3 datasets found
  1. N

    Excel Township, Minnesota annual median income by work experience and sex...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Excel Township, Minnesota annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/excel-township-mn-income-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Minnesota, Excel Township
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Excel township. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Excel township, the median income for all workers aged 15 years and older, regardless of work hours, was $54,643 for males and $31,563 for females.

    These income figures highlight a substantial gender-based income gap in Excel township. Women, regardless of work hours, earn 58 cents for each dollar earned by men. This significant gender pay gap, approximately 42%, underscores concerning gender-based income inequality in the township of Excel township.

    - Full-time workers, aged 15 years and older: In Excel township, among full-time, year-round workers aged 15 years and older, males earned a median income of $66,786, while females earned $57,500, resulting in a 14% gender pay gap among full-time workers. This illustrates that women earn 86 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the township of Excel township.

    Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in Excel township.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Excel township median household income by race. You can refer the same here

  2. N

    Excel, AL annual median income by work experience and sex dataset : Aged...

    • neilsberg.com
    csv, json
    Updated Jan 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Excel, AL annual median income by work experience and sex dataset : Aged 15+, 2010-2022 (in 2022 inflation-adjusted dollars) [Dataset]. https://www.neilsberg.com/research/datasets/947248e2-9816-11ee-99cf-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 9, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Excel
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2010-2022 5-Year Estimates. To portray the income for both the genders (Male and Female), we conducted an initial analysis and categorization of the data. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Excel. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2021

    Based on our analysis ACS 2017-2021 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Excel, the median income for all workers aged 15 years and older, regardless of work hours, was $49,317 for males and $22,969 for females.

    These income figures highlight a substantial gender-based income gap in Excel. Women, regardless of work hours, earn 47 cents for each dollar earned by men. This significant gender pay gap, approximately 53%, underscores concerning gender-based income inequality in the town of Excel.

    - Full-time workers, aged 15 years and older: In Excel, among full-time, year-round workers aged 15 years and older, males earned a median income of $58,775, while females earned $56,898, resulting in a 3% gender pay gap among full-time workers. This illustrates that women earn 97 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the town of Excel.

    Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in Excel.

    https://i.neilsberg.com/ch/excel-al-income-by-gender.jpeg" alt="Excel, AL gender based income disparity">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2022
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Excel median household income by gender. You can refer the same here

  3. B

    Data from: Methane Emissions from the Global Oil and Gas Industry: A Scoping...

    • borealisdata.ca
    • dataone.org
    Updated May 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coleman Vollrath (2023). Methane Emissions from the Global Oil and Gas Industry: A Scoping Review to Characterize Research Trends, Knowledge Gaps, and Priorities [Dataset]. http://doi.org/10.5683/SP3/OOCMMZ
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 24, 2023
    Dataset provided by
    Borealis
    Authors
    Coleman Vollrath
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This data was exported from NVivo qualitative analysis software (Version 12) and Microsoft Excel. The data are from the review and charting of 237 peer-reviewed journal articles on methane emissions measurements from the oil and gas industry (onshore). These articles were identified and reviewed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) methodology. All 237 articles reviewed can be found in the reference list. The data charted from each of the 237 articles were: geography, measurement scales and methods, emissions characterization, and emissions profiles. The codebook shows the data charting structure used in NVivo with descriptions of each category. The .nvp and .qdpx files can be opened with NVivo or another qualitative analysis software to see the sources of evidence charted from each article. The review was updated to the end of 2022 using Microsoft Excel. The associated file includes data extracted from the 26 articles added. This work was completed for a Master of Science thesis in Geography in 2022.

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Neilsberg Research (2025). Excel Township, Minnesota annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/excel-township-mn-income-by-gender/

Excel Township, Minnesota annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition

Explore at:
csv, jsonAvailable download formats
Dataset updated
Feb 27, 2025
Dataset authored and provided by
Neilsberg Research
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Minnesota, Excel Township
Variables measured
Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
Measurement technique
The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
Dataset funded by
Neilsberg Research
Description
About this dataset

Context

The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Excel township. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

Key observations: Insights from 2023

Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Excel township, the median income for all workers aged 15 years and older, regardless of work hours, was $54,643 for males and $31,563 for females.

These income figures highlight a substantial gender-based income gap in Excel township. Women, regardless of work hours, earn 58 cents for each dollar earned by men. This significant gender pay gap, approximately 42%, underscores concerning gender-based income inequality in the township of Excel township.

- Full-time workers, aged 15 years and older: In Excel township, among full-time, year-round workers aged 15 years and older, males earned a median income of $66,786, while females earned $57,500, resulting in a 14% gender pay gap among full-time workers. This illustrates that women earn 86 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the township of Excel township.

Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in Excel township.

Content

When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

Gender classifications include:

  • Male
  • Female

Employment type classifications include:

  • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
  • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

Variables / Data Columns

  • Year: This column presents the data year. Expected values are 2010 to 2023
  • Male Total Income: Annual median income, for males regardless of work hours
  • Male FT Income: Annual median income, for males working full time, year-round
  • Male PT Income: Annual median income, for males working part time
  • Female Total Income: Annual median income, for females regardless of work hours
  • Female FT Income: Annual median income, for females working full time, year-round
  • Female PT Income: Annual median income, for females working part time

Good to know

Margin of Error

Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

Custom data

If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

Inspiration

Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Recommended for further research

This dataset is a part of the main dataset for Excel township median household income by race. You can refer the same here

Search
Clear search
Close search
Google apps
Main menu