100+ datasets found
  1. Data from: Web Traffic Dataset

    • kaggle.com
    zip
    Updated May 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ramin Huseyn (2024). Web Traffic Dataset [Dataset]. https://www.kaggle.com/datasets/raminhuseyn/web-traffic-time-series-dataset
    Explore at:
    zip(14740 bytes)Available download formats
    Dataset updated
    May 19, 2024
    Authors
    Ramin Huseyn
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The dataset contains information about web requests to a single website. It's a time series dataset, which means it tracks data over time, making it great for machine learning analysis.

  2. Share of global mobile website traffic 2015-2025

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of global mobile website traffic 2015-2025 [Dataset]. https://www.statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    In the second quarter of 2025, mobile devices (excluding tablets) accounted for 62.54 percent of global website traffic. Since consistently maintaining a share of around 50 percent beginning in 2017, mobile usage surpassed this threshold in 2020 and has demonstrated steady growth in its dominance of global web access. Mobile traffic Due to low infrastructure and financial restraints, many emerging digital markets skipped the desktop internet phase entirely and moved straight onto mobile internet via smartphone and tablet devices. India is a prime example of a market with a significant mobile-first online population. Other countries with a significant share of mobile internet traffic include Nigeria, Ghana and Kenya. In most African markets, mobile accounts for more than half of the web traffic. By contrast, mobile only makes up around 45.49 percent of online traffic in the United States. Mobile usage The most popular mobile internet activities worldwide include watching movies or videos online, e-mail usage and accessing social media. Apps are a very popular way to watch video on the go and the most-downloaded entertainment apps in the Apple App Store are Netflix, Tencent Video and Amazon Prime Video.

  3. Z

    Network Traffic Analysis: Data and Code

    • data.niaid.nih.gov
    • data-staging.niaid.nih.gov
    Updated Jun 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Moran, Madeline; Honig, Joshua; Ferrell, Nathan; Soni, Shreena; Homan, Sophia; Chan-Tin, Eric (2024). Network Traffic Analysis: Data and Code [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11479410
    Explore at:
    Dataset updated
    Jun 12, 2024
    Dataset provided by
    Loyola University Chicago
    Authors
    Moran, Madeline; Honig, Joshua; Ferrell, Nathan; Soni, Shreena; Homan, Sophia; Chan-Tin, Eric
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Code:

    Packet_Features_Generator.py & Features.py

    To run this code:

    pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j

    -h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j

    Purpose:

    Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.

    Uses Features.py to calcualte the features.

    startMachineLearning.sh & machineLearning.py

    To run this code:

    bash startMachineLearning.sh

    This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags

    Options (to be edited within this file):

    --evaluate-only to test 5 fold cross validation accuracy

    --test-scaling-normalization to test 6 different combinations of scalers and normalizers

    Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use

    --grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'

    Purpose:

    Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.

    Data

    Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.

    Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:

    First number is a classification number to denote what website, query, or vr action is taking place.

    The remaining numbers in each line denote:

    The size of a packet,

    and the direction it is traveling.

    negative numbers denote incoming packets

    positive numbers denote outgoing packets

    Figure 4 Data

    This data uses specific lines from the Virtual Reality.txt file.

    The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.

    The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.

    The .xlsx and .csv file are identical

    Each file includes (from right to left):

    The origional packet data,

    each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,

    and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.

  4. d

    Web Traffic Data | 500M+ US Web Traffic Data Resolution | B2B and B2C...

