100+ datasets found
  1. Price Paid Data

    • gov.uk
    Updated Dec 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HM Land Registry (2025). Price Paid Data [Dataset]. https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads
    Explore at:
    Dataset updated
    Dec 1, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    HM Land Registry
    Description

    Our Price Paid Data includes information on all property sales in England and Wales that are sold for value and are lodged with us for registration.

    Get up to date with the permitted use of our Price Paid Data:
    check what to consider when using or publishing our Price Paid Data

    Using or publishing our Price Paid Data

    If you use or publish our Price Paid Data, you must add the following attribution statement:

    Contains HM Land Registry data © Crown copyright and database right 2021. This data is licensed under the Open Government Licence v3.0.

    Price Paid Data is released under the http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/">Open Government Licence (OGL). You need to make sure you understand the terms of the OGL before using the data.

    Under the OGL, HM Land Registry permits you to use the Price Paid Data for commercial or non-commercial purposes. However, OGL does not cover the use of third party rights, which we are not authorised to license.

    Price Paid Data contains address data processed against Ordnance Survey’s AddressBase Premium product, which incorporates Royal Mail’s PAF® database (Address Data). Royal Mail and Ordnance Survey permit your use of Address Data in the Price Paid Data:

    • for personal and/or non-commercial use
    • to display for the purpose of providing residential property price information services

    If you want to use the Address Data in any other way, you must contact Royal Mail. Email address.management@royalmail.com.

    Address data

    The following fields comprise the address data included in Price Paid Data:

    • Postcode
    • PAON Primary Addressable Object Name (typically the house number or name)
    • SAON Secondary Addressable Object Name – if there is a sub-building, for example, the building is divided into flats, there will be a SAON
    • Street
    • Locality
    • Town/City
    • District
    • County

    October 2025 data (current month)

    The October 2025 release includes:

    • the first release of data for October 2025 (transactions received from the first to the last day of the month)
    • updates to earlier data releases
    • Standard Price Paid Data (SPPD) and Additional Price Paid Data (APPD) transactions

    As we will be adding to the October data in future releases, we would not recommend using it in isolation as an indication of market or HM Land Registry activity. When the full dataset is viewed alongside the data we’ve previously published, it adds to the overall picture of market activity.

    Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.

    Google Chrome (Chrome 88 onwards) is blocking downloads of our Price Paid Data. Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.

    We update the data on the 20th working day of each month. You can download the:

    Single file

    These include standard and additional price paid data transactions received at HM Land Registry from 1 January 1995 to the most current monthly data.

    Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.

    The data is updated monthly and the average size of this file is 3.7 GB, you can download:

  2. Housing Prices Dataset

    • kaggle.com
    zip
    Updated Jan 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M Yasser H (2022). Housing Prices Dataset [Dataset]. https://www.kaggle.com/datasets/yasserh/housing-prices-dataset
    Explore at:
    zip(4740 bytes)Available download formats
    Dataset updated
    Jan 12, 2022
    Authors
    M Yasser H
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">

    Description:

    A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?

    Acknowledgement:

    Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.

    Objective:

    • Understand the Dataset & cleanup (if required).
    • Build Regression models to predict the sales w.r.t a single & multiple feature.
    • Also evaluate the models & compare thier respective scores like R2, RMSE, etc.
  3. Number of existing homes sold in the U.S. 1995-2024, with a forecast until...

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of existing homes sold in the U.S. 1995-2024, with a forecast until 2026 [Dataset]. https://www.statista.com/statistics/226144/us-existing-home-sales/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The number of U.S. home sales in the United States declined in 2024, after soaring in 2021. A total of four million transactions of existing homes, including single-family, condo, and co-ops, were completed in 2024, down from 6.12 million in 2021. According to the forecast, the housing market is forecast to head for recovery in 2025, despite transaction volumes expected to remain below the long-term average. Why have home sales declined? The housing boom during the coronavirus pandemic has demonstrated that being a homeowner is still an integral part of the American dream. Nevertheless, sentiment declined in the second half of 2022 and Americans across all generations agreed that the time was not right to buy a home. A combination of factors has led to house prices rocketing and making homeownership unaffordable for the average buyer. A survey among owners and renters found that the high home prices and unfavorable economic conditions were the two main barriers to making a home purchase. People who would like to purchase their own home need to save up a deposit, have a good credit score, and a steady and sufficient income to be approved for a mortgage. In 2022, mortgage rates experienced the most aggressive increase in history, making the total cost of homeownership substantially higher. Are U.S. home prices expected to fall? The median sales price of existing homes stood at 413,000 U.S. dollars in 2024 and was forecast to increase slightly until 2026. The development of the S&P/Case Shiller U.S. National Home Price Index shows that home prices experienced seven consecutive months of decline between June 2022 and January 2023, but this trend reversed in the following months. Despite mild fluctuations throughout the year, home prices in many metros are forecast to continue to grow, albeit at a much slower rate.

