49 datasets found
  1. F

    Housing Inventory: Median Days on Market in the United States

    • fred.stlouisfed.org
    json
    Updated Oct 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Housing Inventory: Median Days on Market in the United States [Dataset]. https://fred.stlouisfed.org/series/MEDDAYONMARUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Oct 30, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for Housing Inventory: Median Days on Market in the United States (MEDDAYONMARUS) from Jul 2016 to Oct 2025 about median and USA.

  2. US Cities Housing Market Data - Live Dataset

    • kaggle.com
    zip
    Updated Oct 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vincent Vaseghi (2025). US Cities Housing Market Data - Live Dataset [Dataset]. https://www.kaggle.com/datasets/vincentvaseghi/us-cities-housing-market-data
    Explore at:
    zip(984945960 bytes)Available download formats
    Dataset updated
    Oct 12, 2025
    Authors
    Vincent Vaseghi
    Area covered
    United States
    Description

    Redfin is a real estate brokerage and publishes the US housing market data on a regular basis. Using this dataset, you can analyze and visualize housing market data for US cities. Timeline: Starting from February 2012 until the present time (Data is refreshed and updated on a monthly basis)

    The dataset has the following columns: - period_begin - period_end - period_duration
    - region_type
    - region_type_id - table_id - is_seasonally_adjusted. (indicates if prices are seasonally adjusted; f represents False) - region - city - state - state_code - property_type - property_type_id - median_sale_price
    - median_sale_price_mom (median sale price changes month over month) - median_sale_price_yoy (median sale price changes year over year) - median_list_price
    - median_list_price_mom (median list price changes month over month) - median_list_price_yoy (median list price changes year over year) - median_ppsf (median sale price per square foot) - median_ppsf_mom (median sale price per square foot changes month over month) - median_ppsf_yoy (median sale price per square foot changes year over year) - median_list_ppsf (median list price per square foot) - median_list_ppsf_mom (median list price per square foot changes month over month) - median_list_ppsf_yoy. (median list price per square foot changes year over year) - homes_sold (number of homes sold) - homes_sold_mom (number of homes sold month over month) - homes_sold_yoy (number of homes sold year over year) - pending_sales
    - pending_sales_mom
    - pending_sales_yoy
    - new_listings - new_listings_mom
    - new_listings_yoy
    - inventory - inventory_mom
    - inventory_yoy
    - months_of_supply
    - months_of_supply_mom - months_of_supply_yoy
    - median_dom (median days on market until property is sold) - median_dom_mom (median days on market changes month over month) - median_dom_yoy (median days on market changes year over year) - avg_sale_to_list (average sale price to list price ratio) - avg_sale_to_list_mom (average sale price to list price ratio changes month over month) - avg_sale_to_list_yoy (average sale price to list price ratio changes year over year) - sold_above_list
    - sold_above_list_mom - sold_above_list_yoy - price_drops - price_drops_mom - price_drops_yoy - off_market_in_two_weeks (number of properties that will be taken off the market within 2 weeks) - off_market_in_two_weeks_mom (changes in number of properties that will be taken off the market within 2 weeks, month over month) - off_market_in_two_weeks_yoy (changes in number of properties that will be taken off the market within 2 weeks, year over year) - parent_metro_region - parent_metro_region_metro_code - last_updated

    Filetype: gzip (gz) Support for gzip files in Python: https://docs.python.org/3/library/gzip.html

    Data Source & Credit: Redfin.com

  3. Number of existing homes sold in the U.S. 1995-2024, with a forecast until...

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of existing homes sold in the U.S. 1995-2024, with a forecast until 2026 [Dataset]. https://www.statista.com/statistics/226144/us-existing-home-sales/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The number of U.S. home sales in the United States declined in 2024, after soaring in 2021. A total of four million transactions of existing homes, including single-family, condo, and co-ops, were completed in 2024, down from 6.12 million in 2021. According to the forecast, the housing market is forecast to head for recovery in 2025, despite transaction volumes expected to remain below the long-term average. Why have home sales declined? The housing boom during the coronavirus pandemic has demonstrated that being a homeowner is still an integral part of the American dream. Nevertheless, sentiment declined in the second half of 2022 and Americans across all generations agreed that the time was not right to buy a home. A combination of factors has led to house prices rocketing and making homeownership unaffordable for the average buyer. A survey among owners and renters found that the high home prices and unfavorable economic conditions were the two main barriers to making a home purchase. People who would like to purchase their own home need to save up a deposit, have a good credit score, and a steady and sufficient income to be approved for a mortgage. In 2022, mortgage rates experienced the most aggressive increase in history, making the total cost of homeownership substantially higher. Are U.S. home prices expected to fall? The median sales price of existing homes stood at 413,000 U.S. dollars in 2024 and was forecast to increase slightly until 2026. The development of the S&P/Case Shiller U.S. National Home Price Index shows that home prices experienced seven consecutive months of decline between June 2022 and January 2023, but this trend reversed in the following months. Despite mild fluctuations throughout the year, home prices in many metros are forecast to continue to grow, albeit at a much slower rate.