    • datarade.ai
    .csv, .xls
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allforce (2025). Web Traffic Data | 500M+ US Web Traffic Data Resolution | B2B and B2C Website Visitor Identity Resolution [Dataset]. https://datarade.ai/data-products/traffic-continuum-from-solution-publishing-500m-us-web-traf-solution-publishing
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Allforce
    Area covered
    United States of America
    Description

    Unlock the Potential of Your Web Traffic with Advanced Data Resolution

    In the digital age, understanding and leveraging web traffic data is crucial for businesses aiming to thrive online. Our pioneering solution transforms anonymous website visits into valuable B2B and B2C contact data, offering unprecedented insights into your digital audience. By integrating our unique tag into your website, you unlock the capability to convert 25-50% of your anonymous traffic into actionable contact rows, directly deposited into an S3 bucket for your convenience. This process, known as "Web Traffic Data Resolution," is at the forefront of digital marketing and sales strategies, providing a competitive edge in understanding and engaging with your online visitors.

    Comprehensive Web Traffic Data Resolution Our product stands out by offering a robust solution for "Web Traffic Data Resolution," a process that demystifies the identities behind your website traffic. By deploying a simple tag on your site, our technology goes to work, analyzing visitor behavior and leveraging proprietary data matching techniques to reveal the individuals and businesses behind the clicks. This innovative approach not only enhances your data collection but does so with respect for privacy and compliance standards, ensuring that your business gains insights ethically and responsibly.

    Deep Dive into Web Traffic Data At the core of our solution is the sophisticated analysis of "Web Traffic Data." Our system meticulously collects and processes every interaction on your site, from page views to time spent on each section. This data, once anonymous and perhaps seen as abstract numbers, is transformed into a detailed ledger of potential leads and customer insights. By understanding who visits your site, their interests, and their contact information, your business is equipped to tailor marketing efforts, personalize customer experiences, and streamline sales processes like never before.

    Benefits of Our Web Traffic Data Resolution Service Enhanced Lead Generation: By converting anonymous visitors into identifiable contact data, our service significantly expands your pool of potential leads. This direct enhancement of your lead generation efforts can dramatically increase conversion rates and ROI on marketing campaigns.

    Targeted Marketing Campaigns: Armed with detailed B2B and B2C contact data, your marketing team can create highly targeted and personalized campaigns. This precision in marketing not only improves engagement rates but also ensures that your messaging resonates with the intended audience.

    Improved Customer Insights: Gaining a deeper understanding of your web traffic enables your business to refine customer personas and tailor offerings to meet market demands. These insights are invaluable for product development, customer service improvement, and strategic planning.

    Competitive Advantage: In a digital landscape where understanding your audience can make or break your business, our Web Traffic Data Resolution service provides a significant competitive edge. By accessing detailed contact data that others in your industry may overlook, you position your business as a leader in customer engagement and data-driven strategies.

    Seamless Integration and Accessibility: Our solution is designed for ease of use, requiring only the placement of a tag on your website to start gathering data. The contact rows generated are easily accessible in an S3 bucket, ensuring that you can integrate this data with your existing CRM systems and marketing tools without hassle.

    How It Works: A Closer Look at the Process Our Web Traffic Data Resolution process is streamlined and user-friendly, designed to integrate seamlessly with your existing website infrastructure:

    Tag Deployment: Implement our unique tag on your website with simple instructions. This tag is lightweight and does not impact your site's loading speed or user experience.

    Data Collection and Analysis: As visitors navigate your site, our system collects web traffic data in real-time, analyzing behavior patterns, engagement metrics, and more.

    Resolution and Transformation: Using advanced data matching algorithms, we resolve the collected web traffic data into identifiable B2B and B2C contact information.

    Data Delivery: The resolved contact data is then securely transferred to an S3 bucket, where it is organized and ready for your access. This process occurs daily, ensuring you have the most up-to-date information at your fingertips.

    Integration and Action: With the resolved data now in your possession, your business can take immediate action. From refining marketing strategies to enhancing customer experiences, the possibilities are endless.

    Security and Privacy: Our Commitment Understanding the sensitivity of web traffic data and contact information, our solution is built with security and privacy at its core. We adhere to strict data protection regulat...