  4. F

    Median Sales Price of Houses Sold for the United States

    • fred.stlouisfed.org
    json
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Median Sales Price of Houses Sold for the United States [Dataset]. https://fred.stlouisfed.org/series/MSPUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 24, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q2 2025 about sales, median, housing, and USA.

  5. Average house price in the UK 2010-2025, by month

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average house price in the UK 2010-2025, by month [Dataset]. https://www.statista.com/statistics/751605/average-house-price-in-the-uk/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2010 - Jun 2025
    Area covered
    United Kingdom
    Description

    In 2022, house price growth in the UK slowed, after a period of decade-long increase. Nevertheless, in June 2025, prices reached a new peak, with the average home costing ******* British pounds. This figure refers to all property types, including detached, semi-detached, terraced houses, and flats and maisonettes. Compared to other European countries, the UK had some of the highest house prices. How have UK house prices increased over the last 10 years? Property prices have risen dramatically over the past decade. According to the UK house price index, the average house price has grown by over ** percent since 2015. This price development has led to the gap between the cost of buying and renting a property to close. In 2023, buying a three-bedroom house in the UK was no longer more affordable than renting one. Consequently, Brits have become more likely to rent longer and push off making a house purchase until they have saved up enough for a down payment and achieved the financial stability required to make the step. What caused the recent fluctuations in house prices? House prices are affected by multiple factors, such as mortgage rates, supply, and demand on the market. For nearly a decade, the UK experienced uninterrupted house price growth as a result of strong demand and a chronic undersupply. Homebuyers who purchased a property at the peak of the housing boom in July 2022 paid ** percent more compared to what they would have paid a year before. Additionally, 2022 saw the most dramatic increase in mortgage rates in recent history. Between December 2021 and December 2022, the **-year fixed mortgage rate doubled, adding further strain to prospective homebuyers. As a result, the market cooled, leading to a correction in pricing.

  6. Egypt Housing Prices

    • kaggle.com
    zip
    Updated Nov 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdelwahab Kamal (2022). Egypt Housing Prices [Dataset]. https://www.kaggle.com/datasets/abdelwahabkamal/egypt-housing-prices
    Explore at:
    zip(674289 bytes)Available download formats
    Dataset updated
    Nov 14, 2022
    Authors
    Abdelwahab Kamal
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Egypt
    Description

    this dataset was scraped from OLX posted every week . I cleaned it Partially, and now it's up to you to make data analysis magic. The dataset includes region, Type of Real estate, Suburb, Method of Selling, Rooms, Price, City, Area ,Furnished or not and contain rent properties

  7. Median sales price of new homes sold in the U.S. 1965-2024

    • statista.com
    Updated Aug 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Median sales price of new homes sold in the U.S. 1965-2024 [Dataset]. https://www.statista.com/statistics/199895/median-sales-prices-of-new-homes-sold-in-the-us-since-1965/
    Explore at:
    Dataset updated
    Aug 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The median sales price of new homes sold in the United States increased steadily from 1965 to 2022, followed by two years of decline. In 2024, a newly built home cost approximately ******* U.S. dollars. That was a decline from the peak price of 434,500 U.S. dollars in 2022. Prices varied greatly across different regions in the country, with the most expensive housing found in the Northeast region.

