2 datasets found
  1. Google Data Analytics Case Study Cyclistic

    • kaggle.com
    zip
    Updated Sep 27, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Udayakumar19 (2022). Google Data Analytics Case Study Cyclistic [Dataset]. https://www.kaggle.com/datasets/udayakumar19/google-data-analytics-case-study-cyclistic/suggestions
    Explore at:
    zip(1299 bytes)Available download formats
    Dataset updated
    Sep 27, 2022
    Authors
    Udayakumar19
    Description

    Introduction

    Welcome to the Cyclistic bike-share analysis case study! In this case study, you will perform many real-world tasks of a junior data analyst. You will work for a fictional company, Cyclistic, and meet different characters and team members. In order to answer the key business questions, you will follow the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Along the way, the Case Study Roadmap tables — including guiding questions and key tasks — will help you stay on the right path.

    Scenario

    You are a junior data analyst working in the marketing analyst team at Cyclistic, a bike-share company in Chicago. The director of marketing believes the company’s future success depends on maximizing the number of annual memberships. Therefore, your team wants to understand how casual riders and annual members use Cyclistic bikes differently. From these insights, your team will design a new marketing strategy to convert casual riders into annual members. But first, Cyclistic executives must approve your recommendations, so they must be backed up with compelling data insights and professional data visualizations.

    Ask

    How do annual members and casual riders use Cyclistic bikes differently?

    Guiding Question:

    What is the problem you are trying to solve?
      How do annual members and casual riders use Cyclistic bikes differently?
    How can your insights drive business decisions?
      The insight will help the marketing team to make a strategy for casual riders
    

    Prepare

    Guiding Question:

    Where is your data located?
      Data located in Cyclistic organization data.
    
    How is data organized?
      Dataset are in csv format for each month wise from Financial year 22.
    
    Are there issues with bias or credibility in this data? Does your data ROCCC? 
      It is good it is ROCCC because data collected in from Cyclistic organization.
    
    How are you addressing licensing, privacy, security, and accessibility?
      The company has their own license over the dataset. Dataset does not have any personal information about the riders.
    
    How did you verify the data’s integrity?
      All the files have consistent columns and each column has the correct type of data.
    
    How does it help you answer your questions?
      Insights always hidden in the data. We have the interpret with data to find the insights.
    
    Are there any problems with the data?
      Yes, starting station names, ending station names have null values.
    

    Process

    Guiding Question:

    What tools are you choosing and why?
      I used R studio for the cleaning and transforming the data for analysis phase because of large dataset and to gather experience in the language.
    
    Have you ensured the data’s integrity?
     Yes, the data is consistent throughout the columns.
    
    What steps have you taken to ensure that your data is clean?
      First duplicates, null values are removed then added new columns for analysis.
    
    How can you verify that your data is clean and ready to analyze? 
     Make sure the column names are consistent thorough out all data sets by using the “bind row” function.
    
    Make sure column data types are consistent throughout all the dataset by using the “compare_df_col” from the “janitor” package.
    Combine the all dataset into single data frame to make consistent throught the analysis.
    Removed the column start_lat, start_lng, end_lat, end_lng from the dataframe because those columns not required for analysis.
    Create new columns day, date, month, year, from the started_at column this will provide additional opportunities to aggregate the data
    Create the “ride_length” column from the started_at and ended_at column to find the average duration of the ride by the riders.
    Removed the null rows from the dataset by using the “na.omit function”
    Have you documented your cleaning process so you can review and share those results? 
      Yes, the cleaning process is documented clearly.
    

    Analyze Phase:

    Guiding Questions:

    How should you organize your data to perform analysis on it? The data has been organized in one single dataframe by using the read csv function in R Has your data been properly formatted? Yes, all the columns have their correct data type.

    What surprises did you discover in the data?
      Casual member ride duration is higher than the annual members
      Causal member widely uses docked bike than the annual members
    What trends or relationships did you find in the data?
      Annual members are used mainly for commute purpose
      Casual member are preferred the docked bikes
      Annual members are preferred the electric or classic bikes
    How will these insights help answer your business questions?
      This insights helps to build a profile for members
    

    Share

    Guiding Quesions:

    Were you able to answer the question of how ...
    