  5. Website Traffic

    • kaggle.com
    zip
    Updated Aug 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AnthonyTherrien (2024). Website Traffic [Dataset]. https://www.kaggle.com/datasets/anthonytherrien/website-traffic/discussion
    Explore at:
    zip(65228 bytes)Available download formats
    Dataset updated
    Aug 5, 2024
    Authors
    AnthonyTherrien
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Dataset Overview

    This dataset provides detailed information on website traffic, including page views, session duration, bounce rate, traffic source, time spent on page, previous visits, and conversion rate.

    Dataset Description

    • Page Views: The number of pages viewed during a session.
    • Session Duration: The total duration of the session in minutes.
    • Bounce Rate: The percentage of visitors who navigate away from the site after viewing only one page.
    • Traffic Source: The origin of the traffic (e.g., Organic, Social, Paid).
    • Time on Page: The amount of time spent on the specific page.
    • Previous Visits: The number of previous visits by the same visitor.
    • Conversion Rate: The percentage of visitors who completed a desired action (e.g., making a purchase).

    Data Summary

    • Total Records: 2000
    • Total Features: 7

    Key Features

    1. Page Views: This feature indicates the engagement level of the visitors by showing how many pages they visit during their session.
    2. Session Duration: This feature measures the length of time a visitor stays on the website, which can indicate the quality of the content.
    3. Bounce Rate: A critical metric for understanding user behavior. A high bounce rate may indicate that visitors are not finding what they are looking for.
    4. Traffic Source: Understanding where your traffic comes from can help in optimizing marketing strategies.
    5. Time on Page: This helps in analyzing which pages are retaining visitors' attention the most.
    6. Previous Visits: This can be used to analyze the loyalty of visitors and the effectiveness of retention strategies.
    7. Conversion Rate: The ultimate metric for measuring the effectiveness of the website in achieving its goals.

    Usage

    This dataset can be used for various analyses such as:

    • Identifying key drivers of engagement and conversion.
    • Analyzing the effectiveness of different traffic sources.
    • Understanding user behavior patterns and optimizing the website accordingly.
    • Improving marketing strategies based on traffic source performance.
    • Enhancing user experience by analyzing time spent on different pages.

    Acknowledgments

    This dataset was generated for educational purposes and is not from a real website. It serves as a tool for learning data analysis and machine learning techniques.

  6. Daily website visitors (time series regression)

    • kaggle.com
    zip
    Updated Aug 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bob Nau (2020). Daily website visitors (time series regression) [Dataset]. https://www.kaggle.com/bobnau/daily-website-visitors
    Explore at:
    zip(35736 bytes)Available download formats
    Dataset updated
    Aug 20, 2020
    Authors
    Bob Nau
    Description

    Context

    This file contains 5 years of daily time series data for several measures of traffic on a statistical forecasting teaching notes website whose alias is statforecasting.com. The variables have complex seasonality that is keyed to the day of the week and to the academic calendar. The patterns you you see here are similar in principle to what you would see in other daily data with day-of-week and time-of-year effects. Some good exercises are to develop a 1-day-ahead forecasting model, a 7-day ahead forecasting model, and an entire-next-week forecasting model (i.e., next 7 days) for unique visitors.

    Content

    The variables are daily counts of page loads, unique visitors, first-time visitors, and returning visitors to an academic teaching notes website. There are 2167 rows of data spanning the date range from September 14, 2014, to August 19, 2020. A visit is defined as a stream of hits on one or more pages on the site on a given day by the same user, as identified by IP address. Multiple individuals with a shared IP address (e.g., in a computer lab) are considered as a single user, so real users may be undercounted to some extent. A visit is classified as "unique" if a hit from the same IP address has not come within the last 6 hours. Returning visitors are identified by cookies if those are accepted. All others are classified as first-time visitors, so the count of unique visitors is the sum of the counts of returning and first-time visitors by definition. The data was collected through a traffic monitoring service known as StatCounter.