  8. Existing own homes; average purchase prices, region

    • data.overheid.nl
    • cbs.nl
    • +1more
    atom, json
    Updated Feb 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centraal Bureau voor de Statistiek (Rijk) (2025). Existing own homes; average purchase prices, region [Dataset]. https://data.overheid.nl/dataset/4146-existing-own-homes--average-purchase-prices--region
    Explore at:
    json(KB), atom(KB)Available download formats
    Dataset updated
    Feb 17, 2025
    Dataset provided by
    Statistics Netherlands
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This table shows the average purchase price that has been paid in the reporting period for existing own homes purchased by a private individual. The average purchase price of existing own homes may differ from the price index of existing own homes. The average purchase price is no indicator for price developments of owner-occupied residential property. The average purchase price reflects the average price of dwellings sold in a particular period. The fact that de dwellings sold differs from one period to another is not taken into account. The following instance explains which problems are entailed by the continually changing of the quality of the dwellings sold. Suppose in February of a particular year mainly big houses with extensive gardens beautifully situated alongside canals are sold, whereas in March many small terraced houses are sold. In that case the average purchase price in February will be higher than in March but this does not mean that house prices are increased. See note 3 for a link to the article 'Why the average purchase price is not an indicator'.

    Data available from: 1995

    Status of the figures: The figures in this table are immediately definitive. The calculation of these figures is based on the number of notary transactions that are registered every month by the Dutch Land Registry Office (Kadaster). A revision of the figures is exceptional and occurs specifically if an error significantly exceeds the acceptable statistical margins. The average purchasing prices of existing owner-occupied sold homes can be calculated by Kadaster at a later date. These figures are usually the same as the publication on Statline, but in some periods they differ. Kadaster calculates the average purchasing prices based on the most recent data. These may have changed since the first publication. Statistics Netherlands uses figures from the first publication in accordance with the revision policy described above.

    Changes as of 17 February 2025: Added average purchase prices of the municipalities for the year 2024.

    When will new figures be published? New figures are published approximately one to three months after the period under review.

  9. House Price Prediction Dataset

    • kaggle.com
    zip
    Updated Sep 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zafar (2024). House Price Prediction Dataset [Dataset]. https://www.kaggle.com/datasets/zafarali27/house-price-prediction-dataset
    Explore at:
    zip(29372 bytes)Available download formats
    Dataset updated
    Sep 21, 2024
    Authors
    Zafar
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    House Price Prediction Dataset.

    The dataset contains 2000 rows of house-related data, representing various features that could influence house prices. Below, we discuss key aspects of the dataset, which include its structure, the choice of features, and potential use cases for analysis.

    1. Dataset Features

    The dataset is designed to capture essential attributes for predicting house prices, including:

    Area: Square footage of the house, which is generally one of the most important predictors of price. Bedrooms & Bathrooms: The number of rooms in a house significantly affects its value. Homes with more rooms tend to be priced higher. Floors: The number of floors in a house could indicate a larger, more luxurious home, potentially raising its price. Year Built: The age of the house can affect its condition and value. Newly built houses are generally more expensive than older ones. Location: Houses in desirable locations such as downtown or urban areas tend to be priced higher than those in suburban or rural areas. Condition: The current condition of the house is critical, as well-maintained houses (in 'Excellent' or 'Good' condition) will attract higher prices compared to houses in 'Fair' or 'Poor' condition. Garage: Availability of a garage can increase the price due to added convenience and space. Price: The target variable, representing the sale price of the house, used to train machine learning models to predict house prices based on the other features.

    2. Feature Distributions

    Area Distribution: The area of the houses in the dataset ranges from 500 to 5000 square feet, which allows analysis across different types of homes, from smaller apartments to larger luxury houses. Bedrooms and Bathrooms: The number of bedrooms varies from 1 to 5, and bathrooms from 1 to 4. This variance enables analysis of homes with different sizes and layouts. Floors: Houses in the dataset have between 1 and 3 floors. This feature could be useful for identifying the influence of multi-level homes on house prices. Year Built: The dataset contains houses built from 1900 to 2023, giving a wide range of house ages to analyze the effects of new vs. older construction. Location: There is a mix of urban, suburban, downtown, and rural locations. Urban and downtown homes may command higher prices due to proximity to amenities. Condition: Houses are labeled as 'Excellent', 'Good', 'Fair', or 'Poor'. This feature helps model the price differences based on the current state of the house. Price Distribution: Prices range between $50,000 and $1,000,000, offering a broad spectrum of property values. This range makes the dataset appropriate for predicting a wide variety of housing prices, from affordable homes to luxury properties.