  4. F

    Housing Inventory: Median Days on Market in Atlanta-Sandy Springs-Roswell,...

    • fred.stlouisfed.org
    json
    Updated Oct 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Housing Inventory: Median Days on Market in Atlanta-Sandy Springs-Roswell, GA (CBSA) [Dataset]. https://fred.stlouisfed.org/series/MEDDAYONMAR12060
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Oct 30, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    Atlanta Metropolitan Area, Sandy Springs, Georgia
    Description

    Graph and download economic data for Housing Inventory: Median Days on Market in Atlanta-Sandy Springs-Roswell, GA (CBSA) (MEDDAYONMAR12060) from Jul 2016 to Oct 2025 about Atlanta, GA, median, and USA.

  5. Zillow Home Value Index (Updated Monthly)

    • kaggle.com
    zip
    Updated Oct 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rob Mulla (2025). Zillow Home Value Index (Updated Monthly) [Dataset]. https://www.kaggle.com/datasets/robikscube/zillow-home-value-index
    Explore at:
    zip(273663 bytes)Available download formats
    Dataset updated
    Oct 21, 2025
    Authors
    Rob Mulla
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Reference: https://www.zillow.com/research/zhvi-methodology/

    Official Background

    In setting out to create a new home price index, a major problem Zillow sought to overcome in existing indices was their inability to deal with the changing composition of properties sold in one time period versus another time period. Both a median sale price index and a repeat sales index are vulnerable to such biases (see the analysis here for an example of how influential the bias can be). For example, if expensive homes sell at a disproportionately higher rate than less expensive homes in one time period, a median sale price index will characterize this market as experiencing price appreciation relative to the prior period of time even if the true value of homes is unchanged between the two periods.

    The ideal home price index would be based off sale prices for the same set of homes in each time period so there was never an issue of the sales mix being different across periods. This approach of using a constant basket of goods is widely used, common examples being a commodity price index and a consumer price index. Unfortunately, unlike commodities and consumer goods, for which we can observe prices in all time periods, we can’t observe prices on the same set of homes in all time periods because not all homes are sold in every time period.

    The innovation that Zillow developed in 2005 was a way of approximating this ideal home price index by leveraging the valuations Zillow creates on all homes (called Zestimates). Instead of actual sale prices on every home, the index is created from estimated sale prices on every home. While there is some estimation error associated with each estimated sale price (which we report here), this error is just as likely to be above the actual sale price of a home as below (in statistical terms, this is referred to as minimal systematic error). Because of this fact, the distribution of actual sale prices for homes sold in a given time period looks very similar to the distribution of estimated sale prices for this same set of homes. But, importantly, Zillow has estimated sale prices not just for the homes that sold, but for all homes even if they didn’t sell in that time period. From this data, a comprehensive and robust benchmark of home value trends can be computed which is immune to the changing mix of properties that sell in different periods of time (see Dorsey et al. (2010) for another recent discussion of this approach).

    For an in-depth comparison of the Zillow Home Value Index to the Case Shiller Home Price Index, please refer to the Zillow Home Value Index Comparison to Case-Shiller

    Each Zillow Home Value Index (ZHVI) is a time series tracking the monthly median home value in a particular geographical region. In general, each ZHVI time series begins in April 1996. We generate the ZHVI at seven geographic levels: neighborhood, ZIP code, city, congressional district, county, metropolitan area, state and the nation.

