100+ datasets found
  1. Fused Image dataset for convolutional neural Network-based crack Detection...

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Apr 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shanglian Zhou; Shanglian Zhou; Carlos Canchila; Carlos Canchila; Wei Song; Wei Song (2023). Fused Image dataset for convolutional neural Network-based crack Detection (FIND) [Dataset]. http://doi.org/10.5281/zenodo.6383044
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 20, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Shanglian Zhou; Shanglian Zhou; Carlos Canchila; Carlos Canchila; Wei Song; Wei Song
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The “Fused Image dataset for convolutional neural Network-based crack Detection” (FIND) is a large-scale image dataset with pixel-level ground truth crack data for deep learning-based crack segmentation analysis. It features four types of image data including raw intensity image, raw range (i.e., elevation) image, filtered range image, and fused raw image. The FIND dataset consists of 2500 image patches (dimension: 256x256 pixels) and their ground truth crack maps for each of the four data types.

    The images contained in this dataset were collected from multiple bridge decks and roadways under real-world conditions. A laser scanning device was adopted for data acquisition such that the captured raw intensity and raw range images have pixel-to-pixel location correspondence (i.e., spatial co-registration feature). The filtered range data were generated by applying frequency domain filtering to eliminate image disturbances (e.g., surface variations, and grooved patterns) from the raw range data [1]. The fused image data were obtained by combining the raw range and raw intensity data to achieve cross-domain feature correlation [2,3]. Please refer to [4] for a comprehensive benchmark study performed using the FIND dataset to investigate the impact from different types of image data on deep convolutional neural network (DCNN) performance.

    If you share or use this dataset, please cite [4] and [5] in any relevant documentation.

    In addition, an image dataset for crack classification has also been published at [6].

    References:

    [1] Shanglian Zhou, & Wei Song. (2020). Robust Image-Based Surface Crack Detection Using Range Data. Journal of Computing in Civil Engineering, 34(2), 04019054. https://doi.org/10.1061/(asce)cp.1943-5487.0000873

    [2] Shanglian Zhou, & Wei Song. (2021). Crack segmentation through deep convolutional neural networks and heterogeneous image fusion. Automation in Construction, 125. https://doi.org/10.1016/j.autcon.2021.103605

    [3] Shanglian Zhou, & Wei Song. (2020). Deep learning–based roadway crack classification with heterogeneous image data fusion. Structural Health Monitoring, 20(3), 1274-1293. https://doi.org/10.1177/1475921720948434

    [4] Shanglian Zhou, Carlos Canchila, & Wei Song. (2023). Deep learning-based crack segmentation for civil infrastructure: data types, architectures, and benchmarked performance. Automation in Construction, 146. https://doi.org/10.1016/j.autcon.2022.104678

    [5] (This dataset) Shanglian Zhou, Carlos Canchila, & Wei Song. (2022). Fused Image dataset for convolutional neural Network-based crack Detection (FIND) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6383044

    [6] Wei Song, & Shanglian Zhou. (2020). Laser-scanned roadway range image dataset (LRRD). Laser-scanned Range Image Dataset from Asphalt and Concrete Roadways for DCNN-based Crack Classification, DesignSafe-CI. https://doi.org/10.17603/ds2-bzv3-nc78

  2. N

    South Range, MI Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). South Range, MI Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e200fba9-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Range, Michigan
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of South Range by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for South Range. The dataset can be utilized to understand the population distribution of South Range by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in South Range. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for South Range.

    Key observations

    Largest age group (population): Male # 20-24 years (49) | Female # 20-24 years (50). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the South Range population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the South Range is shown in the following column.
    • Population (Female): The female population in the South Range is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in South Range for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for South Range Population by Gender. You can refer the same here

  3. Z

    ANN development + final testing datasets

    • data.niaid.nih.gov
    • resodate.org
    • +1more
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Authors (2020). ANN development + final testing datasets [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_1445865
    Explore at:
    Dataset updated
    Jan 24, 2020
    Authors
    Authors
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    File name definitions:

    '...v_50_175_250_300...' - dataset for velocity ranges [50, 175] + [250, 300] m/s

    '...v_175_250...' - dataset for velocity range [175, 250] m/s

    'ANNdevelop...' - used to perform 9 parametric sub-analyses where, in each one, many ANNs are developed (trained, validated and tested) and the one yielding the best results is selected

    'ANNtest...' - used to test the best ANN from each aforementioned parametric sub-analysis, aiming to find the best ANN model; this dataset includes the 'ANNdevelop...' counterpart

    Where to find the input (independent) and target (dependent) variable values for each dataset/excel ?

    input values in 'IN' sheet

    target values in 'TARGET' sheet

    Where to find the results from the best ANN model (for each target/output variable and each velocity range)?

    open the corresponding excel file and the expected (target) vs ANN (output) results are written in 'TARGET vs OUTPUT' sheet

    Check reference below (to be added when the paper is published)

    https://www.researchgate.net/publication/328849817_11_Neural_Networks_-_Max_Disp_-_Railway_Beams

  4. Point Cloud Mnist 2D

    • kaggle.com
    zip
    Updated Feb 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cristian Garcia (2020). Point Cloud Mnist 2D [Dataset]. https://www.kaggle.com/datasets/cristiangarcia/pointcloudmnist2d/discussion
    Explore at:
    zip(34176926 bytes)Available download formats
    Dataset updated
    Feb 12, 2020
    Authors
    Cristian Garcia
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Point Cloud MNIST 2D

    This is a simple dataset for getting started with Machine Learning for point cloud data. It take the original MNIST and converts each of the non-zero pixels into points in a 2D space. The idea is to classify each collection of point (rather than images) to the same label as in the MNIST. The source for generating this dataset can be found in this repository: cgarciae/point-cloud-mnist-2D

    Format

    There are 2 files: train.csv and test.csv. Each file has the columns

    label,x0,y0,v0,x1,y1,v1,...,x350,y350,v350

    where

    • label contains the target label in the range [0, 9]
    • x{i} contain the x position of the pixel/point as viewed in a Cartesian plane in the range [-1, 27].
    • y{i} contain the y position of the pixel/point as viewed in a Cartesian plane in the range [-1, 27].
    • v{i} contain the value of the pixel in the range [-1, 255].