    Inspiration

    This file and a number of other sample datasets can also be found on the website of RegressIt, a free Excel add-in for linear and logistic regression which I originally developed for use in the course whose website generated the traffic data given here. If you use Excel to some extent as well as Python or R, you might want to try it out on this dataset.

  7. Leading websites worldwide 2025, by monthly visits

    • statista.com
    • boostndoto.org
    Updated Oct 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Leading websites worldwide 2025, by monthly visits [Dataset]. https://www.statista.com/statistics/1201880/most-visited-websites-worldwide/
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Aug 2025
    Area covered
    Worldwide
    Description

    In August 2025, Google.com was the most visited website worldwide, with an average of 98.2 billion monthly visits. The platform has maintained its leading position since June 2010, when it surpassed Yahoo to take first place. YouTube ranked second during the same period, recording over 48 billion monthly visits. The internet leaders: search, social, and e-commerce Social networks, search engines, and e-commerce websites shape the online experience as we know it. While Google leads the global online search market by far, YouTube and Facebook have become the world’s most popular websites for user generated content, solidifying Alphabet’s and Meta’s leadership over the online landscape. Meanwhile, websites such as Amazon and eBay generate millions in profits from the sale and distribution of goods, making the e-market sector an integral part of the global retail scene. What is next for online content? Powering social media and websites like Reddit and Wikipedia, user-generated content keeps moving the internet’s engines. However, the rise of generative artificial intelligence will bring significant changes to how online content is produced and handled. ChatGPT is already transforming how online search is performed, and news of Google's 2024 deal for licensing Reddit content to train large language models (LLMs) signal that the internet is likely to go through a new revolution. While AI's impact on the online market might bring both opportunities and challenges, effective content management will remain crucial for profitability on the web.

  8. Share of U.S. mobile website traffic 2015-2025

    • statista.com
    Updated Sep 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of U.S. mobile website traffic 2015-2025 [Dataset]. https://www.statista.com/statistics/683082/share-of-website-traffic-coming-from-mobile-devices-usa/
    Explore at:
    Dataset updated
    Sep 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of the second quarter of 2025, ***** percent of web traffic in the United States originated from mobile devices, down from over ** percent in the last quarter of 2024. In comparison, over ********** of web traffic worldwide was generated via mobile in the last examined period.

  9. c

    Google Analytics www cityofrochester gov

    • data.cityofrochester.gov
    Updated Dec 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open_Data_Admin (2021). Google Analytics www cityofrochester gov [Dataset]. https://data.cityofrochester.gov/datasets/google-analytics-www-cityofrochester-gov/about
    Explore at:
    Dataset updated
    Dec 11, 2021
    Dataset authored and provided by
    Open_Data_Admin
    Description

    Data dictionary: Page_Title: Title of webpage used for pages of the website www.cityofrochester.gov Pageviews: Total number of pages viewed over the course of the calendar year listed in the year column. Repeated views of a single page are counted. Unique_Pageviews: Unique Pageviews - The number of sessions during which a specified page was viewed at least once. A unique pageview is counted for each URL and page title combination. Avg_Time: Average amount of time users spent looking at a specified page or screen. Entrances: The number of times visitors entered the website through a specified page.Bounce_Rate: " A bounce is a single-page session on your site. In Google Analytics, a bounce is calculated specifically as a session that triggers only a single request to the Google Analytics server, such as when a user opens a single page on your site and then exits without triggering any other requests to the Google Analytics server during that session. Bounce rate is single-page sessions on a page divided by all sessions that started with that page, or the percentage of all sessions on your site in which users viewed only a single page and triggered only a single request to the Google Analytics server. These single-page sessions have a session duration of 0 seconds since there are no subsequent hits after the first one that would let Google Analytics calculate the length of the session. "Exit_Rate: The number of exits from a page divided by the number of pageviews for the page. This is inclusive of sessions that started on different pages, as well as “bounce” sessions that start and end on the same page. For all pageviews to the page, Exit Rate is the percentage that were the last in the session. Year: Calendar year over which the data was collected. Data reflects the counts for each metric from January 1st through December 31st.