    Underlying Data

    Estimated sale prices (Zestimates) are computed based on proprietary statistical and machine learning models. These models begin the estimation process by subdividing all of the homes in United States into micro-regions, or subsets of homes either near one another or similar in physical attributes to one another. Within each micro-region, the models observe recent sale transactions and learn the relative contribution of various home attributes in predicting the sale price. These home attributes include physical facts about the home and land, prior sale transactions, tax assessment information and geographic location. Based on the patterns learned, these models can then estimate sale prices on homes that have not yet sold.

    The sale transactions from which the models learn patterns include all full-value, arms-length sales that are not foreclosure resales. The purpose of the Zestimate is to give consumers an indication of the fair value of a home under the assumption that it is sold as a conventional, non-foreclosure sale. Similarly, the purpose of the Zillow Home Value Index is to give consumers insight into the home value trends for homes that are not being sold out of foreclosure status. Zillow research indicates that homes sold as foreclosures have typical discounts relative to non-foreclosure sales of between 20 and 40 percent, depending on the foreclosure saturation of the market. This is not to say that the Zestimate is not influenced by foreclosure resales. Zestimates are, in fact, influenced by foreclosure sales, but the pathway of this influence is through the downward pressure foreclosure sales put on non-foreclosure sale prices. It is the price signal observed in the latter that we are attempting to measure and, in turn, predict with the Zestimate.

    Market Segments Within each region, we calculate the ZHVI for various subsets of homes (or mar...

  6. T

    United States Total Housing Inventory

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Total Housing Inventory [Dataset]. https://tradingeconomics.com/united-states/total-housing-inventory
    Explore at:
    excel, json, xml, csvAvailable download formats
    Dataset updated
    Oct 16, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 30, 1982 - Oct 31, 2025
    Area covered
    United States
    Description

    Total Housing Inventory in the United States decreased to 1520 Thousands in October from 1530 Thousands in September of 2025. This dataset includes a chart with historical data for the United States Total Housing Inventory.

  7. Number of home sales in the U.S. 2014-2024 with forecast until 2026

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of home sales in the U.S. 2014-2024 with forecast until 2026 [Dataset]. https://www.statista.com/statistics/275156/total-home-sales-in-the-united-states-from-2009/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The number of home sales in the United States peaked in 2021 at almost ************* after steadily rising since 2018. Nevertheless, the market contracted in the following year, with transaction volumes falling to ***********. Home sales remained muted in 2024, with a mild increase expected in 2025 and 2026. A major factor driving this trend is the unprecedented increase in mortgage interest rates due to high inflation. How have U.S. home prices developed over time? The average sales price of new homes has also been rising since 2011. Buyer confidence seems to have recovered after the property crash, which has increased demand for homes and also the prices sellers are demanding for homes. At the same time, the affordability of U.S. homes has decreased. Both the number of existing and newly built homes sold has declined since the housing market boom during the coronavirus pandemic. Challenges in housing supply The number of housing units in the U.S. rose steadily between 1975 and 2005 but has remained fairly stable since then. Construction increased notably in the 1990s and early 2000s, with the number of construction starts steadily rising, before plummeting amid the infamous housing market crash. Housing starts slowly started to pick up in 2011, mirroring the economic recovery. In 2022, the supply of newly built homes plummeted again, as supply chain challenges following the COVID-19 pandemic and tariffs on essential construction materials such as steel and lumber led to prices soaring.

  8. F

    Housing Inventory: Median Days on Market in Dallas-Fort Worth-Arlington, TX...

    • fred.stlouisfed.org
    json
    Updated Oct 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Housing Inventory: Median Days on Market in Dallas-Fort Worth-Arlington, TX (CBSA) [Dataset]. https://fred.stlouisfed.org/series/MEDDAYONMAR19100
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Oct 30, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    Dallas-Fort Worth Metropolitan Area, Texas
    Description

    Graph and download economic data for Housing Inventory: Median Days on Market in Dallas-Fort Worth-Arlington, TX (CBSA) (MEDDAYONMAR19100) from Jul 2016 to Oct 2025 about Dallas, TX, median, and USA.