    Padding

    The maximum number of point found on a image was 351, images with less points where padded to this length using the following values:

    • x{i} = -1
    • y{i} = -1
    • v{i} = -1

    Subsamples

    To make the challenge more interesting you can also try to solve the problem using a subset of points, e.g. the first N. Here are some visualizations of the dataset using different amounts of points:

    50

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F158444%2Fbbf5393884480e3d24772344e079c898%2F50.png?generation=1579911143877077&alt=media" alt="50">

    100

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F158444%2F5a83f6f5f7c5791e3c1c8e9eba2d052b%2F100.png?generation=1579911238988368&alt=media" alt="100">

    200

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F158444%2F202098ed0da35c41ae45dfc32e865972%2F200.png?generation=1579911264286372&alt=media" alt="200">

    351

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F158444%2F5c733566f8d689c5e0fd300440d04da2%2Fmax.png?generation=1579911289750248&alt=media" alt="">

    Distribution

    This histogram of the distribution the number of points per image in the dataset can give you a general idea of how difficult each variation can be.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F158444%2F9eb3b463f77a887dae83a7af0eb08c7d%2Flengths.png?generation=1579911380397412&alt=media" alt="">

  5. M

    Minnesota Pheasant Range

    • gisdata.mn.gov
    • data.wu.ac.at
    fgdb, gpkg, html +2
    Updated Sep 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2022). Minnesota Pheasant Range [Dataset]. https://gisdata.mn.gov/dataset/env-pheasant-range-minnesota
    Explore at:
    fgdb, jpeg, gpkg, html, shpAvailable download formats
    Dataset updated
    Sep 1, 2022
    Dataset provided by
    Natural Resources Department
    Area covered
    Minnesota
    Description

    This dataset delineates the spatial range of wild pheasant populations in Minnesota as of 2002 by dividing the MN state boundary into 2 units: pheasant range and non-range.

  6. f

    Aligning marine species range data to better serve science and conservation

    • plos.figshare.com
    tiff
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Casey C. O'Hara; Jamie C. Afflerbach; Courtney Scarborough; Kristin Kaschner; Benjamin S. Halpern (2023). Aligning marine species range data to better serve science and conservation [Dataset]. http://doi.org/10.1371/journal.pone.0175739
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Casey C. O'Hara; Jamie C. Afflerbach; Courtney Scarborough; Kristin Kaschner; Benjamin S. Halpern
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Species distribution data provide the foundation for a wide range of ecological research studies and conservation management decisions. Two major efforts to provide marine species distributions at a global scale are the International Union for Conservation of Nature (IUCN), which provides expert-generated range maps that outline the complete extent of a species' distribution; and AquaMaps, which provides model-generated species distribution maps that predict areas occupied by the species. Together these databases represent 24,586 species (93.1% within AquaMaps, 16.4% within IUCN), with only 2,330 shared species. Differences in intent and methodology can result in very different predictions of species distributions, which bear important implications for scientists and decision makers who rely upon these datasets when conducting research or informing conservation policy and management actions. Comparing distributions for the small subset of species with maps in both datasets, we found that AquaMaps and IUCN range maps show strong agreement for many well-studied species, but our analysis highlights several key examples in which introduced errors drive differences in predicted species ranges. In particular, we find that IUCN maps greatly overpredict coral presence into unsuitably deep waters, and we show that some AquaMaps computer-generated default maps (only 5.7% of which have been reviewed by experts) can produce odd discontinuities at the extremes of a species’ predicted range. We illustrate the scientific and management implications of these tradeoffs by repeating a global analysis of gaps in coverage of marine protected areas, and find significantly different results depending on how the two datasets are used. By highlighting tradeoffs between the two datasets, we hope to encourage increased collaboration between taxa experts and large scale species distribution modeling efforts to further improve these foundational datasets, helping to better inform science and policy recommendations around understanding, managing, and protecting marine biodiversity.

  7. ECMWF ERA5: surface level analysis parameter data

    • catalogue.ceda.ac.uk
    • data-search.nerc.ac.uk
    Updated Jul 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (ECMWF) (2025). ECMWF ERA5: surface level analysis parameter data [Dataset]. https://catalogue.ceda.ac.uk/uuid/c1145ccc4b6d4310a4fc7cce61041b63
    Explore at:
    Dataset updated
    Jul 17, 2025
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    Authors
    European Centre for Medium-Range Weather Forecasts (ECMWF)
    License

    https://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdf

    Area covered
    Earth
    Variables measured
    cloud_area_fraction, sea_ice_area_fraction, air_pressure_at_sea_level, lwe_thickness_of_surface_snow_amount, lwe_thickness_of_atmosphere_mass_content_of_water_vapor
    Description

    This dataset contains ERA5 surface level analysis parameter data. ERA5 is the 5th generation reanalysis project from the European Centre for Medium-Range Weather Forecasts (ECWMF) - see linked documentation for further details. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record.

