Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Missing data is an inevitable aspect of every empirical research. Researchers developed several techniques to handle missing data to avoid information loss and biases. Over the past 50 years, these methods have become more and more efficient and also more complex. Building on previous review studies, this paper aims to analyze what kind of missing data handling methods are used among various scientific disciplines. For the analysis, we used nearly 50.000 scientific articles that were published between 1999 and 2016. JSTOR provided the data in text format. Furthermore, we utilized a text-mining approach to extract the necessary information from our corpus. Our results show that the usage of advanced missing data handling methods such as Multiple Imputation or Full Information Maximum Likelihood estimation is steadily growing in the examination period. Additionally, simpler methods, like listwise and pairwise deletion, are still in widespread use.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The monitoring of surface-water quality followed by water-quality modeling and analysis is essential for generating effective strategies in water resource management. However, water-quality studies are limited by the lack of complete and reliable data sets on surface-water-quality variables. These deficiencies are particularly noticeable in developing countries.
This work focuses on surface-water-quality data from Santa Lucía Chico river (Uruguay), a mixed lotic and lentic river system. Data collected at six monitoring stations are publicly available at https://www.dinama.gub.uy/oan/datos-abiertos/calidad-agua/. The high temporal and spatial variability that characterizes water-quality variables and the high rate of missing values (between 50% and 70%) raises significant challenges.
To deal with missing values, we applied several statistical and machine-learning imputation methods. The competing algorithms implemented belonged to both univariate and multivariate imputation methods (inverse distance weighting (IDW), Random Forest Regressor (RFR), Ridge (R), Bayesian Ridge (BR), AdaBoost (AB), Huber Regressor (HR), Support Vector Regressor (SVR), and K-nearest neighbors Regressor (KNNR)).
IDW outperformed the others, achieving a very good performance (NSE greater than 0.8) in most cases.
In this dataset, we include the original and imputed values for the following variables:
Water temperature (Tw)
Dissolved oxygen (DO)
Electrical conductivity (EC)
pH
Turbidity (Turb)
Nitrite (NO2-)
Nitrate (NO3-)
Total Nitrogen (TN)
Each variable is identified as [STATION] VARIABLE FULL NAME (VARIABLE SHORT NAME) [UNIT METRIC].
More details about the study area, the original datasets, and the methodology adopted can be found in our paper https://www.mdpi.com/2071-1050/13/11/6318.
If you use this dataset in your work, please cite our paper:
Rodríguez, R.; Pastorini, M.; Etcheverry, L.; Chreties, C.; Fossati, M.; Castro, A.; Gorgoglione, A. Water-Quality Data Imputation with a High Percentage of Missing Values: A Machine Learning Approach. Sustainability 2021, 13, 6318. https://doi.org/10.3390/su13116318
Replication and simulation reproduction materials for the article "The MIDAS Touch: Accurate and Scalable Missing-Data Imputation with Deep Learning." Please see the README file for a summary of the contents and the Replication Guide for a more detailed description. Article abstract: Principled methods for analyzing missing values, based chiefly on multiple imputation, have become increasingly popular yet can struggle to handle the kinds of large and complex data that are also becoming common. We propose an accurate, fast, and scalable approach to multiple imputation, which we call MIDAS (Multiple Imputation with Denoising Autoencoders). MIDAS employs a class of unsupervised neural networks known as denoising autoencoders, which are designed to reduce dimensionality by corrupting and attempting to reconstruct a subset of data. We repurpose denoising autoencoders for multiple imputation by treating missing values as an additional portion of corrupted data and drawing imputations from a model trained to minimize the reconstruction error on the originally observed portion. Systematic tests on simulated as well as real social science data, together with an applied example involving a large-scale electoral survey, illustrate MIDAS's accuracy and efficiency across a range of settings. We provide open-source software for implementing MIDAS.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains the potential influencers of the bitcoin price. There are a total of 18 daily time series including hash rate, block size, mining difficulty etc. It also encompasses public opinion in the form of tweets and google searches mentioning the keyword bitcoin. The data is scraped from the interactive web-graphs available at https://bitinfocharts.com.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Empirical data analyses often require complete data sets. Therefore, in case of incompletely observed data sets, methods are attractive that generate plausible values (imputations) for the unobserved data. The idea is to then analyze the completed data set in an easy way. Thus, various imputation techniques have been proposed and evaluated. Popular measures used for evaluating these techniques are based on distances between true and imputed values applied in simulation studies. In this paper we show through a theoretical example and a simulation study that these measures may be misleading: From the fact that they are zero if all the imputed values were equal to the true but unobserved values and are usually larger than zero otherwise, it does not follow that the smaller the value of such a measure, the `closer' the inference based on the imputed data set to the inference based on the complete data set without missing values. Moreover, since these measures are usually only applied in simulations, corresponding findings can not be generalized.