  9. Annual home price appreciation in the U.S. 2025, by state

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual home price appreciation in the U.S. 2025, by state [Dataset]. https://www.statista.com/statistics/1240802/annual-home-price-appreciation-by-state-usa/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    House prices grew year-on-year in most states in the U.S. in the first quarter of 2025. Hawaii was the only exception, with a decline of **** percent. The annual appreciation for single-family housing in the U.S. was **** percent, while in Rhode Island—the state where homes appreciated the most—the increase was ******percent. How have home prices developed in recent years? House price growth in the U.S. has been going strong for years. In 2025, the median sales price of a single-family home exceeded ******* U.S. dollars, up from ******* U.S. dollars five years ago. One of the factors driving house prices was the cost of credit. The record-low federal funds effective rate allowed mortgage lenders to set mortgage interest rates as low as *** percent. With interest rates on the rise, home buying has also slowed, causing fluctuations in house prices. Why are house prices growing? Many markets in the U.S. are overheated because supply has not been able to keep up with demand. How many homes enter the housing market depends on the construction output, whereas the availability of existing homes for purchase depends on many other factors, such as the willingness of owners to sell. Furthermore, growing investor appetite in the housing sector means that prospective homebuyers have some extra competition to worry about. In certain metros, for example, the share of homes bought by investors exceeded ** percent in 2025.

  10. T

    United States Existing Home Sales

    • tradingeconomics.com
    • ru.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Nov 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Existing Home Sales [Dataset]. https://tradingeconomics.com/united-states/existing-home-sales
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Nov 20, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1968 - Oct 31, 2025
    Area covered
    United States
    Description

    Existing Home Sales in the United States increased to 4100 Thousand in October from 4050 Thousand in September of 2025. This dataset provides the latest reported value for - United States Existing Home Sales - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  11. Number of house sales in the UK 2005-2025, by month

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Number of house sales in the UK 2005-2025, by month [Dataset]. https://www.statista.com/statistics/290623/uk-housing-market-monthly-sales-volumes/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2005 - Apr 2025
    Area covered
    United Kingdom
    Description

    During the COVID-19 pandemic, the number of house sales in the UK spiked, followed by a period of decline. In 2023 and 2024, the housing market slowed notably, and in January 2025, transaction volumes fell to 46,774. House sales volumes are impacted by a number of factors, including mortgage rates, house prices, supply, demand, as well as the overall health of the market. The economic uncertainty and rising unemployment rates has also affected the homebuyer sentiment of Brits. How have UK house prices developed over the past 10 years? House prices in the UK have increased year-on-year since 2015, except for a brief period of decline in the second half of 2023 and the beginning of 2024. That is based on the 12-month percentage change of the UK house price index. At the peak of the housing boom in 2022, prices soared by nearly 14 percent. The decline that followed was mild, at under three percent. The cooling in the market was more pronounced in England and Wales, where the average house price declined in 2023. Conversely, growth in Scotland and Northern Ireland continued. What is the impact of mortgage rates on house sales? For a long period, mortgage rates were at record-low, allowing prospective homebuyers to take out a 10-year loan at a mortgage rate of less than three percent. In the last quarter of 2021, this period came to an end as the Bank of England rose the bank lending rate to contain the spike in inflation. Naturally, the higher borrowing costs affected consumer sentiment, urging many homebuyers to place their plans on hold and leading to a decline in sales.

  12. Zillow Economics Data

    • kaggle.com
    zip
    Updated Jan 24, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zillow (2018). Zillow Economics Data [Dataset]. https://www.kaggle.com/zillow/zecon
    Explore at:
    zip(535524759 bytes)Available download formats
    Dataset updated
    Jan 24, 2018
    Dataset authored and provided by
    Zillowhttp://zillow.com/
    Description

    Context

    Zillow's Economic Research Team collects, cleans and publishes housing and economic data from a variety of public and proprietary sources. Public property record data filed with local municipalities -- including deeds, property facts, parcel information and transactional histories -- forms the backbone of our data products, and is fleshed out with proprietary data derived from property listings and user behavior on Zillow.

    The large majority of Zillow's aggregated housing market and economic data is made available for free download at zillow.com/data.

    Content

    Variable Availability:

    Zillow Home Value Index (ZHVI): A smoothed seasonally adjusted measure of the median estimated home value across a given region and housing type. A dollar denominated alternative to repeat-sales indices. Find a more detailed methodology here: http://www.zillow.com/research/zhvi-methodology-6032/

    Zillow Rent Index (ZRI): A smoothed seasonally adjusted measure of the median estimated market rate rent across a given region and housing type. A dollar denominated alternative to repeat-rent indices. Find a more detailed methodology here: http://www.zillow.com/research/zillow-rent-index-methodology-2393/

    For-Sale Listing/Inventory Metrics: Zillow provides many variables capturing current and historical for-sale listings availability, generally from 2012 to current. These variables include median list prices and inventory counts, both by various property types. Variables capturing for-sale market competitiveness including share of listings with a price cut, median price cut size, age of inventory, and the days a listing spend on Zillow before the sale is final.