  2. Data from: Humans exploit robust locomotion by improving the stability of...

    • zenodo.org
    • explore.openaire.eu
    bin
    Updated Jun 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alessandro Santuz; Alessandro Santuz; Leon Brüll; Antonis Ekizos; Antonis Ekizos; Arno Schroll; Nils Eckardt; Nils Eckardt; Armin Kibele; Armin Kibele; Michael Schwenk; Michael Schwenk; Adamantios Arampatzis; Adamantios Arampatzis; Leon Brüll; Arno Schroll (2022). Humans exploit robust locomotion by improving the stability of control signals [Dataset]. http://doi.org/10.5281/zenodo.2687682
    Explore at:
    binAvailable download formats
    Dataset updated
    Jun 17, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Alessandro Santuz; Alessandro Santuz; Leon Brüll; Antonis Ekizos; Antonis Ekizos; Arno Schroll; Nils Eckardt; Nils Eckardt; Armin Kibele; Armin Kibele; Michael Schwenk; Michael Schwenk; Adamantios Arampatzis; Adamantios Arampatzis; Leon Brüll; Arno Schroll
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Background

    Is the control of movement less stable when we walk or run in challenging settings? Intuitively, one might answer that it is, given that adding constraints to locomotion (e.g. rough terrain, age-related impairments, etc.) makes movements less stable. Here, we investigated how young and old humans synergistically activate muscles during locomotion when different perturbation levels are introduced. Of these control signals, called muscle synergies, we analyzed the stability over time. Surprisingly, we found that perturbations and older age force the central nervous system to produce muscle activation patterns that are more stable. These outcomes show that robust locomotion in challenging settings is achieved by increasing the stability of control signals, whereas easier tasks allow for more unstable control.

    How to use the data set

    This supplementary data set contains: a) the metadata with anonymized participant information, b) the raw electromyographic (EMG) data acquired during locomotion, c) the touchdown and lift-off timings of the recorded limb, d) the filtered and time-normalized EMG, e) the muscle synergies extracted via non-negative matrix factorization and f) the code written in R (R Found. for Stat. Comp.) to process the data, including the scripts to calculate the Maximum Lyapunov Exponents of motor primitives. In total, 476 trials from 86 participants are included in the supplementary data set.

    The file “participant_data.dat” is available in ASCII and RData (R Found. for Stat. Comp.) format and contains:

    • Code: the participant’s code
    • Experiment: the experimental setup in which the participant was involved (E1 = walking and running, overground and treadmill; E2 = walking and running, even- and uneven-surface; E3 = unperturbed and perturbed walking, young and old)
    • Group: the group to which the participant was assigned (see above for the details)
    • Sex: the participant’s sex (M or F)
    • Speed: the speed at which the recordings were conducted in [m/s] (two values separated by a comma mean that recordings were done at two different speeds, i.e. walking and running)
    • Age: the participant’s age in years (participants were considered old if older than 65 years, but younger than 80)
    • Height: the participant’s height in [cm]
    • Mass: the participant’s body mass in [kg].

    The files containing the gait cycle breakdown are available in RData (R Found. for Stat. Comp.) format, in the file named “CYCLE_TIMES.RData”. The files are structured as data frames with 30 rows (one for each gait cycle) and two columns. The first column contains the touchdown incremental times in seconds. The second column contains the duration of each stance phase in seconds. Each trial is saved as an element of a single R list. Trials are named like “CYCLE_TIMES_P0020,” where the characters “CYCLE_TIMES” indicate that the trial contains the gait cycle breakdown times and the characters “P0020” indicate the participant number (in this example the 20th). Please note that the overground trials of participants P0001 and P0009 and the second uneven-surface running trial of participant P0048 only contain 22, 27 and 23 cycles, respectively.

