area considered with solar technical resource potential after a minimum set of land-use screens (referred to as the Base Exclusions) has been applied. More information on the methods developing this dataset as well as the main use of this dataset in state electric system planning processes can be found in a recent CEC staff report and workshops supporting the resource-to-busbar mapping methodology for the 2024-2025 Transmission Planning Process.
Facebook
TwitterThe Digital Bedrock Geologic-GIS Map of the Saint-Gaudens National Historical Park and Vicinity, New Hampshire is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (saga_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (saga_bedrock_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (saga_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (saga_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (saga_bedrock_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (saga_bedrock_geology_metadata_faq.pdf). Please read the saga_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (saga_bedrock_geology_metadata.txt or saga_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterComplete Cadastral dataset in file geodatabase format. Consume this dataset if you wish to download the entire Cadastral dataset at once.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Bulk exports, in file-geodatabase format, of data that is shared via the VT EGC (Enterprise GIS Consortium) Geospatial Data Exchange Protocol.
Facebook
TwitterThe term "Smartline" refers to a GIS line map format which can allow rapid capture of diverse coastal data into a single consistently classified map, which in turn can be readily analysed for many purposes. This format has been used to create a detailed nationally-consistent coastal geomorphic map of Australia, which is currently being used for the National Coastal Vulnerability Assessment (NCVA) as part of the underpinning information for understanding the vulnerability to sea level rise and other climate change influenced hazards such as storm surge. The utility of the Smartline format results from application of a number of key principles. A hierarchical form- and fabric-based (rather than morpho-dynamic) geomorphic classification is used to classify coastal landforms in shore-parallel tidal zones relating to but not necessarily co-incident with the GIS line itself. Together with the use of broad but geomorphically-meaningful classes, this allows Smartline to readily import coastal data from a diversity of differently-classified prior sources into one consistent map. The resulting map can be as spatially detailed as the available data sources allow, and can be used in at least two key ways: Firstly, Smartline can work as a source of consistently classified information which has been distilled out of a diversity of data sources and presented in a simple format from which required information can be rapidly extracted using queries. Given the practical difficulty many coastal planners and managers face in accessing and using the vast amount of primary coastal data now available in Australia, Smartline can provide the means to assimilate and synthesise all this data into more usable forms.
Facebook
TwitterThis packaged data collection contains all of the outputs from our primary model, including the following data layers: Habitat Cores (vector polygons) Least-cost Paths (vector lines) Least-cost Corridors (raster) Least-cost Corridors (vector polygon interpretation) Modeling Extent (vector polygon) Please refer to the embedded spatial metadata and the information in our full report for details on the development of these data layers. Packaged data are available in two formats: Geodatabase (.gdb): A related set of file geodatabase rasters and feature classes, packaged in an ESRI file geodatabase. ArcGIS Pro Map Package (.mpkx): The same data included in the geodatabase, presented as fully-symbolized layers in a map. Note that you must have ArcGIS Pro version 2.0 or greater to view. See Cross-References for links to individual datasets, which can be downloaded in shapefile (.shp) or raster GeoTIFF (.tif) formats.
Facebook
TwitterStory County Parcels layer
Facebook
TwitterComplete File Geodatabase containing various layers and tables for Boundaries, Census, Environment, Land, Place, PLSS, Transportation, Tables, Utility, and Water datasets. This includes relationship classes (joins) between the Taxlot layer and related table data.OR State Plane NAD83 Projection
Facebook
TwitterOne-foot and two-foot contours derived from LiDAR terrain model. The DTM was developed to support the Florida Division of Emergency Management (FDEM) development and maintenance of Regional Evacuation Studies (Study), which include vulnerability assessments and assist disaster response personnel in understanding threats to Florida's citizens and visitors. Breaklines improve the digital elevation model in areas where the point density is insufficient.This data set is one component of a digital terrain model (DTM) for the Florida Division of Emergency Management's (FDEM) Project Management and Technical Services for Mapping within Coastal Florida (Contract 07-HS-34-14-00-22-469), encompassing the entire coastline of Florida. The dataset is comprised of mass points, 2-D and 3-D breakline features, 1-foot and 2-foot contours, ground control, vertical test points, and a footprint of the data set, in the ESRI ArcGIS File Geodatabase format. In accordance with the Baseline Specifications 1.2, the following breakline features are contained within the database: closed water bodies (lakes, reservoirs, etc) as 2-D or 3-D polygons; linear hydrographic features (streams, shorelines, canals, swales, embankments, etc) as 3-D breaklines; coastal shorelines as 2-D or 3-D linear features; edge of pavement road features as 3-D breaklines; soft features (ridges, valleys, etc.) as 3-D breaklines; low confidence areas as 2-D polygons; island features as 2-D or 3-D polygons; overpasses and bridges as 3-D breaklines. Contours were generated from a gridded DEM: 2-foot contours meet National Map Accuracy Standards, with 1-foot contours for visualization purposes. The LiDAR masspoints are delivered in the LAS file format based on the FDEM's 5,000' by 5,000' grid. Breakline features were captured to develop a hydrologically correct DTM. Bare earth LiDAR masspoint data display a vertical accuracy of at least 0.3-feet root mean square error (RMSE) in open unobscured areas.