    Model level analysis and surface forecast data to complement this dataset are also available. Data from a 10 member ensemble, run at lower spatial and temporal resolution, were also produced to provide an uncertainty estimate for the output from the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation producing data in this dataset.

    The ERA5 global atmospheric reanalysis of the covers 1979 to 2 months behind the present month. This follows on from the ERA-15, ERA-40 rand ERA-interim re-analysis projects.

    An initial release of ERA5 data (ERA5t) is made roughly 5 days behind the present date. These will be subsequently reviewed ahead of being released by ECMWF as quality assured data within 3 months. CEDA holds a 6 month rolling copy of the latest ERA5t data. See related datasets linked to from this record. However, for the period 2000-2006 the initial ERA5 release was found to suffer from stratospheric temperature biases and so new runs to address this issue were performed resulting in the ERA5.1 release (see linked datasets). Note, though, that Simmons et al. 2020 (technical memo 859) report that "ERA5.1 is very close to ERA5 in the lower and middle troposphere." but users of data from this period should read the technical memo 859 for further details.

  8. h

    PPFT

    • huggingface.co
    Updated Jun 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Silin Meng (2024). PPFT [Dataset]. https://huggingface.co/datasets/SilinMeng0510/PPFT
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 23, 2024
    Authors
    Silin Meng
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    PPFT: Path Planning on Fifty x Thirty Our dataset consists of 100 manually selected 50 × 30 maps from a randomly generated collection, each with 10 different start and goal positions. Therefore, there are 1000 samples in total. Our data conform to the standard of search-based algorithm environments in a continuous space. Each map includes the following parameters:

    x range: The minimum and maximum x-coordinates of the environment boundary range as [x min, x max]. y range: The minimum and… See the full description on the dataset page: https://huggingface.co/datasets/SilinMeng0510/PPFT.

  9. N

    Grass Range, MT Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Grass Range, MT Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e1e392ff-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Grass Range, Montana
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Grass Range by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Grass Range. The dataset can be utilized to understand the population distribution of Grass Range by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Grass Range. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Grass Range.

    Key observations

    Largest age group (population): Male # 35-39 years (7) | Female # 70-74 years (36). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Grass Range population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Grass Range is shown in the following column.
    • Population (Female): The female population in the Grass Range is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Grass Range for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Grass Range Population by Gender. You can refer the same here

  10. ECMWF ERA5: ensemble means of surface level analysis parameter data

    • catalogue.ceda.ac.uk
    • data-search.nerc.ac.uk
    Updated Jul 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (ECMWF) (2025). ECMWF ERA5: ensemble means of surface level analysis parameter data [Dataset]. https://catalogue.ceda.ac.uk/uuid/d8021685264e43c7a0868396a5f582d0
    Explore at:
    Dataset updated
    Jul 7, 2025
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    Authors
    European Centre for Medium-Range Weather Forecasts (ECMWF)
    License

    https://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdf

    Area covered
    Earth
    Variables measured
    cloud_area_fraction, sea_ice_area_fraction, air_pressure_at_mean_sea_level, lwe_thickness_of_atmosphere_mass_content_of_water_vapor
    Description

    This dataset contains ERA5 surface level analysis parameter data ensemble means (see linked dataset for spreads). ERA5 is the 5th generation reanalysis project from the European Centre for Medium-Range Weather Forecasts (ECWMF) - see linked documentation for further details. The ensemble means and spreads are calculated from the ERA5 10 member ensemble, run at a reduced resolution compared with the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation, for which these data have been produced to provide an uncertainty estimate. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record.

    Note, ensemble standard deviation is often referred to as ensemble spread and is calculated as the standard deviation of the 10-members in the ensemble (i.e., including the control). It is not the sample standard deviation, and thus were calculated by dividing by 10 rather than 9 (N-1). See linked datasets for ensemble member and ensemble mean data.

    The ERA5 global atmospheric reanalysis of the covers 1979 to 2 months behind the present month. This follows on from the ERA-15, ERA-40 rand ERA-interim re-analysis projects.

    An initial release of ERA5 data (ERA5t) is made roughly 5 days behind the present date. These will be subsequently reviewed ahead of being released by ECMWF as quality assured data within 3 months. CEDA holds a 6 month rolling copy of the latest ERA5t data. See related datasets linked to from this record. However, for the period 2000-2006 the initial ERA5 release was found to suffer from stratospheric temperature biases and so new runs to address this issue were performed resulting in the ERA5.1 release (see linked datasets). Note, though, that Simmons et al. 2020 (technical memo 859) report that "ERA5.1 is very close to ERA5 in the lower and middle troposphere." but users of data from this period should read the technical memo 859 for further details.

  11. ECMWF ERA5t: ensemble spreads of surface level analysis parameter data

    • catalogue.ceda.ac.uk
    • data-search.nerc.ac.uk
    Updated Jul 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (ECMWF) (2025). ECMWF ERA5t: ensemble spreads of surface level analysis parameter data [Dataset]. https://catalogue.ceda.ac.uk/uuid/cda895d99f1d47b5b1a76aa63e73cf66
    Explore at:
    Dataset updated
    Jul 18, 2025
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    Authors
    European Centre for Medium-Range Weather Forecasts (ECMWF)
    License

    https://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdf

    Area covered
    Earth
    Variables measured
    cloud_area_fraction, sea_ice_area_fraction, air_pressure_at_mean_sea_level, lwe_thickness_of_atmosphere_mass_content_of_water_vapor
    Description

    This dataset contains ensemble spreads for the ERA5 initial release (ERA5t) surface level analysis parameter data ensemble means (see linked dataset). ERA5t is the European Centre for Medium-Range Weather Forecasts (ECWMF) ERA5 reanalysis project initial release available upto 5 days behind the present data. CEDA will maintain a 6 month rolling archive of these data with overlap to the verified ERA5 data - see linked datasets on this record. The ensemble means and spreads are calculated from the ERA5t 10 member ensemble, run at a reduced resolution compared with the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation, for which these data have been produced to provide an uncertainty estimate. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record.