  10. Leading website traffic in Kenya 2021, by device

    • statista.com
    Updated Feb 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Leading website traffic in Kenya 2021, by device [Dataset]. https://www.statista.com/statistics/1316963/web-traffic-distribution-of-leading-websites-in-kenya-by-device/
    Explore at:
    Dataset updated
    Feb 15, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Nov 2021
    Area covered
    Kenya
    Description

    In November 2021, mobile devices accounted for nearly ** percent of the web traffic to Google.com in Kenya. The website had the highest number of total visits in the country. Among the leading websites, most of them had a higher share of traffic from mobile. Youtube.com was an exception, with only ********* of its traffic originating from mobile devices.

  11. Google Analytics Sample

    • kaggle.com
    zip
    Updated Sep 19, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Sep 19, 2019
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Googlehttp://google.com/
    Authors
    Google BigQuery
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.

    Content

    The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:

    Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.

    Fork this kernel to get started.

    Acknowledgements

    Data from: https://bigquery.cloud.google.com/table/bigquery-public-data:google_analytics_sample.ga_sessions_20170801

    Banner Photo by Edho Pratama from Unsplash.

    Inspiration

    What is the total number of transactions generated per device browser in July 2017?

    The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?

    What was the average number of product pageviews for users who made a purchase in July 2017?

    What was the average number of product pageviews for users who did not make a purchase in July 2017?

    What was the average total transactions per user that made a purchase in July 2017?

    What is the average amount of money spent per session in July 2017?

    What is the sequence of pages viewed?

  12. Website Statistics

    • data.wu.ac.at
    • lcc.portaljs.com
    • +2more
    csv, pdf
    Updated Jun 11, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lincolnshire County Council (2018). Website Statistics [Dataset]. https://data.wu.ac.at/schema/data_gov_uk/M2ZkZDBjOTUtMzNhYi00YWRjLWI1OWMtZmUzMzA5NjM0ZTdk
    Explore at:
    csv, pdfAvailable download formats
    Dataset updated
    Jun 11, 2018
    Dataset provided by
    Lincolnshire County Councilhttp://www.lincolnshire.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This Website Statistics dataset has four resources showing usage of the Lincolnshire Open Data website. Web analytics terms used in each resource are defined in their accompanying Metadata file.

    • Website Usage Statistics: This document shows a statistical summary of usage of the Lincolnshire Open Data site for the latest calendar year.

    • Website Statistics Summary: This dataset shows a website statistics summary for the Lincolnshire Open Data site for the latest calendar year.

    • Webpage Statistics: This dataset shows statistics for individual Webpages on the Lincolnshire Open Data site by calendar year.

    • Dataset Statistics: This dataset shows cumulative totals for Datasets on the Lincolnshire Open Data site that have also been published on the national Open Data site Data.Gov.UK - see the Source link.

      Note: Website and Webpage statistics (the first three resources above) show only UK users, and exclude API calls (automated requests for datasets). The Dataset Statistics are confined to users with javascript enabled, which excludes web crawlers and API calls.

    These Website Statistics resources are updated annually in January by the Lincolnshire County Council Business Intelligence team. For any enquiries about the information contact opendata@lincolnshire.gov.uk.

  13. Data from: website traffic analysis

    • kaggle.com
    zip
    Updated Jul 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    James Li (2023). website traffic analysis [Dataset]. https://www.kaggle.com/datasets/zhiyueli/website-traffic-analysis
    Explore at:
    zip(3423072 bytes)Available download formats
    Dataset updated
    Jul 21, 2023
    Authors
    James Li
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    You could find out the traffic of websites. Your task is to predict future daily traffic of each website based on historical data.