    Home Sales Metrics: Zillow provides data on sold homes including median sale price by various housing types, sale counts (methodology here: http://www.zillow.com/research/home-sales-methodology-7733/), and a normalized view of sale volume referred to as turnover. The prevalence of foreclosures is also provided as ratio of the housing stock and the share of all sales in which the home was previously foreclosed upon.

    For-Rent Listing Metrics: Zillow provides median rents prices and median rent price per square foot by property type and bedroom count.

    Housing type definitions:

    All Homes: Zillow defines all homes as single-family, condominium and co-operative homes with a county record. Unless specified, all series cover this segment of the housing stock.

    Condo/Co-op: Condominium and co-operative homes.

    Multifamily 5+ units: Units in buildings with 5 or more housing units, that are not a condominiums or co-ops.

    Duplex/Triplex: Housing units in buildings with 2 or 3 housing units.

    Tiers: By metro, we determine price tier cutoffs that divide the all homes housing stock into thirds using the full distribution of estimated home values. We then estimate real estate metrics within the property sets, Bottom, Middle, and Top, defined by these cutoffs. When reported at the national level, all Bottom Tier homes defined at the metro level are pooled together to form the national bottom tier. The same holds for Middle and Top Tier homes.

    Regional Availability:

    Zillow metrics are reported for common US geographies including Nation, State, Metro (2013 Census Defined CBSAs), County, City, ZIP code, and Neighborhood.

    We provide a crosswalk between colloquial Zillow region names and federally defined region names and linking variables such as County FIPS codes and CBSA codes. Cities and Neighborhoods do not match standard jurisdictional boundaries. Zillow city boundaries reflect mailing address conventions and so are often visually similar to collections of ZIP codes. Zillow neighborhood boundaries can be found here.

    Suppression Rules: To ensure reliability of reported values the Zillow Economic Research team applies suppression rules triggered by low sample sizes and excessive volatility. These rules are customized to the metric and region type and explain most missingness found in the provided datasets.

    Additional Data Products

    The following data products and more are available for free download exclusively at [Zillow.com/Data][1]:

    • Zillow Home Value Forecast
    • Zillow Rent Forecast
    • Negative Equity (the share of mortgaged properties worth less than mortgage balance)
    • Zillow Home Price Expectations Survey
    • Zillow Housing Aspirations Report
    • Zillow Rising Sea Levels Research
    • Cash Buyers Time Series
    • Buy vs. Rent Breakeven Horizon
    • Mortgage Affordability, Rental Affordability, Price-to-Income Ratio
    • Conventional 30-year Fixed Mortgage Rate, Weekly Time Series
    • Jumbo 30-year Fixed Mortgage Rates, Weekly Time Series

    Acknowledgements

    The mission of the Zillow Economic Research Team is to be the most open, authoritative source for timely and accurate housing data and unbiased insight. We...

  13. Fair Market Rents lookup tool

    • catalog.data.gov
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Housing and Urban Development (2024). Fair Market Rents lookup tool [Dataset]. https://catalog.data.gov/dataset/fair-market-rents-for-the-section-8-housing-assistance-payments-program
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Description

    Fair Market Rents (FMRs) are used to determine payment standard amounts for the Housing Choice Voucher program, to determine initial renewal rents for some expiring project-based Section 8 contracts, to determine initial rents for housing assistance payment (HAP) contracts in the Moderate Rehabilitation Single Room Occupancy program (Mod Rehab), rent ceilings for rental units in both the HOME Investment Partnerships program and the Emergency Solution Grants program, calculation of maximum award amounts for Continuum of Care recipients and the maximum amount of rent a recipient may pay for property leased with Continuum of Care funds, and calculation of flat rents in Public Housing units. The U.S. Department of Housing and Urban Development (HUD) annually estimates FMRs for Office of Management and Budget (OMB) defined metropolitan areas, some HUD defined subdivisions of OMB metropolitan areas and each nonmetropolitan county. 42 USC 1437f requires FMRs be posted at least 30 days before they are effective and that they are effective at the start of the federal fiscal year (generally October 1).