    Note, ensemble standard deviation is often referred to as ensemble spread and is calculated as the standard deviation of the 10-members in the ensemble (i.e., including the control). It is not the sample standard deviation, and thus were calculated by dividing by 10 rather than 9 (N-1). See linked datasets for ensemble member and ensemble mean data.

    The ERA5 global atmospheric reanalysis of the covers 1979 to 2 months behind the present month. This follows on from the ERA-15, ERA-40 rand ERA-interim re-analysis projects. An initial release of ERA5 data (ERA5t) is made roughly 5 days behind the present date. These will be subsequently reviewed and, if required, amended before the full ERA5 release. CEDA holds a 6 month rolling copy of the latest ERA5t data. See related datasets linked to from this record.

  12. u

    Army Range Dugway Proving Grounds (DPG) Surface Meteorological Data

    • data.ucar.edu
    • ckanprod.data-commons.k8s.ucar.edu
    ascii
    Updated Oct 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Becky Ruttenberg (2025). Army Range Dugway Proving Grounds (DPG) Surface Meteorological Data [Dataset]. http://doi.org/10.26023/YW4S-Y70D-G513
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Oct 7, 2025
    Authors
    Becky Ruttenberg
    Time period covered
    May 26, 2004 - Oct 12, 2004
    Area covered
    Description

    The Four-Dimensional (4DWX) System is the product of seven years of R&D, sponsored by the US Army Test and Evaluation Command (ATEC) and by the Defense Threat Reduction Agency (DTRA). This dataset contains data from the Dugway Proving Grounds (DPG) in Utah. The DPG site 1 reports every 5 minutes; the other stations all report for 15 minutes. For more information, see www.4dwx.org.

  13. NOAA/WDS Paleoclimatology - Heyerdahl fire data from Bear River Range - IMPD...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact); NOAA World Data Service for Paleoclimatology (Point of Contact) (2024). NOAA/WDS Paleoclimatology - Heyerdahl fire data from Bear River Range - IMPD USWCH001 [Dataset]. https://catalog.data.gov/dataset/noaa-wds-paleoclimatology-heyerdahl-fire-data-from-bear-river-range-impd-uswch001
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Area covered
    Bear River Mountains
    Description

    This archived Paleoclimatology Study is available from the NOAA National Centers for Environmental Information (NCEI), under the World Data Service (WDS) for Paleoclimatology. The associated NCEI study type is Fire. The data include parameters of fire history|tree ring with a geographic location of Utah, United States Of America. The time period coverage is from 271 to -55 in calendar years before present (BP). See metadata information for parameter and study location details. Please cite this study when using the data.

  14. Data from: Machine Learning and Deep Learning Techniques for Colocated MIMO...

    • figshare.com
    bin
    Updated Mar 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alessandro Davoli; Giorgio Guerzoni; Giorgio Matteo Vitetta (2025). Machine Learning and Deep Learning Techniques for Colocated MIMO Radars: A Tutorial Overview [Dataset]. http://doi.org/10.6084/m9.figshare.28574234.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    Mar 11, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Alessandro Davoli; Giorgio Guerzoni; Giorgio Matteo Vitetta
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Last update: February 2021.The dataset folder includes both raw and post-processed radar data used for training and testing the networks proposed in Sect. VIII of the article “Machine Learning and Deep Learning Techniques for Colocated MIMO Radars: A Tutorial Overview”.The folder Human Activity Classification contains“Raw” folder where 150 files acquired with our FMCW radar sensor are given inside the “doppler_dataset” zip folder; they are divided in 50 for walking, 50 for jumping and 50 for running;“Post_process” divided in- “Machine Learning” folder including “dataset_ML_doppler_real_activities.mat”; this dataset has been used for training and testing the SVM, K-NN and Adaboost described in Sect. VIII-A).- The 150x4 matrix “X_meas” including the features described by eqs. (227)-(234) and the 150x1 vector of char “labels_py” containing the associated labels.- “Deep Learning” folder containing “dataset_DL_doppler_real_activities.mat”; this dataset is composed by 150 structs of data, where each of them, associated to a specific activity, includes:- The label associated to the considered activity,- The overall range variations from the beginning to the end of the motion “delta_R”;- The Range-Doppler map “RD_map”;- The normalized spectrogram “SP_Norm”;- The Cadence Velocity Diagram “CVD”;- The period of the spectrogram “per”;- The peaks associated to the greatest three cadence frequencies in “peaks_cad”;- The three strongest cadence frequencies and their normalized version in “cad_freqs” and “cad_freqs_norm”;- The strongest cadence frequency “c1”;- The three velocity profiles associated to the three strongest cadence frequencies “matr_vex”.The spectrogram images (SP_Norm) contained in this dataset were used for training and testing the CNN in Sect. VIII-A).The folder Obstacle Detection contains“Raw” folder where raw data acquired with our radar system and TOF camera in the presence of a multi target or single target scenario are given inside the “obst_detect_Raw_mat” zip folder. It’s important to note that each radar frame and each TOF camera image have their own time stamp, but since they come from different sensor have to be synchronized.“Post_process” divided in- “Neural Net” folder containing “inputs_bis_1.mat” and “t_d_1.mat”, where- “inputs_bis_1.mat” contains the vectors of features of size 32x1, used for training and testing the feed-forward neural network described in Sect. VIII-B) (see eqs. (243)-(251)),- “t_d_1.mat” contains the associated 2x1 vectors of labels (see eq. (235)).- “Yolo v2” folder containing the folder “Dataset_YOLO” and the table “obj_dataset_tab”, where- “Dataset_YOLO_v2” contains (inside the sub-folder “obj_dataset”) the Range-Azimuth maps used for training the YOLO v2 network (see eqs. (257)-(258) and Fig. 30);- “obj_dataset_tab” contains the path, the bounding box and the label associated to the Range-Azimuth maps (see eq. (256)-(266)).Cite as: A. Davoli, G. Guerzoni and G. M. Vitetta, "Machine Learning and Deep Learning Techniques for Colocated MIMO Radars: A Tutorial Overview," in IEEE Access, vol. 9, pp. 33704-33755, 2021, doi: 10.1109/ACCESS.2021.3061424.