    The files containing the raw, filtered and the normalized EMG data are available in RData (R Found. for Stat. Comp.) format, in the files named “RAW_EMG.RData” and “FILT_EMG.RData”. The raw EMG files are structured as data frames with 30000 rows (one for each recorded data point) and 14 columns. The first column contains the incremental time in seconds. The remaining thirteen columns contain the raw EMG data, named with muscle abbreviations that follow those reported in the Materials and Methods section of this Supplementary Materials file. Each trial is saved as an element of a single R list. Trials are named like “RAW_EMG_P0053_OG_02”, where the characters “RAW_EMG” indicate that the trial contains raw emg data, the characters “P0053” indicate the participant number (in this example the 53rd), the characters “OW” indicate the locomotion type (E1: OW=overground walking, OR=overground running, TW=treadmill walking, TR=treadmill running; E2: EW=even-surface walking, ER=even-surface running, UW=uneven-surface walking, UR=uneven-surface running; E3: NW=normal walking, PW=perturbed walking), and the numbers “02” indicate the trial number (in this case the 2nd). The 10 trials per participant recorded for each overground session (i.e. 10 for walking and 10 for running) were concatenated into one. The filtered and time-normalized emg data is named, following the same rules, like “FILT_EMG_P0053_OG_02”.

    The files containing the muscle synergies extracted from the filtered and normalized EMG data are available in RData (R Found. for Stat. Comp.) format, in the files named “SYNS_H.RData” and “SYNS_W.RData”. The muscle synergies files are divided in motor primitives and motor modules and are presented as direct output of the factorization and not in any functional order. Motor primitives are data frames with 6000 rows and a number of columns equal to the number of synergies (which might differ from trial to trial) plus one. The rows contain the time-dependent coefficients (motor primitives), one column for each synergy plus the time points (columns are named e.g. “Time, Syn1, Syn2, Syn3”, where “Syn” is the abbreviation for “synergy”). Each gait cycle contains 200 data points, 100 for the stance and 100 for the swing phase which, multiplied by the 30 recorded cycles, result in 6000 data points distributed in as many rows. This output is transposed as compared to the one discussed above to improve user readability. Each set of motor primitives is saved as an element of a single R list. Trials are named like “SYNS_H_P0012_PW_02”, where the characters “SYNS_H” indicate that the trial contains motor primitive data, the characters “P0012” indicate the participant number (in this example the 12th), ), the characters “PW” indicate the locomotion type (see above), and the numbers “02” indicate the trial number (in this case the 2nd). Motor modules are data frames with 13 rows (number of recorded muscles) and a number of columns equal to the number of synergies (which might differ from trial to trial). The rows, named with muscle abbreviations that follow those reported in the Materials and Methods section of this Supplementary Materials file, contain the time-independent coefficients (motor modules), one for each synergy and for each muscle. Each set of motor modules relative to one synergy is saved as an element of a single R list. Trials are named like “SYNS_W_P0082_PW_02”, where the characters “SYNS_W” indicate that the trial contains motor module data, the characters “P0082” indicate the participant number (in this example the 82nd) ), the characters “PW” indicate the locomotion type (see above), and the numbers “02” indicate the trial number (in this case the 2nd). Given the nature of the NMF algorithm for the extraction of muscle synergies, the supplementary data set might show non-significant differences as compared to the one used for obtaining the results of this paper.

    The files containing the MLE calculated from motor primitives are available in RData (R Found. for Stat. Comp.) format, in the file named “MLE.RData”. MLE results are presented in a list of lists containing, for each trial, 1) the divergences, 2) the MLE, and 3) the value of the R2 between the divergence curve and its linear interpolation made using the specified amount of points. The divergences are presented as a one-dimensional vector. MLE are one number like the R2 value. Trials are named like “MLE_P0081_EW_01”, where the characters “MLE” indicate that the trial contains MLE data, the characters “P0081” indicate the participant number (in this example the 81st) ), the characters “EW” indicate the locomotion type (see above), and the numbers “01” indicate the trial number (in this case the 1st).

    All the code used for the preprocessing of EMG data, the extraction of muscle synergies and the calculation of MLE is available in R (R Found. for Stat. Comp.) format. Explanatory comments are profusely present throughout the scripts (“SYNS.R”, which is the script to extract synergies, “fun_NMF.R”, which contains the NMF function, “MLE.R”, which is the script to calculate the MLE of motor primitives and “fun_MLE.R”, which contains the MLE function).