  14. Recipe Site Traffic: Analysis & Prediction

    • kaggle.com
    Updated Sep 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Matta (2025). Recipe Site Traffic: Analysis & Prediction [Dataset]. https://www.kaggle.com/datasets/michaelmatta0/recipe-site-traffic-analysis-and-prediction
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 21, 2025
    Dataset provided by
    Kaggle
    Authors
    Michael Matta
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This dataset originates from DataCamp. Many users have reposted copies of the CSV on Kaggle, but most of those uploads omit the original instructions, business context, and problem framing. In this upload, I’ve included that missing context in the About Dataset so the reader of my notebook or any other notebook can fully understand how the data was intended to be used and the intended problem framing.

    Note: I have also uploaded a visualization of the workflow I personally took to tackle this problem, but it is not part of the dataset itself. Additionally, I created a PowerPoint presentation based on my work in the notebook, which you can download from here:
    PPTX Presentation

    Recipe Site Traffic

    From: Head of Data Science
    Received: Today
    Subject: New project from the product team

    Hey!

    I have a new project for you from the product team. Should be an interesting challenge. You can see the background and request in the email below.

    I would like you to perform the analysis and write a short report for me. I want to be able to review your code as well as read your thought process for each step. I also want you to prepare and deliver the presentation for the product team - you are ready for the challenge!

    They want us to predict which recipes will be popular 80% of the time and minimize the chance of showing unpopular recipes. I don't think that is realistic in the time we have, but do your best and present whatever you find.

    You can find more details about what I expect you to do here. And information on the data here.

    I will be on vacation for the next couple of weeks, but I know you can do this without my support. If you need to make any decisions, include them in your work and I will review them when I am back.

    Good Luck!

    From: Product Manager - Recipe Discovery
    To: Head of Data Science
    Received: Yesterday
    Subject: Can you help us predict popular recipes?

    Hi,

    We haven't met before but I am responsible for choosing which recipes to display on the homepage each day. I have heard about what the data science team is capable of and I was wondering if you can help me choose which recipes we should display on the home page?

    At the moment, I choose my favorite recipe from a selection and display that on the home page. We have noticed that traffic to the rest of the website goes up by as much as 40% if I pick a popular recipe. But I don't know how to decide if a recipe will be popular. More traffic means more subscriptions so this is really important to the company.

    Can your team: - Predict which recipes will lead to high traffic? - Correctly predict high traffic recipes 80% of the time?

    We need to make a decision on this soon, so I need you to present your results to me by the end of the month. Whatever your results, what do you recommend we do next?

    Look forward to seeing your presentation.

    About Tasty Bytes

    Tasty Bytes was founded in 2020 in the midst of the Covid Pandemic. The world wanted inspiration so we decided to provide it. We started life as a search engine for recipes, helping people to find ways to use up the limited supplies they had at home.

    Now, over two years on, we are a fully fledged business. For a monthly subscription we will put together a full meal plan to ensure you and your family are getting a healthy, balanced diet whatever your budget. Subscribe to our premium plan and we will also deliver the ingredients to your door.

    Example Recipe

    This is an example of how a recipe may appear on the website, we haven't included all of the steps but you should get an idea of what visitors to the site see.

    Tomato Soup

    Servings: 4
    Time to make: 2 hours
    Category: Lunch/Snack
    Cost per serving: $

    Nutritional Information (per serving) - Calories 123 - Carbohydrate 13g - Sugar 1g - Protein 4g

    Ingredients: - Tomatoes - Onion - Carrot - Vegetable Stock

    Method: 1. Cut the tomatoes into quarters….

    Data Information

    The product manager has tried to make this easier for us and provided data for each recipe, as well as whether there was high traffic when the recipe was featured on the home page.

    As you will see, they haven't given us all of the information they have about each recipe.

    You can find the data here.

    I will let you decide how to process it, just make sure you include all your decisions in your report.

    Don't forget to double check the data really does match what they say - it might not.