    3. Correlation Between Features

    A key area of interest is the relationship between various features and house price: Area and Price: Typically, a strong positive correlation is expected between the size of the house (Area) and its price. Larger homes are likely to be more expensive. Location and Price: Location is another major factor. Houses in urban or downtown areas may show a higher price on average compared to suburban and rural locations. Condition and Price: The condition of the house should show a positive correlation with price. Houses in better condition should be priced higher, as they require less maintenance and repair. Year Built and Price: Newer houses might command a higher price due to better construction standards, modern amenities, and less wear-and-tear, but some older homes in good condition may retain historical value. Garage and Price: A house with a garage may be more expensive than one without, as it provides extra storage or parking space.

    4. Potential Use Cases

    The dataset is well-suited for various machine learning and data analysis applications, including:

    House Price Prediction: Using regression techniques, this dataset can be used to build a model to predict house prices based on the available features. Feature Importance Analysis: By using techniques such as feature importance ranking, data scientists can determine which features (e.g., location, area, or condition) have the greatest impact on house prices. Clustering: Clustering techniques like k-means could help identify patterns in the data, such as grouping houses into segments based on their characteristics (e.g., luxury homes, affordable homes). Market Segmentation: The dataset can be used to perform segmentation by location, price range, or house type to analyze trends in specific sub-markets, like luxury vs. affordable housing. Time-Based Analysis: By studying how house prices vary with the year built or the age of the house, analysts can derive insights into the trends of older vs. newer homes.

    5. Limitations and ...

  10. US Cities Housing Market Data - Live Dataset

    • kaggle.com
    zip
    Updated Oct 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vincent Vaseghi (2025). US Cities Housing Market Data - Live Dataset [Dataset]. https://www.kaggle.com/datasets/vincentvaseghi/us-cities-housing-market-data
    Explore at:
    zip(984945960 bytes)Available download formats
    Dataset updated
    Oct 12, 2025
    Authors
    Vincent Vaseghi
    Area covered
    United States
    Description

    Redfin is a real estate brokerage and publishes the US housing market data on a regular basis. Using this dataset, you can analyze and visualize housing market data for US cities. Timeline: Starting from February 2012 until the present time (Data is refreshed and updated on a monthly basis)

    The dataset has the following columns: - period_begin - period_end - period_duration
    - region_type
    - region_type_id - table_id - is_seasonally_adjusted. (indicates if prices are seasonally adjusted; f represents False) - region - city - state - state_code - property_type - property_type_id - median_sale_price
    - median_sale_price_mom (median sale price changes month over month) - median_sale_price_yoy (median sale price changes year over year) - median_list_price
    - median_list_price_mom (median list price changes month over month) - median_list_price_yoy (median list price changes year over year) - median_ppsf (median sale price per square foot) - median_ppsf_mom (median sale price per square foot changes month over month) - median_ppsf_yoy (median sale price per square foot changes year over year) - median_list_ppsf (median list price per square foot) - median_list_ppsf_mom (median list price per square foot changes month over month) - median_list_ppsf_yoy. (median list price per square foot changes year over year) - homes_sold (number of homes sold) - homes_sold_mom (number of homes sold month over month) - homes_sold_yoy (number of homes sold year over year) - pending_sales
    - pending_sales_mom
    - pending_sales_yoy
    - new_listings - new_listings_mom
    - new_listings_yoy
    - inventory - inventory_mom
    - inventory_yoy
    - months_of_supply
    - months_of_supply_mom - months_of_supply_yoy
    - median_dom (median days on market until property is sold) - median_dom_mom (median days on market changes month over month) - median_dom_yoy (median days on market changes year over year) - avg_sale_to_list (average sale price to list price ratio) - avg_sale_to_list_mom (average sale price to list price ratio changes month over month) - avg_sale_to_list_yoy (average sale price to list price ratio changes year over year) - sold_above_list
    - sold_above_list_mom - sold_above_list_yoy - price_drops - price_drops_mom - price_drops_yoy - off_market_in_two_weeks (number of properties that will be taken off the market within 2 weeks) - off_market_in_two_weeks_mom (changes in number of properties that will be taken off the market within 2 weeks, month over month) - off_market_in_two_weeks_yoy (changes in number of properties that will be taken off the market within 2 weeks, year over year) - parent_metro_region - parent_metro_region_metro_code - last_updated