  15. d

    New Mexico Mountain Ranges

    • catalog.data.gov
    • gstore.unm.edu
    • +3more
    Updated Dec 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (Point of Contact) (2020). New Mexico Mountain Ranges [Dataset]. https://catalog.data.gov/dataset/new-mexico-mountain-ranges
    Explore at:
    Dataset updated
    Dec 2, 2020
    Dataset provided by
    Earth Data Analysis Center (Point of Contact)
    Area covered
    New Mexico
    Description

    The Geographic Names Information System (GNIS) actively seeks data from and partnerships with Government agencies at all levels and other interested organizations. The GNIS is the Federal standard for geographic nomenclature. The U.S. Geological Survey developed the GNIS for the U.S. Board on Geographic Names, a Federal inter-agency body chartered by public law to maintain uniform feature name usage throughout the Government and to promulgate standard names to the public. The GNIS is the official repository of domestic geographic names data; the official vehicle for geographic names use by all departments of the Federal Government; and the source for applying geographic names to Federal electronic and printed products of all types. See http://geonames.usgs.gov for additional information.

  16. Milky Way Molecular Clouds from CO Measurements - Dataset - NASA Open Data...

    • data.nasa.gov
    Updated Apr 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Milky Way Molecular Clouds from CO Measurements - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/milky-way-molecular-clouds-from-co-measurements
    Explore at:
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    This study presents a catalog of 8107 molecular clouds that covers the entire Galactic plane and includes 98% of the 12CO emission observed within b +/- 5 deg. The catalog was produced using a hierarchical cluster identification method applied to the result of a Gaussian decomposition of the Dame+ (2001ApJ...547..792D) data. The total H2 mass in the catalog is 1.2 x 109 Msun, in agreement with previous estimates. The authors find that 30% of the sight lines intersect only a single cloud, with another 25% intersecting only two clouds. The most probable cloud size is R~30pc. In contrast with the general idea, the authors find a rather large range of values of surface densities, Sigma = 2 to 300 Msun/pc2, and a systematic decrease with increasing Galactic radius, Rgal. The cloud velocity dispersion and the normalization sigma0 = sigmav / R1/2 both decrease systematically with Rgal. When studied over the whole Galactic disk, there is a large dispersion in the line width-size relation and a significantly better correlation between sigmav and SigmaR. The normalization of this correlation is constant to better than a factor of two for Rgal < 20kpc. This relation is used to disentangle the ambiguity between near and far kinematic distances. The authors report a strong variation of the turbulent energy injection rate. In the outer Galaxy it may be maintained by accretion through the disk and/or onto the clouds, but neither source can drive the 100 times higher cloud-averaged injection rate in the inner Galaxy. The data set used in this catalog come from that of Dame+ (2001ApJ...547..792D). Those authors combined observations obtained over a period of 20 yr with two telescopes, one in the north (first located in New York City and then moved to Cambridge, Massachusetts) and one in the south (Cerro Tololo, Chile). These 1.2m telescopes have an angular resolution of ~8.5' at 115GHz, the frequency of the 12CO 1-0 line. For the current study the authors used the data set covering the whole Galactic plane with +/- 5 deg in Galactic latitude. This table was created by the HEASARC in March 2019 based upon the CDS Catalog J/ApJ/834/57 file table1.dat. This is a service provided by NASA HEASARC .

  17. m

    USA POI & Foot Traffic Enriched Geospatial Dataset by Predik Data-Driven

    • app.mobito.io
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USA POI & Foot Traffic Enriched Geospatial Dataset by Predik Data-Driven [Dataset]. https://app.mobito.io/data-product/usa-enriched-geospatial-framework-dataset
    Explore at:
    Area covered
    United States
    Description