  14. Utrecht housing dataset

    • kaggle.com
    zip
    Updated Jan 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ICT Institute (2025). Utrecht housing dataset [Dataset]. https://www.kaggle.com/datasets/ictinstitute/utrecht-housing-dataset/discussion
    Explore at:
    zip(72621 bytes)Available download formats
    Dataset updated
    Jan 27, 2025
    Authors
    ICT Institute
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Utrecht
    Description

    The Utrecht housing dataset is a freely available dataset that can be used by students to learn about data science and machine learning. The older versions are synthetic datasets. The latest version is an actual dataset based on data collected from a house offering website (Funda) and official land registry (Kadaster).

    This dataset is described in the following accompanying paper: - Van Otterloo, S and Burda, P. 2025. The Utrecht Housing dataset: A housing appraisal dataset. Computers and Society Research Journal (2025), 1. The paper can be downloaded here: https://ictinstitute.nl/utrecht-housing-dataset-2025/.

    History In July 2022, Stefan Leijnen and Sieuwert van Otterloo taught a one week summerschool ‘AI and machine learning’ at the Utrecht University of Applied Sciences. The goal of this summer school is to make AI and Machine Learning accessible to as many people as possible. Using AI without properly understanding it comes with risks. We want to reduce these risks by giving students from all backgrounds the tools and knowledge to understand AI. Luckily, AI has become more accessible thanks to the existence of many free and open tools and libraries. Any student can train and test algorithms with only a few days of training.

    The Utrecht Housing Dataset was designed for use during day 1, day 2 and day 3. The dataset has multiple different input variables that are interesting to explore. The size is such that it is well suited for visualisations. The dataset represents one of the core tenets of responsible AI: AI should be made accessible to a wide group of people, so that anyone with some university experience can test and evaluate algorithms.

    When developing the summerschool, we could not find a dataset that was both interesting to analyse and easy to use. Existing datasets often have data quality issues that distract from the learning goals, or are only suited for illustrating one phenomenon. Many classical machine learning datasets also do not have meaningful tasks. The problems that one can do with these datasets are either too basic or theoretical. The Utrecht Housing Dataset thus offers a new combination that we found useful in our classroom.

    The dataset is released as creative commons, and can be used freely for any purpose. If you use it, please refer to it as the “The Utrecht housing dataset – example dataset for prediction” by Sieuwert van Otterloo, www.ictinstitute.nl or refer to Sieuwert van Otterloo as the author/source.

    The dataset is provided as a CSV file. Each line contains data for one house. The values are seperated by commas.

  15. Price Paid Data

    • gov.uk
    Updated Dec 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HM Land Registry (2025). Price Paid Data [Dataset]. https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads
    Explore at:
    Dataset updated
    Dec 1, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    HM Land Registry
    Description

    Our Price Paid Data includes information on all property sales in England and Wales that are sold for value and are lodged with us for registration.

    Get up to date with the permitted use of our Price Paid Data:
    check what to consider when using or publishing our Price Paid Data

    Using or publishing our Price Paid Data

    If you use or publish our Price Paid Data, you must add the following attribution statement:

    Contains HM Land Registry data © Crown copyright and database right 2021. This data is licensed under the Open Government Licence v3.0.

    Price Paid Data is released under the http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/">Open Government Licence (OGL). You need to make sure you understand the terms of the OGL before using the data.

    Under the OGL, HM Land Registry permits you to use the Price Paid Data for commercial or non-commercial purposes. However, OGL does not cover the use of third party rights, which we are not authorised to license.

    Price Paid Data contains address data processed against Ordnance Survey’s AddressBase Premium product, which incorporates Royal Mail’s PAF® database (Address Data). Royal Mail and Ordnance Survey permit your use of Address Data in the Price Paid Data:

    • for personal and/or non-commercial use
    • to display for the purpose of providing residential property price information services

    If you want to use the Address Data in any other way, you must contact Royal Mail. Email address.management@royalmail.com.