    Filetype: gzip (gz) Support for gzip files in Python: https://docs.python.org/3/library/gzip.html

    Data Source & Credit: Redfin.com

  11. New York Housing Market

    • kaggle.com
    Updated Jan 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nidula Elgiriyewithana ⚡ (2024). New York Housing Market [Dataset]. http://doi.org/10.34740/kaggle/dsv/7351086
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 6, 2024
    Dataset provided by
    Kaggle
    Authors
    Nidula Elgiriyewithana ⚡
    Area covered
    New York
    Description

    Description:

    This dataset contains prices of New York houses, providing valuable insights into the real estate market in the region. It includes information such as broker titles, house types, prices, number of bedrooms and bathrooms, property square footage, addresses, state, administrative and local areas, street names, and geographical coordinates.

    DOI

    Key Features:

    • BROKERTITLE: Title of the broker
    • TYPE: Type of the house
    • PRICE: Price of the house
    • BEDS: Number of bedrooms
    • BATH: Number of bathrooms
    • PROPERTYSQFT: Square footage of the property
    • ADDRESS: Full address of the house
    • STATE: State of the house
    • MAIN_ADDRESS: Main address information
    • ADMINISTRATIVE_AREA_LEVEL_2: Administrative area level 2 information
    • LOCALITY: Locality information
    • SUBLOCALITY: Sublocality information
    • STREET_NAME: Street name
    • LONG_NAME: Long name
    • FORMATTED_ADDRESS: Formatted address
    • LATITUDE: Latitude coordinate of the house
    • LONGITUDE: Longitude coordinate of the house

    Potential Use Cases:

    • Price analysis: Analyze the distribution of house prices to understand market trends and identify potential investment opportunities.
    • Property size analysis: Explore the relationship between property square footage and prices to assess the value of different-sized houses.
    • Location-based analysis: Investigate geographical patterns to identify areas with higher or lower property prices.
    • Bedroom and bathroom trends: Analyze the impact of the number of bedrooms and bathrooms on house prices.
    • Broker performance analysis: Evaluate the influence of different brokers on the pricing of houses.

    If you find this dataset useful, your support through an upvote would be greatly appreciated ❤️🙂 Thank you

  12. F

    Real Residential Property Prices for United States

    • fred.stlouisfed.org
    json
    Updated Oct 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Real Residential Property Prices for United States [Dataset]. https://fred.stlouisfed.org/series/QUSR628BIS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Oct 30, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for Real Residential Property Prices for United States (QUSR628BIS) from Q1 1970 to Q2 2025 about residential, HPI, housing, real, price index, indexes, price, and USA.

  13. D

    Annual New Property Prices

    • find.data.gov.scot
    • cloud.csiss.gmu.edu
    • +3more
    csv
    Updated Sep 9, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DHLGH (uSmart) (2016). Annual New Property Prices [Dataset]. https://find.data.gov.scot/datasets/38721
    Explore at:
    csv(0.0041 MB)Available download formats
    Dataset updated
    Sep 9, 2016
    Dataset provided by
    DHLGH (uSmart)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    National
    Description

    Prior to 1974 the data was based on surveys of existing house sales in Dublin carried out by the Valuation Office on behalf of the D. O. E. Since 1974 the data has been based on information supplied by all lending agencies on the average price of mortgage financed existing house transactions. Average house prices are derived from data supplied by the mortgage lending agencies on loans approved by them rather than loans paid. In comparing house prices figures from one period to another, account should be taken of the fact that changes in the mix of houses (incl apartments) will affect the average figures. Data for 1969/1970 is not available for Cork, Limerick, Galway, Waterford and Other areas The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change. National and Other Areas figure changed for 2015 on 27/6/15 as revised data received from Local Authorities Prices includes houses and apartments measured in EUR

  14. Australian Housing Prices

    • kaggle.com
    zip
    Updated Nov 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Australian Housing Prices [Dataset]. https://www.kaggle.com/datasets/thedevastator/australian-housing-data-1000-properties-sampled
    Explore at:
    zip(51778 bytes)Available download formats
    Dataset updated
    Nov 28, 2022
    Authors
    The Devastator
    Area covered
    Australia
    Description

    Australian Housing Prices

    Location, Size, Price, Etc

    By Jeff [source]

    About this dataset

    This dataset contains information on 1000 properties in Australia, including location, size, price, and other details

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    If you're looking for a dataset on Australian housing data, this is a great option. This dataset contains information on over 1000 properties in Australia, including location, size, price, and other details. With this data, you can answer questions like What is the average price of a home in Australia?, What are the most popular type of homes in Australia?, and more

    Research Ideas

    • This dataset can be used to predict hosing prices in Australia.
    • This dataset can be used to find relationships between housing prices and location.
    • This dataset can be used to find relationships between housing prices and features such as size, number of bedrooms, and number of bathrooms

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    See the dataset description for more information.