    Our dataset provides detailed and precise insights into the business, commercial, and industrial aspects of any given area in the USA (Including Point of Interest (POI) Data and Foot Traffic. The dataset is divided into 150x150 sqm areas (geohash 7) and has over 50 variables. - Use it for different applications: Our combined dataset, which includes POI and foot traffic data, can be employed for various purposes. Different data teams use it to guide retailers and FMCG brands in site selection, fuel marketing intelligence, analyze trade areas, and assess company risk. Our dataset has also proven to be useful for real estate investment.- Get reliable data: Our datasets have been processed, enriched, and tested so your data team can use them more quickly and accurately.- Ideal for trainning ML models. The high quality of our geographic information layers results from more than seven years of work dedicated to the deep understanding and modeling of geospatial Big Data. Among the features that distinguished this dataset is the use of anonymized and user-compliant mobile device GPS location, enriched with other alternative and public data.- Easy to use: Our dataset is user-friendly and can be easily integrated to your current models. Also, we can deliver your data in different formats, like .csv, according to your analysis requirements. - Get personalized guidance: In addition to providing reliable datasets, we advise your analysts on their correct implementation.Our data scientists can guide your internal team on the optimal algorithms and models to get the most out of the information we provide (without compromising the security of your internal data).Answer questions like: - What places does my target user visit in a particular area? Which are the best areas to place a new POS?- What is the average yearly income of users in a particular area?- What is the influx of visits that my competition receives?- What is the volume of traffic surrounding my current POS?This dataset is useful for getting insights from industries like:- Retail & FMCG- Banking, Finance, and Investment- Car Dealerships- Real Estate- Convenience Stores- Pharma and medical laboratories- Restaurant chains and franchises- Clothing chains and franchisesOur dataset includes more than 50 variables, such as:- Number of pedestrians seen in the area.- Number of vehicles seen in the area.- Average speed of movement of the vehicles seen in the area.- Point of Interest (POIs) (in number and type) seen in the area (supermarkets, pharmacies, recreational locations, restaurants, offices, hotels, parking lots, wholesalers, financial services, pet services, shopping malls, among others). - Average yearly income range (anonymized and aggregated) of the devices seen in the area.Notes to better understand this dataset:- POI confidence means the average confidence of POIs in the area. In this case, POIs are any kind of location, such as a restaurant, a hotel, or a library. - Category confidences, for example"food_drinks_tobacco_retail_confidence" indicates how confident we are in the existence of food/drink/tobacco retail locations in the area. - We added predictions for The Home Depot and Lowe's Home Improvement stores in the dataset sample. These predictions were the result of a machine-learning model that was trained with the data. Knowing where the current stores are, we can find the most similar areas for new stores to open.How efficient is a Geohash?Geohash is a faster, cost-effective geofencing option that reduces input data load and provides actionable information. Its benefits include faster querying, reduced cost, minimal configuration, and ease of use.Geohash ranges from 1 to 12 characters. The dataset can be split into variable-size geohashes, with the default being geohash7 (150m x 150m).

  18. Data from: FISBe: A real-world benchmark dataset for instance segmentation...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    bin, json +3
    Updated Apr 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lisa Mais; Lisa Mais; Peter Hirsch; Peter Hirsch; Claire Managan; Claire Managan; Ramya Kandarpa; Josef Lorenz Rumberger; Josef Lorenz Rumberger; Annika Reinke; Annika Reinke; Lena Maier-Hein; Lena Maier-Hein; Gudrun Ihrke; Gudrun Ihrke; Dagmar Kainmueller; Dagmar Kainmueller; Ramya Kandarpa (2024). FISBe: A real-world benchmark dataset for instance segmentation of long-range thin filamentous structures [Dataset]. http://doi.org/10.5281/zenodo.10875063
    Explore at:
    zip, text/x-python, bin, json, txtAvailable download formats
    Dataset updated
    Apr 2, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Lisa Mais; Lisa Mais; Peter Hirsch; Peter Hirsch; Claire Managan; Claire Managan; Ramya Kandarpa; Josef Lorenz Rumberger; Josef Lorenz Rumberger; Annika Reinke; Annika Reinke; Lena Maier-Hein; Lena Maier-Hein; Gudrun Ihrke; Gudrun Ihrke; Dagmar Kainmueller; Dagmar Kainmueller; Ramya Kandarpa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 26, 2024
    Description

    General

    For more details and the most up-to-date information please consult our project page: https://kainmueller-lab.github.io/fisbe.

    Summary

    • A new dataset for neuron instance segmentation in 3d multicolor light microscopy data of fruit fly brains
      • 30 completely labeled (segmented) images
      • 71 partly labeled images
      • altogether comprising ∼600 expert-labeled neuron instances (labeling a single neuron takes between 30-60 min on average, yet a difficult one can take up to 4 hours)
    • To the best of our knowledge, the first real-world benchmark dataset for instance segmentation of long thin filamentous objects
    • A set of metrics and a novel ranking score for respective meaningful method benchmarking
    • An evaluation of three baseline methods in terms of the above metrics and score

    Abstract

    Instance segmentation of neurons in volumetric light microscopy images of nervous systems enables groundbreaking research in neuroscience by facilitating joint functional and morphological analyses of neural circuits at cellular resolution. Yet said multi-neuron light microscopy data exhibits extremely challenging properties for the task of instance segmentation: Individual neurons have long-ranging, thin filamentous and widely branching morphologies, multiple neurons are tightly inter-weaved, and partial volume effects, uneven illumination and noise inherent to light microscopy severely impede local disentangling as well as long-range tracing of individual neurons. These properties reflect a current key challenge in machine learning research, namely to effectively capture long-range dependencies in the data. While respective methodological research is buzzing, to date methods are typically benchmarked on synthetic datasets. To address this gap, we release the FlyLight Instance Segmentation Benchmark (FISBe) dataset, the first publicly available multi-neuron light microscopy dataset with pixel-wise annotations. In addition, we define a set of instance segmentation metrics for benchmarking that we designed to be meaningful with regard to downstream analyses. Lastly, we provide three baselines to kick off a competition that we envision to both advance the field of machine learning regarding methodology for capturing long-range data dependencies, and facilitate scientific discovery in basic neuroscience.