    Column NameDetails
    recipeNumeric, unique identifier of recipe
    caloriesNumeric, number of calories
    carbohydrateNumeric, amount of carbohydrates in grams
    sugarNumeric, amount of sugar in grams
    proteinNumeric, amount of prote...
  15. Global Network Traffic Analytics Market 2018-2022

    • technavio.com
    pdf
    Updated Jun 21, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2018). Global Network Traffic Analytics Market 2018-2022 [Dataset]. https://www.technavio.com/report/global-network-traffic-analytics-market-analysis-share-2018
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 21, 2018
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Description

    Snapshot img

    Global network traffic analytics Industry Overview

    Technavio’s analysts have identified the increasing use of network traffic analytics solutions to be one of major factors driving market growth. With the rapidly changing IT infrastructure, security hackers can steal valuable information through various modes. With the increasing dependence on web applications and websites for day-to-day activities and financial transactions, the instances of theft have increased globally. Also, the emergence of social networking websites has aided the malicious attackers to extract valuable information from vulnerable users. The increasing consumer dependence on web applications and websites for day-to-day activities and financial transactions are further increasing the risks of theft. This encourages the organizations to adopt network traffic analytics solutions.

    Want a bigger picture? Try a FREE sample of this report now!

    See the complete table of contents and list of exhibits, as well as selected illustrations and example pages from this report.

    Companies covered

    The network traffic analytics market is fairly concentrated due to the presence of few established companies offering innovative and differentiated software and services. By offering a complete analysis of the competitiveness of the players in the network monitoring tools market offering varied software and services, this network traffic analytics industry analysis report will aid clients identify new growth opportunities and design new growth strategies.

    The report offers a complete analysis of a number of companies including:

    Allot
    Cisco Systems
    IBM
    Juniper Networks
    Microsoft
    Symantec
    

    Network traffic analytics market growth based on geographic regions

    Americas
    APAC
    EMEA
    

    With a complete study of the growth opportunities for the companies across regions such as the Americas, APAC, and EMEA, our industry research analysts have estimated that countries in the Americas will contribute significantly to the growth of the network monitoring tools market throughout the predicted period.

    Network traffic analytics market growth based on end-user

    Telecom
    BFSI
    Healthcare
    Media and entertainment
    

    According to our market research experts, the telecom end-user industry will be the major end-user of the network monitoring tools market throughout the forecast period. Factors such as increasing use of network traffic analytics solutions and increasing use of mobile devices at workplaces will contribute to the growth of the market shares of the telecom industry in the network traffic analytics market.

    Key highlights of the global network traffic analytics market for the forecast years 2018-2022:

    CAGR of the market during the forecast period 2018-2022
    Detailed information on factors that will accelerate the growth of the network traffic analytics market during the next five years
    Precise estimation of the global network traffic analytics market size and its contribution to the parent market
    Accurate predictions on upcoming trends and changes in consumer behavior
    Growth of the network traffic analytics industry across various geographies such as the Americas, APAC, and EMEA
    A thorough analysis of the market’s competitive landscape and detailed information on several vendors
    Comprehensive information about factors that will challenge the growth of network traffic analytics companies
    

    Get more value with Technavio’s INSIGHTS subscription platform! Gain easy access to all of Technavio’s reports, along with on-demand services. Try the demo

    This market research report analyzes the market outlook and provides a list of key trends, drivers, and challenges that are anticipated to impact the global network traffic analytics market and its stakeholders over the forecast years.

    The global network traffic analytics market analysts at Technavio have also considered how the performance of other related markets in the vertical will impact the size of this market till 2022. Some of the markets most likely to influence the growth of the network traffic analytics market over the coming years are the Global Network as a Service Market and the Global Data Analytics Outsourcing Market.

    Technavio’s collection of market research reports offer insights into the growth of markets across various industries. Additionally, we also provide customized reports based on the specific requirement of our clients.