    Columns

    File: RealEstateAU_1000_Samples.csv | Column name | Description | |:--------------------|:---------------------------------------------------------------------------------------| | breadcrumb | A breadcrumb is a text trail that shows the user's location within a website. (String) | | category_name | The name of the category that the listing belongs to. (String) | | property_type | The type of property being listed. (String) | | building_size | The size of the property's building, in square meters. (Numeric) | | land_size | The size of the property's land, in square meters. (Numeric) | | preferred_size | The preferred size of the property, in square meters. (Numeric) | | open_date | The date that the property was first listed for sale. (Date) | | listing_agency | The agency that is listing the property. (String) | | price | The listing price of the property. (Numeric) | | location_number | The number that corresponds to the property's location. (Numeric) | | location_type | The type of location that the property is in. (String) | | location_name | The name of the location that the property is in. (String) | | address | The property's address. (String) | | address_1 | The first line of the property's address. (String) | | city | The city that the property is located in. (String) | | state | The state that the property is located in. (String) | | zip_code | The zip code that the property is located in. (String) | | phone | The listing agent's phone number. (String) | | latitude | The property's latitude. (Numeric) | | longitude | The property's longitude. (Numeric) | | product_depth | The depth of the product. (Numeric) | | bedroom_count | The number of bedrooms in the property. (Numeric) | | bathroom_count | The number of bathrooms in the property. (Numeric) | | parking_count | The number of parking spaces in the property. (Numeric) | | RunDate | The date that the listing was last updated. (Date) |

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Jeff.

  15. w

    UK House Price Index: data downloads December 2024

    • gov.uk
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HM Land Registry (2025). UK House Price Index: data downloads December 2024 [Dataset]. https://www.gov.uk/government/statistical-data-sets/uk-house-price-index-data-downloads-december-2024?utm_medium=GOV.UK&utm_source=summary&utm_campaign=UK_HPI_Summary&utm_term=9.30_19_02_25&utm_content=download_data
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    GOV.UK
    Authors
    HM Land Registry
    Area covered
    United Kingdom
    Description

    The UK House Price Index is a National Statistic.

    Create your report

    Download the full UK House Price Index data below, or use our tool to https://landregistry.data.gov.uk/app/ukhpi?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=tool&utm_term=9.30_19_02_25" class="govuk-link">create your own bespoke reports.

    Download the data

    Datasets are available as CSV files. Find out about republishing and making use of the data.

    Full file

    This file includes a derived back series for the new UK HPI. Under the UK HPI, data is available from 1995 for England and Wales, 2004 for Scotland and 2005 for Northern Ireland. A longer back series has been derived by using the historic path of the Office for National Statistics HPI to construct a series back to 1968.

    Download the full UK HPI background file:

    Individual attributes files

    If you are interested in a specific attribute, we have separated them into these CSV files:

  16. Forecast house price growth in the UK 2025-2029

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Forecast house price growth in the UK 2025-2029 [Dataset]. https://www.statista.com/statistics/376079/uk-house-prices-forecast/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United Kingdom
    Description

    After a period of rapid increase, house price growth in the UK has moderated. In 2025, house prices are forecast to increase by ****percent. Between 2025 and 2029, the average house price growth is projected at *** percent. According to the source, home building is expected to increase slightly in this period, fueling home buying. On the other hand, higher borrowing costs despite recent easing of mortgage rates and affordability challenges may continue to suppress transaction activity. Historical house price growth in the UK House prices rose steadily between 2015 and 2020, despite minor fluctuations. In the following two years, prices soared, leading to the house price index jumping by about 20 percent. As the market stood in April 2025, the average price for a home stood at approximately ******* British pounds. Rents are expected to continue to grow According to another forecast, the prime residential market is also expected to see rental prices grow in the next five years. Growth is forecast to be stronger in 2025 and slow slightly until 2029. The rental market in London is expected to follow a similar trend, with Outer London slightly outperforming Central London.