    Dataset documentation:

    We provide a detailed documentation of our dataset, following the Datasheet for Datasets questionnaire:

    >> FISBe Datasheet

    Our dataset originates from the FlyLight project, where the authors released a large image collection of nervous systems of ~74,000 flies, available for download under CC BY 4.0 license.

    Files

    • fisbe_v1.0_{completely,partly}.zip
      • contains the image and ground truth segmentation data; there is one zarr file per sample, see below for more information on how to access zarr files.
    • fisbe_v1.0_mips.zip
      • maximum intensity projections of all samples, for convenience.
    • sample_list_per_split.txt
      • a simple list of all samples and the subset they are in, for convenience.
    • view_data.py
      • a simple python script to visualize samples, see below for more information on how to use it.
    • dim_neurons_val_and_test_sets.json
      • a list of instance ids per sample that are considered to be of low intensity/dim; can be used for extended evaluation.
    • Readme.md
      • general information

    How to work with the image files

    Each sample consists of a single 3d MCFO image of neurons of the fruit fly.
    For each image, we provide a pixel-wise instance segmentation for all separable neurons.
    Each sample is stored as a separate zarr file (zarr is a file storage format for chunked, compressed, N-dimensional arrays based on an open-source specification.").
    The image data ("raw") and the segmentation ("gt_instances") are stored as two arrays within a single zarr file.
    The segmentation mask for each neuron is stored in a separate channel.
    The order of dimensions is CZYX.

    We recommend to work in a virtual environment, e.g., by using conda:

    conda create -y -n flylight-env -c conda-forge python=3.9
    conda activate flylight-env

    How to open zarr files

    1. Install the python zarr package:
      pip install zarr
    2. Opened a zarr file with:

      import zarr
      raw = zarr.open(
      seg = zarr.open(

      # optional:
      import numpy as np
      raw_np = np.array(raw)

    Zarr arrays are read lazily on-demand.
    Many functions that expect numpy arrays also work with zarr arrays.
    Optionally, the arrays can also explicitly be converted to numpy arrays.

    How to view zarr image files

    We recommend to use napari to view the image data.

    1. Install napari:
      pip install "napari[all]"
    2. Save the following Python script:

      import zarr, sys, napari

      raw = zarr.load(sys.argv[1], mode='r', path="volumes/raw")
      gts = zarr.load(sys.argv[1], mode='r', path="volumes/gt_instances")

      viewer = napari.Viewer(ndisplay=3)
      for idx, gt in enumerate(gts):
      viewer.add_labels(
      gt, rendering='translucent', blending='additive', name=f'gt_{idx}')
      viewer.add_image(raw[0], colormap="red", name='raw_r', blending='additive')
      viewer.add_image(raw[1], colormap="green", name='raw_g', blending='additive')
      viewer.add_image(raw[2], colormap="blue", name='raw_b', blending='additive')
      napari.run()

    3. Execute:
      python view_data.py 

    Metrics

    • S: Average of avF1 and C
    • avF1: Average F1 Score
    • C: Average ground truth coverage
    • clDice_TP: Average true positives clDice
    • FS: Number of false splits
    • FM: Number of false merges
    • tp: Relative number of true positives

    For more information on our selected metrics and formal definitions please see our paper.

    Baseline

    To showcase the FISBe dataset together with our selection of metrics, we provide evaluation results for three baseline methods, namely PatchPerPix (ppp), Flood Filling Networks (FFN) and a non-learnt application-specific color clustering from Duan et al..
    For detailed information on the methods and the quantitative results please see our paper.

    License

    The FlyLight Instance Segmentation Benchmark (FISBe) dataset is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

    Citation

    If you use FISBe in your research, please use the following BibTeX entry:

    @misc{mais2024fisbe,
     title =    {FISBe: A real-world benchmark dataset for instance
             segmentation of long-range thin filamentous structures},
     author =    {Lisa Mais and Peter Hirsch and Claire Managan and Ramya
             Kandarpa and Josef Lorenz Rumberger and Annika Reinke and Lena
             Maier-Hein and Gudrun Ihrke and Dagmar Kainmueller},
     year =     2024,
     eprint =    {2404.00130},
     archivePrefix ={arXiv},
     primaryClass = {cs.CV}
    }

    Acknowledgments

    We thank Aljoscha Nern for providing unpublished MCFO images as well as Geoffrey W. Meissner and the entire FlyLight Project Team for valuable
    discussions.
    P.H., L.M. and D.K. were supported by the HHMI Janelia Visiting Scientist Program.
    This work was co-funded by Helmholtz Imaging.

    Changelog

    There have been no changes to the dataset so far.
    All future change will be listed on the changelog page.

    Contributing

    If you would like to contribute, have encountered any issues or have any suggestions, please open an issue for the FISBe dataset in the accompanying github repository.

    All contributions are welcome!