Facebook
TwitterThe Digital Geohazards-GIS Map of Everglades National Park and Vicinity (2005 Mapping), Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (ever_geohazard.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (ever_geohazard.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (ever_geohazard.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (ever_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (ever_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ever_geohazard_metadata_faq.pdf). Please read the ever_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Florida Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ever_geohazard_metadata.txt or ever_geohazard_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterComplete Water Utility Network in file geodatabase format. Consume this dataset if you wish to download the entire Water Utility network dataset at once.
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Note: please go to https://data.sfgov.org/d/ynuv-fyni to access the same data in additional open formats. These footprint extents are collapsed from an earlier 3D building model provided by Pictometry of 2010, and have been refined from a version of building masses publicly available on the open data portal for over two years. The building masses were manually split with reference to parcel lines, but using vertices from the building mass wherever possible. These split footprints correspond closely to individual structures even where there are common walls; the goal of the splitting process was to divide the building mass wherever there was likely to be a firewall.An arbitrary identifier was assigned based on a descending sort of building area for 177,023 footprints. The centroid of each footprint was used to join a property identifier from a draft of the San Francisco Enterprise GIS Program's cartographic base, which provides continuous coverage with distinct right-of-way areas as well as selected nearby parcels from adjacent counties. See accompanying document SF_BldgFoot_2017-05_description.pdf for more on methodology and motivation https://data.sfgov.org/d/ynuv-fyni/ about
Facebook
Twitterhttps://langleycity.ca/open-data-licensehttps://langleycity.ca/open-data-license
This File Geodatabase download, (last updated September 25, 2024), contains all the feature classes within the Land and Property Information group. The City of Langley has compiled all the Land and Property Information feature classes into one file geodatabase. Data is updated on a regular basis; however, lot sizes, legal descriptions and encumbrances must be confirmed at the Land Title Office.File Geodatabase Feature Classes:Address (Anno)Address PointsCity BoundaryEasement AnnoEasementsFacilitiesFolioLegal DescriptionsLot LinesParcelsRoad AllowanceSchools
Facebook
TwitterSpot elevations generated from Lee County 1998 Digital Orthophotography project performed by EarthData International Elevations are in NAVD88. February-March 1998
Facebook
TwitterThe Digital Geomorphic-GIS Map of the Ocracoke Village to The Plains Area (1:10,000 scale 2006 mapping), North Carolina is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (ocis_geomorphology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (ocis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (ocis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (caha_fora_wrbr_geomorphology.pdf), 2.) the GRI ancillary map information document (.pdf) file (caha_fora_wrbr_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ocis_geomorphology_metadata_faq.pdf). Please read the caha_fora_wrbr_geomorphology.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: East Carolina University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ocis_geomorphology_metadata.txt or ocis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:10,000 and United States National Map Accuracy Standards features are within (horizontally) 8.5 meters or 27.8 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThese files contain the geodatabases related to Brady's Geothermal Field. It includes all input and output files for the Geothermal Exploration Artificial Intelligence. Input and output files are sorted into three categories: raw data, pre-processed data, and analysis (post-processed data). In each of these categories there are six additional types of raster catalogs which are titled Radar, SWIR, Thermal, Geophysics, Geology, and Wells. These inputs and outputs were used with the Geothermal Exploration Artificial Intelligence to identify indicators of blind geothermal systems at the Brady Hot Springs Geothermal Site. The included zip file is a geodatabase to be used with ArcGIS and the tar file is an inclusive database that encompasses the inputs and outputs for the Brady Hot Springs Geothermal Site.
Facebook
TwitterThe Digital Geomorphic-GIS Map of Perdido Key and Santa Rosa Island (1-foot resolution 2006-2007 mapping), Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (pksr_geomorphology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (pksr_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (pksr_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (pksr_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (pksr_geomorphology_metadata.txt or pksr_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:20,000 and United States National Map Accuracy Standards features are within (horizontally) 10.2 meters or 33.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
Twitterhttps://langleycity.ca/open-data-licensehttps://langleycity.ca/open-data-license
This File Geodatabase download, (last updated September 25, 2024), contains all the feature classes within the Transportation Network. The City of Langley has compiled all the Transportation Network feature classes into one file geodatabase. File Geodatabase Feature Classes:Bicycle RoutesBridgesDisaster Response RoutesMediansRailwayRoadsSidewalksStreet Names