  17. Existing own homes; purchase price indices by region 2015=100 1995-2023

    • cbs.nl
    • data.overheid.nl
    xml
    Updated Jun 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centraal Bureau voor de Statistiek (2024). Existing own homes; purchase price indices by region 2015=100 1995-2023 [Dataset]. https://www.cbs.nl/en-gb/figures/detail/83913ENG
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Jun 6, 2024
    Dataset authored and provided by
    Centraal Bureau voor de Statistiek
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Netherlands
    Description

    The figures of existing own homes are related to the stock of existing own homes. Besides the price indices, figures are also published about the numbers sold, the average purchase price, and the total sum of the purchase prices of the sold dwellings. The House Price Index of existing own homes is based on a complete registration of sales of dwellings by the Dutch Land Registry Office (Kadaster) and the (WOZ) value of all dwellings in the Netherlands. Indices may fluctuate, for example if a small number of dwellings are sold in a certain region. In such cases we recommended using the long-term figures. The average purchase price of existing own homes may differ from the price index of existing own homes. The change in the average purchase price, however, is not an indicator for price developments of existing own homes.

    Data available from: 1st quarter 1995 to 4th quarter 2023

    Status of the figures: The figures in this table are immediately definitive. The calculation of these figures is based on the number of notary transactions that are registered every month by the Dutch Land Registry Office (Kadaster). A revision of the figures is exceptional and occurs specifically if an error significantly exceeds the acceptable statistical margins. The numbers of existing owner-occupied sold homes can be recalculated by Kadaster at a later date. These figures are usually the same as the publication on Statline, but in some periods they differ. Kadaster calculates the average purchasing prices based on the most recent data. These may have changed since the first publication. Statistics Netherlands uses figures from the first publication in accordance with the revision policy described above.

    Changes as of 6 June 2024: This table has been discontinued. This table is followed by Existing own homes; purchase prices, price index 2020=100, region. See paragraph 3.

    From reporting period 2024 quarter 1, the base year of the House Price Index for Existing Dwellings (PBK) will be adjusted from 2015 to 2020. In April 2024, the first figures of this new series will be released. These figures will be available in a new StatLine table. The old series (base year = 2015) can still be consulted via StatLine, but will no longer be updated.

  18. U

    United States House Prices Growth

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/united-states/house-prices-growth
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2022 - Sep 1, 2025
    Area covered
    United States
    Description

    Key information about House Prices Growth

    • US house prices grew 3.3% YoY in Sep 2025, following an increase of 4.1% YoY in the previous quarter.
    • YoY growth data is updated quarterly, available from Mar 1992 to Sep 2025, with an average growth rate of -12.4%.
    • House price data reached an all-time high of 17.7% in Sep 2021 and a record low of -12.4% in Dec 2008.

    CEIC calculates House Prices Growth from quarterly House Price Index. Federal Housing Finance Agency provides House Price Index with base January 1991=100.

  19. Average sales price of new homes sold in the U.S. 1965-2024

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average sales price of new homes sold in the U.S. 1965-2024 [Dataset]. https://www.statista.com/statistics/240991/average-sales-prices-of-new-homes-sold-in-the-us/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The average sales price of new homes in the United States experienced a slight decrease in 2024, dropping to 512,2000 U.S. dollars from the peak of 521,500 U.S. dollars in 2022. This decline came after years of substantial price increases, with the average price surpassing 400,000 U.S. dollars for the first time in 2021. The recent cooling in the housing market reflects broader economic trends and changing consumer sentiment towards homeownership. Factors influencing home prices and affordability The rapid rise in home prices over the past few years has been driven by several factors, including historically low mortgage rates and increased demand during the COVID-19 pandemic. However, the market has since slowed down, with the number of home sales declining by over two million between 2021 and 2023. This decline can be attributed to rising mortgage rates and decreased affordability. The Housing Affordability Index hit a record low of 98.1 in 2023, indicating that the median-income family could no longer afford a median-priced home. Future outlook for the housing market Despite the recent cooling, experts forecast a potential recovery in the coming years. The Freddie Mac House Price Index showed a growth of 6.5 percent in 2023, which is still above the long-term average of 4.4 percent since 1990. However, homebuyer sentiment remains low across all age groups, with people aged 45 to 64 expressing the most pessimistic outlook. The median sales price of existing homes is expected to increase slightly until 2025, suggesting that affordability challenges may persist in the near future.