  19. Estimation performance of the adopted oscillator ensemble models applied on...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rajdeep Dutta; Siyu Isaac Parker Tian; Zhe Liu; Madhavkrishnan Lakshminarayanan; Selvaraj Venkataraj; Yuanhang Cheng; Daniil Bash; Vijila Chellappan; Tonio Buonassisi; Senthilnath Jayavelu (2023). Estimation performance of the adopted oscillator ensemble models applied on 100 samples of type A films, picked randomly from the fully-synthetic data set. [Dataset]. http://doi.org/10.1371/journal.pone.0276555.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Rajdeep Dutta; Siyu Isaac Parker Tian; Zhe Liu; Madhavkrishnan Lakshminarayanan; Selvaraj Venkataraj; Yuanhang Cheng; Daniil Bash; Vijila Chellappan; Tonio Buonassisi; Senthilnath Jayavelu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    EEd: R2-score between original and estimated thickness values, mEEn: median of R2-scores between original and estimated n(λ) arrays; mEEk: median of R2-scores between original and estimated k(λ) arrays; mEER: mean of R2-scores between original and estimated R(λ) arrays; mEET: mean of R2-scores between original and estimated T(λ) arrays; SR: success rate = number of successful occasions (nss)/ total occasions (ns); and mFE: average number of function evaluations: ; and mFE denotes the average number of function evaluations (iterations × population size).

  20. Caribou Range Boundary

    • data.ontario.ca
    • catalogue.arctic-sdi.org
    • +1more
    pdf, shp
    Updated Jul 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environment, Conservation and Parks (2024). Caribou Range Boundary [Dataset]. https://data.ontario.ca/dataset/caribou-range-boundary
    Explore at:
    shp(None), pdf(None)Available download formats
    Dataset updated
    Jul 23, 2024
    Dataset provided by
    Ministry of the Environment, Conservation and Parkshttp://www.ontario.ca/ministry-environment-and-climate-change
    Authors
    Environment, Conservation and Parks
    License

    https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario

    Time period covered
    Aug 29, 2019
    Area covered
    Ontario
    Description

    Shows areas where the health and prevalence of caribou can be linked to the attributes of the land that supports them.

    Ontario's Woodland Caribou Recovery Strategy (2008) provides advice and recommendations on the approaches needed for the recovery of Woodland Caribou.

    The strategy recommends the identification of ranges and local populations to:

    • maintain existing, self-sustaining, genetically-connected local populations of caribou
    • ensure security for and (reproductive) connections among currently isolated mainland caribou
    • re-establish caribou in strategic areas to create self-sustaining local populations and ensure connectivity

    Instructions for downloading this dataset:

    • select the link below and scroll down the metadata record page until you find Transfer Options in the Distribution Information section,
    • select the link beside the Data for download label,
    • you must provide your name, organization and email address in order to access the dataset

    This product requires the use of GIS software.

    *[GIS]: geographic information system

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Shanglian Zhou; Shanglian Zhou; Carlos Canchila; Carlos Canchila; Wei Song; Wei Song (2023). Fused Image dataset for convolutional neural Network-based crack Detection (FIND) [Dataset]. http://doi.org/10.5281/zenodo.6383044
Organization logo

Fused Image dataset for convolutional neural Network-based crack Detection (FIND)

Related Article
Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
zipAvailable download formats
Dataset updated
Apr 20, 2023
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Shanglian Zhou; Shanglian Zhou; Carlos Canchila; Carlos Canchila; Wei Song; Wei Song
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

The “Fused Image dataset for convolutional neural Network-based crack Detection” (FIND) is a large-scale image dataset with pixel-level ground truth crack data for deep learning-based crack segmentation analysis. It features four types of image data including raw intensity image, raw range (i.e., elevation) image, filtered range image, and fused raw image. The FIND dataset consists of 2500 image patches (dimension: 256x256 pixels) and their ground truth crack maps for each of the four data types.

The images contained in this dataset were collected from multiple bridge decks and roadways under real-world conditions. A laser scanning device was adopted for data acquisition such that the captured raw intensity and raw range images have pixel-to-pixel location correspondence (i.e., spatial co-registration feature). The filtered range data were generated by applying frequency domain filtering to eliminate image disturbances (e.g., surface variations, and grooved patterns) from the raw range data [1]. The fused image data were obtained by combining the raw range and raw intensity data to achieve cross-domain feature correlation [2,3]. Please refer to [4] for a comprehensive benchmark study performed using the FIND dataset to investigate the impact from different types of image data on deep convolutional neural network (DCNN) performance.

If you share or use this dataset, please cite [4] and [5] in any relevant documentation.

In addition, an image dataset for crack classification has also been published at [6].

References:

[1] Shanglian Zhou, & Wei Song. (2020). Robust Image-Based Surface Crack Detection Using Range Data. Journal of Computing in Civil Engineering, 34(2), 04019054. https://doi.org/10.1061/(asce)cp.1943-5487.0000873

[2] Shanglian Zhou, & Wei Song. (2021). Crack segmentation through deep convolutional neural networks and heterogeneous image fusion. Automation in Construction, 125. https://doi.org/10.1016/j.autcon.2021.103605

[3] Shanglian Zhou, & Wei Song. (2020). Deep learning–based roadway crack classification with heterogeneous image data fusion. Structural Health Monitoring, 20(3), 1274-1293. https://doi.org/10.1177/1475921720948434

[4] Shanglian Zhou, Carlos Canchila, & Wei Song. (2023). Deep learning-based crack segmentation for civil infrastructure: data types, architectures, and benchmarked performance. Automation in Construction, 146. https://doi.org/10.1016/j.autcon.2022.104678

[5] (This dataset) Shanglian Zhou, Carlos Canchila, & Wei Song. (2022). Fused Image dataset for convolutional neural Network-based crack Detection (FIND) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6383044

[6] Wei Song, & Shanglian Zhou. (2020). Laser-scanned roadway range image dataset (LRRD). Laser-scanned Range Image Dataset from Asphalt and Concrete Roadways for DCNN-based Crack Classification, DesignSafe-CI. https://doi.org/10.17603/ds2-bzv3-nc78

Search
Clear search
Close search
Google apps
Main menu