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Udayakumar19 (2022). Google Data Analytics Case Study Cyclistic [Dataset]. https://www.kaggle.com/datasets/udayakumar19/google-data-analytics-case-study-cyclistic/suggestions
Organization logo

Google Data Analytics Case Study Cyclistic

Difference between Casual vs Member in Cyclistic Riders

Explore at:
zip(1299 bytes)Available download formats
Dataset updated
Sep 27, 2022
Authors
Udayakumar19
Description

Introduction

Welcome to the Cyclistic bike-share analysis case study! In this case study, you will perform many real-world tasks of a junior data analyst. You will work for a fictional company, Cyclistic, and meet different characters and team members. In order to answer the key business questions, you will follow the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Along the way, the Case Study Roadmap tables — including guiding questions and key tasks — will help you stay on the right path.

Scenario

You are a junior data analyst working in the marketing analyst team at Cyclistic, a bike-share company in Chicago. The director of marketing believes the company’s future success depends on maximizing the number of annual memberships. Therefore, your team wants to understand how casual riders and annual members use Cyclistic bikes differently. From these insights, your team will design a new marketing strategy to convert casual riders into annual members. But first, Cyclistic executives must approve your recommendations, so they must be backed up with compelling data insights and professional data visualizations.

Ask

How do annual members and casual riders use Cyclistic bikes differently?

Guiding Question:

What is the problem you are trying to solve?
  How do annual members and casual riders use Cyclistic bikes differently?
How can your insights drive business decisions?
  The insight will help the marketing team to make a strategy for casual riders

Prepare

Guiding Question:

Where is your data located?
  Data located in Cyclistic organization data.

How is data organized?
  Dataset are in csv format for each month wise from Financial year 22.

Are there issues with bias or credibility in this data? Does your data ROCCC? 
  It is good it is ROCCC because data collected in from Cyclistic organization.

How are you addressing licensing, privacy, security, and accessibility?
  The company has their own license over the dataset. Dataset does not have any personal information about the riders.

How did you verify the data’s integrity?
  All the files have consistent columns and each column has the correct type of data.

How does it help you answer your questions?
  Insights always hidden in the data. We have the interpret with data to find the insights.

Are there any problems with the data?
  Yes, starting station names, ending station names have null values.

Process

Guiding Question:

What tools are you choosing and why?
  I used R studio for the cleaning and transforming the data for analysis phase because of large dataset and to gather experience in the language.

Have you ensured the data’s integrity?
 Yes, the data is consistent throughout the columns.

What steps have you taken to ensure that your data is clean?
  First duplicates, null values are removed then added new columns for analysis.

How can you verify that your data is clean and ready to analyze? 
 Make sure the column names are consistent thorough out all data sets by using the “bind row” function.

Make sure column data types are consistent throughout all the dataset by using the “compare_df_col” from the “janitor” package.
Combine the all dataset into single data frame to make consistent throught the analysis.
Removed the column start_lat, start_lng, end_lat, end_lng from the dataframe because those columns not required for analysis.
Create new columns day, date, month, year, from the started_at column this will provide additional opportunities to aggregate the data
Create the “ride_length” column from the started_at and ended_at column to find the average duration of the ride by the riders.
Removed the null rows from the dataset by using the “na.omit function”
Have you documented your cleaning process so you can review and share those results? 
  Yes, the cleaning process is documented clearly.

Analyze Phase:

Guiding Questions:

How should you organize your data to perform analysis on it? The data has been organized in one single dataframe by using the read csv function in R Has your data been properly formatted? Yes, all the columns have their correct data type.

What surprises did you discover in the data?
  Casual member ride duration is higher than the annual members
  Causal member widely uses docked bike than the annual members
What trends or relationships did you find in the data?
  Annual members are used mainly for commute purpose
  Casual member are preferred the docked bikes
  Annual members are preferred the electric or classic bikes
How will these insights help answer your business questions?
  This insights helps to build a profile for members

Share

Guiding Quesions:

Were you able to answer the question of how ...
Search
Clear search
Close search
Google apps
Main menu