  20. Annual home price appreciation in the U.S. 2025, by state

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual home price appreciation in the U.S. 2025, by state [Dataset]. https://www.statista.com/statistics/1240802/annual-home-price-appreciation-by-state-usa/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    House prices grew year-on-year in most states in the U.S. in the first quarter of 2025. Hawaii was the only exception, with a decline of **** percent. The annual appreciation for single-family housing in the U.S. was **** percent, while in Rhode Island—the state where homes appreciated the most—the increase was ******percent. How have home prices developed in recent years? House price growth in the U.S. has been going strong for years. In 2025, the median sales price of a single-family home exceeded ******* U.S. dollars, up from ******* U.S. dollars five years ago. One of the factors driving house prices was the cost of credit. The record-low federal funds effective rate allowed mortgage lenders to set mortgage interest rates as low as *** percent. With interest rates on the rise, home buying has also slowed, causing fluctuations in house prices. Why are house prices growing? Many markets in the U.S. are overheated because supply has not been able to keep up with demand. How many homes enter the housing market depends on the construction output, whereas the availability of existing homes for purchase depends on many other factors, such as the willingness of owners to sell. Furthermore, growing investor appetite in the housing sector means that prospective homebuyers have some extra competition to worry about. In certain metros, for example, the share of homes bought by investors exceeded ** percent in 2025.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
HM Land Registry (2025). Price Paid Data [Dataset]. https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads
Organization logo

Price Paid Data

Explore at:
76 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Dec 1, 2025
Dataset provided by
GOV.UKhttp://gov.uk/
Authors
HM Land Registry
Description

Our Price Paid Data includes information on all property sales in England and Wales that are sold for value and are lodged with us for registration.

Get up to date with the permitted use of our Price Paid Data:
check what to consider when using or publishing our Price Paid Data

Using or publishing our Price Paid Data

If you use or publish our Price Paid Data, you must add the following attribution statement:

Contains HM Land Registry data © Crown copyright and database right 2021. This data is licensed under the Open Government Licence v3.0.

Price Paid Data is released under the http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/">Open Government Licence (OGL). You need to make sure you understand the terms of the OGL before using the data.

Under the OGL, HM Land Registry permits you to use the Price Paid Data for commercial or non-commercial purposes. However, OGL does not cover the use of third party rights, which we are not authorised to license.

Price Paid Data contains address data processed against Ordnance Survey’s AddressBase Premium product, which incorporates Royal Mail’s PAF® database (Address Data). Royal Mail and Ordnance Survey permit your use of Address Data in the Price Paid Data:

  • for personal and/or non-commercial use
  • to display for the purpose of providing residential property price information services

If you want to use the Address Data in any other way, you must contact Royal Mail. Email address.management@royalmail.com.

Address data

The following fields comprise the address data included in Price Paid Data:

  • Postcode
  • PAON Primary Addressable Object Name (typically the house number or name)
  • SAON Secondary Addressable Object Name – if there is a sub-building, for example, the building is divided into flats, there will be a SAON
  • Street
  • Locality
  • Town/City
  • District
  • County

October 2025 data (current month)

The October 2025 release includes:

  • the first release of data for October 2025 (transactions received from the first to the last day of the month)
  • updates to earlier data releases
  • Standard Price Paid Data (SPPD) and Additional Price Paid Data (APPD) transactions

As we will be adding to the October data in future releases, we would not recommend using it in isolation as an indication of market or HM Land Registry activity. When the full dataset is viewed alongside the data we’ve previously published, it adds to the overall picture of market activity.

Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.

Google Chrome (Chrome 88 onwards) is blocking downloads of our Price Paid Data. Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.

We update the data on the 20th working day of each month. You can download the:

Single file

These include standard and additional price paid data transactions received at HM Land Registry from 1 January 1995 to the most current monthly data.

Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.

The data is updated monthly and the average size of this file is 3.7 GB, you can download:

Search
Clear search
Close search
Google apps
Main menu