    Address data

    The following fields comprise the address data included in Price Paid Data:

    • Postcode
    • PAON Primary Addressable Object Name (typically the house number or name)
    • SAON Secondary Addressable Object Name – if there is a sub-building, for example, the building is divided into flats, there will be a SAON
    • Street
    • Locality
    • Town/City
    • District
    • County

    October 2025 data (current month)

    The October 2025 release includes:

    • the first release of data for October 2025 (transactions received from the first to the last day of the month)
    • updates to earlier data releases
    • Standard Price Paid Data (SPPD) and Additional Price Paid Data (APPD) transactions

    As we will be adding to the October data in future releases, we would not recommend using it in isolation as an indication of market or HM Land Registry activity. When the full dataset is viewed alongside the data we’ve previously published, it adds to the overall picture of market activity.

    Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.

    Google Chrome (Chrome 88 onwards) is blocking downloads of our Price Paid Data. Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.

    We update the data on the 20th working day of each month. You can download the:

    Single file

    These include standard and additional price paid data transactions received at HM Land Registry from 1 January 1995 to the most current monthly data.

    Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.

    The data is updated monthly and the average size of this file is 3.7 GB, you can download:

  16. W

    Quarterly Market Information Indices

    • cloud.csiss.gmu.edu
    • find.data.gov.scot
    • +2more
    api, csv
    Updated Dec 9, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://usmart.io/#/org/dhplg (2016). Quarterly Market Information Indices [Dataset]. https://cloud.csiss.gmu.edu/uddi/fr/dataset/groups/quarterly-market-information-indices
    Explore at:
    api, csvAvailable download formats
    Dataset updated
    Dec 9, 2016
    Dataset provided by
    https://usmart.io/#/org/dhplg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    House price index is based on average new house price value at loan approval stage and therefore has not been adjusted for changes in the mix of houses and apartments sold.
    Interest rates is based on building societies mortgage loans, published by Central Statistics Office up to 2007.
    From 2008 interest rates is average rate of all 'mortgage lenders' reporting to the Central Bank.
    From 2014 it is based on the floating rate for new customers as published by the Central Bank (Retail interest rates - Table B2.1). The reason for the drop between 2013 and
    2014 is due to the difference in methodology - the 2014 data is the weighted average rate on new loan agreements. Further information can be found here:
    http://www.centralbank.ie/polstats/stats/cmab/Documents/Retail_Interest_Rate_Statistics_Explanatory_Notes.pdf
    Earnings is based on the average weekly earnings of adult workers in manufacturing industries, published by the Central Statistics Office. This series has been updated since 1996 using a new methodology and therefore it is not directly comparable with those for earlier years. House Construction Cost Index is based on the 1st day of the third month of each quarter.
    Consumer Price index is based on the Consumer Price Index, published by the Central Statistics Office.
    The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change.

  17. Pakistan Real Estate Property Listings Dataset🏡

    • kaggle.com
    zip
    Updated Jan 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hassaan Mustafavi (2025). Pakistan Real Estate Property Listings Dataset🏡 [Dataset]. https://www.kaggle.com/datasets/hassaanmustafavi/pakistan-real-estate-property-listings-dataset
    Explore at:
    zip(3098581 bytes)Available download formats
    Dataset updated
    Jan 23, 2025
    Authors
    Hassaan Mustafavi
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Pakistan
    Description

    Don't forget to hit the upvote🙏🙏

    This dataset has been scraped from graana.com & zameen.com, Pakistan's leading real estate platforms. It provides detailed information on properties listed across all over Pakistan, focusing on houses, flats, farmhouses etc. available for sale/rent. Whether you're an analyst, a student, or a developer, this dataset offers a rich opportunity for analysis in the real estate domain. 📊

    Columns Breakdown 📋:

    ColumnDescription
    index🔢 Unique identifier for each property.
    url🔗 Link to the property listing on Zameen.com.
    type🏠 Property type (e.g., House, Flat, Plot).
    purpose🎯 Purpose of the property (e.g., For Sale, For Rent).
    area📏 Size of the property (e.g., 1 Kanal, 14.2 Marla).
    bedroom🛏️ Number of bedrooms available.
    bath🚿 Number of bathrooms available.
    added📅 Days since the property was listed.
    price💰 Total price of the property.
    location📍 General location of the property (e.g., DHA Defence).
    location_city🏙️ City where the property is located (e.g., Islamabad).

    📊 Dataset Applications:

    • Market Analysis: Understand property trends in different cities and regions.
    • Price Prediction: Train machine learning models to predict real estate prices.
    • Investment Insights: Identify prime locations and best property types for investment.
    • Demographic Studies: Analyze housing needs in urban vs. suburban areas.