  16. d

    LAcity.org Website Traffic - Page Views

    • catalog.data.gov
    • data.lacity.org
    • +2more
    Updated Nov 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.lacity.org (2021). LAcity.org Website Traffic - Page Views [Dataset]. https://catalog.data.gov/dataset/lacity-org-website-traffic-page-views
    Explore at:
    Dataset updated
    Nov 29, 2021
    Dataset provided by
    data.lacity.org
    Area covered
    Los Angeles
    Description

    Top 25 Daily Page Views for the main website of Los Angeles

  17. s

    Comparison of Top Sites to Buy Website Traffic 2025

    • sparktraffic.com
    Updated Jan 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cecilien Dambon (2025). Comparison of Top Sites to Buy Website Traffic 2025 [Dataset]. https://www.sparktraffic.com/blog/best-sites-to-buy-website-traffic-in-2025
    Explore at:
    Dataset updated
    Jan 3, 2025
    Authors
    Cecilien Dambon
    Description

    A dataset comparing features, pricing, and ratings of the top sites to buy website traffic in 2025: Google Ads, Facebook Ads, PropellerAds, and SparkTraffic.

  18. s

    Data from: Traffic Volumes

    • data.sandiego.gov
    Updated Jul 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Traffic Volumes [Dataset]. https://data.sandiego.gov/datasets/traffic-volumes/
    Explore at:
    csv csv is tabular data. excel, google docs, libreoffice calc or any plain text editor will open files with this format. learn moreAvailable download formats
    Dataset updated
    Jul 29, 2016
    Description

    The census count of vehicles on city streets is normally reported in the form of Average Daily Traffic (ADT) counts. These counts provide a good estimate for the actual number of vehicles on an average weekday at select street segments. Specific block segments are selected for a count because they are deemed as representative of a larger segment on the same roadway. ADT counts are used by transportation engineers, economists, real estate agents, planners, and others professionals for planning and operational analysis. The frequency for each count varies depending on City staff’s needs for analysis in any given area. This report covers the counts taken in our City during the past 12 years approximately.

  19. w

    Websites using Instascaler Get Traffic

    • webtechsurvey.com
    csv
    Updated Nov 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WebTechSurvey (2025). Websites using Instascaler Get Traffic [Dataset]. https://webtechsurvey.com/technology/instascaler-get-traffic
    Explore at:
    csvAvailable download formats
    Dataset updated
    Nov 22, 2025
    Dataset authored and provided by
    WebTechSurvey
    License

    https://webtechsurvey.com/termshttps://webtechsurvey.com/terms

    Time period covered
    2025
    Area covered
    Global
    Description

    A complete list of live websites using the Instascaler Get Traffic technology, compiled through global website indexing conducted by WebTechSurvey.

  20. Leading websites worldwide 2025, by unique visitors

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Leading websites worldwide 2025, by unique visitors [Dataset]. https://www.statista.com/statistics/1201889/most-visited-websites-worldwide-unique-visits/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Aug 2025
    Area covered
    Worldwide
    Description

    In August 2025, Google.com was the most visited website worldwide, attracting approximately 5.66 billion unique monthly visitors. YouTube.com ranked second, with an estimated 2.98 billion unique visitors. Both platforms also held the top positions globally in terms of total website visits.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Ramin Huseyn (2024). Web Traffic Dataset [Dataset]. https://www.kaggle.com/datasets/raminhuseyn/web-traffic-time-series-dataset
Organization logo

Data from: Web Traffic Dataset

Web Traffic (Total Number of Web requests) time series dataset.

Related Article
Explore at:
zip(14740 bytes)Available download formats
Dataset updated
May 19, 2024
Authors
Ramin Huseyn
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

The dataset contains information about web requests to a single website. It's a time series dataset, which means it tracks data over time, making it great for machine learning analysis.

Search
Clear search
Close search
Google apps
Main menu