    🚀 Get Started Now:

    Use this dataset for your next real estate analysis, machine learning project, or to explore the property market trends in Pakistan! 🏘️

    Happy coding! ✨

  18. d

    Korea Real Estate Board_National Housing Price Trend Survey_Monthly...

    • data.go.kr
    csv
    Updated Jun 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Korea Real Estate Board_National Housing Price Trend Survey_Monthly Trends_Apartment_Sale Price (Average Sale Price) [Dataset]. https://www.data.go.kr/en/data/15069826/fileData.do
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 11, 2025
    License

    https://data.go.kr/ugs/selectPortalPolicyView.dohttps://data.go.kr/ugs/selectPortalPolicyView.do

    Description

    This is the monthly trend data on apartment sales prices and average sales prices provided by the Korea Real Estate Board (formerly Korea Appraisal Board) from the National Housing Price Trend Survey.

  19. I

    Israel House Prices Growth

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Israel House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/israel/house-prices-growth
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 1, 2024 - Aug 1, 2025
    Area covered
    Israel
    Description

    Key information about House Prices Growth

    • Israel house prices grew 0.5% YoY in Aug 2025, following an increase of 0.7% YoY in the previous month.
    • YoY growth data is updated monthly, available from Jan 1995 to Aug 2025, with an average growth rate of 19.8%.
    • House price data reached an all-time high of 21.4% in May 1996 and a record low of -8.8% in May 2003.

    CEIC calculates House Prices Growth from monthly Dwellings Price Index (Owner Occupied) . The Central Bureau of Statistics provides Dwellings Price Index (Owner Occupied) with base 1993=100. Dwellings Price Index is calculated monthly covering last 15 days of the previous month and first 15 days of the current month.

  20. l

    Fair Market Rents

    • data.lojic.org
    • hub.arcgis.com
    • +1more
    Updated Nov 22, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2017). Fair Market Rents [Dataset]. https://data.lojic.org/datasets/HUD::fair-market-rents
    Explore at:
    Dataset updated
    Nov 22, 2017
    Dataset authored and provided by
    Department of Housing and Urban Development
    Area covered
    Description

    Fair Market Rents (FMRs) represent the estimated amount (base rent + essential utilities) that a property in a given area typically rents for. The data is primarily used to determine payment standard amounts for the Housing Choice Voucher program; however, FMRs are also used to:Determine initial renewal rents for expiring project-based Section 8 contracts;Determine initial rents for housing assistance payment (HAP) contracts in the Moderate Rehabilitation Single Room Occupancy program (Mod Rehab), rent ceilings for rental units in both the HOME Investment Partnerships program and the Emergency Solution Grants (ESG) program;Calculate of maximum award amounts for Continuum of Care recipients and the maximum amount of rent a recipient may pay for property leased with Continuum of Care funds, and;Calculate flat rent amounts in Public Housing Units.Data is updated annualy in accordance with 42 USC 1437f which requires FMRs be posted at least 30 days before they are effective and that they are effective at the start of the federal fiscal year, October 1st.In order to calculate rents for units with more than four bedrooms, an extra 15% cost is added to the four bedroom unit value. The formula is to multiply the four bedroom rent by 1.15. For example, in FY21 the rent for a four bedroom unit in the El Centro, California Micropolitan Statistical Area is $1,444. The rent for a five bedroom unit would be $1,444 * 1.15 or $1,661. Each subsequent bedroom is an additional 15%. A six bedroom unit would be $1,444 * 1.3 or $1,877. These values are not included in the feature service.To learn more about Fair Market Rents visit: https://www.huduser.gov/portal/datasets/fmr.html/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_Fair Market Rents Date of Coverage: FY2026 : Oct. 1 - Sept. 30

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). Housing Inventory: Median Days on Market in the United States [Dataset]. https://fred.stlouisfed.org/series/MEDDAYONMARUS

Housing Inventory: Median Days on Market in the United States

MEDDAYONMARUS

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
jsonAvailable download formats
Dataset updated
Oct 30, 2025
License

https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

Area covered
United States
Description

Graph and download economic data for Housing Inventory: Median Days on Market in the United States (MEDDAYONMARUS) from Jul 2016 to Oct 2025 about median and USA.

Search
Clear search
Close search
Google apps
Main menu