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionEnsuring high-quality race and ethnicity data within the electronic health record (EHR) and across linked systems, such as patient registries, is necessary to achieving the goal of inclusion of racial and ethnic minorities in scientific research and detecting disparities associated with race and ethnicity. The project goal was to improve race and ethnicity data completion within the Pediatric Rheumatology Care Outcomes Improvement Network and assess impact of improved data completion on conclusions drawn from the registry.MethodsThis is a mixed-methods quality improvement study that consisted of five parts, as follows: (1) Identifying baseline missing race and ethnicity data, (2) Surveying current collection and entry, (3) Completing data through audit and feedback cycles, (4) Assessing the impact on outcome measures, and (5) Conducting participant interviews and thematic analysis.ResultsAcross six participating centers, 29% of the patients were missing data on race and 31% were missing data on ethnicity. Of patients missing data, most patients were missing both race and ethnicity. Rates of missingness varied by data entry method (electronic vs. manual). Recovered data had a higher percentage of patients with Other race or Hispanic/Latino ethnicity compared with patients with non-missing race and ethnicity data at baseline. Black patients had a significantly higher odds ratio of having a clinical juvenile arthritis disease activity score (cJADAS10) of ≥5 at first follow-up compared with White patients. There was no significant change in odds ratio of cJADAS10 ≥5 for race and ethnicity after data completion. Patients missing race and ethnicity were more likely to be missing cJADAS values, which may affect the ability to detect changes in odds ratio of cJADAS ≥5 after completion.ConclusionsAbout one-third of the patients in a pediatric rheumatology registry were missing race and ethnicity data. After three audit and feedback cycles, centers decreased missing data by 94%, primarily via data recovery from the EHR. In this sample, completion of missing data did not change the findings related to differential outcomes by race. Recovered data were not uniformly distributed compared with those with non-missing race and ethnicity data at baseline, suggesting that differences in outcomes after completing race and ethnicity data may be seen with larger sample sizes.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Missing values in proteomic data sets have real consequences on downstream data analysis and reproducibility. Although several imputation methods exist to handle missing values, no single imputation method is best suited for a diverse range of data sets, and no clear strategy exists for evaluating imputation methods for clinical DIA-MS data sets, especially at different levels of protein quantification. To navigate through the different imputation strategies available in the literature, we have established a strategy to assess imputation methods on clinical label-free DIA-MS data sets. We used three DIA-MS data sets with real missing values to evaluate eight imputation methods with multiple parameters at different levels of protein quantification: a dilution series data set, a small pilot data set, and a clinical proteomic data set comparing paired tumor and stroma tissue. We found that imputation methods based on local structures within the data, like local least-squares (LLS) and random forest (RF), worked well in our dilution series data set, whereas imputation methods based on global structures within the data, like BPCA, performed well in the other two data sets. We also found that imputation at the most basic protein quantification levelfragment levelimproved accuracy and the number of proteins quantified. With this analytical framework, we quickly and cost-effectively evaluated different imputation methods using two smaller complementary data sets to narrow down to the larger proteomic data set’s most accurate methods. This acquisition strategy allowed us to provide reproducible evidence of the accuracy of the imputation method, even in the absence of a ground truth. Overall, this study indicates that the most suitable imputation method relies on the overall structure of the data set and provides an example of an analytic framework that may assist in identifying the most appropriate imputation strategies for the differential analysis of proteins.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description:
Welcome to the Zenodo repository for Publication Benchmarking imputation methods for categorical biological data, a comprehensive collection of datasets and scripts utilized in our research endeavors. This repository serves as a vital resource for researchers interested in exploring the empirical and simulated analyses conducted in our study.
Contents:
empirical_analysis:
simulation_analysis:
TDIP_package:
Purpose:
This repository aims to provide transparency and reproducibility to our research findings by making the datasets and scripts publicly accessible. Researchers interested in understanding our methodologies, replicating our analyses, or building upon our work can utilize this repository as a valuable reference.
Citation:
When using the datasets or scripts from this repository, we kindly request citing Publication Benchmarking imputation methods for categorical biological data and acknowledging the use of this Zenodo repository.
Thank you for your interest in our research, and we hope this repository serves as a valuable resource in your scholarly pursuits.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Despite the wide application of longitudinal studies, they are often plagued by missing data and attrition. The majority of methodological approaches focus on participant retention or modern missing data analysis procedures. This paper, however, takes a new approach by examining how researchers may supplement the sample with additional participants. First, refreshment samples use the same selection criteria as the initial study. Second, replacement samples identify auxiliary variables that may help explain patterns of missingness and select new participants based on those characteristics. A simulation study compares these two strategies for a linear growth model with five measurement occasions. Overall, the results suggest that refreshment samples lead to less relative bias, greater relative efficiency, and more acceptable coverage rates than replacement samples or not supplementing the missing participants in any way. Refreshment samples also have high statistical power. The comparative strengths of the refreshment approach are further illustrated through a real data example. These findings have implications for assessing change over time when researching at-risk samples with high levels of permanent attrition.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was used in the KDD Cup 2018 forecasting competition. It contains long hourly time series representing the air quality levels in 59 stations in 2 cities: Beijing (35 stations) and London (24 stations) from 01/01/2017 to 31/03/2018. The air quality level is represented in multiple measurements such as PM2.5, PM10, NO2, CO, O3 and SO2.
The dataset uploaded here contains 282 hourly time series which have been categorized using city, station name and air quality measurement.
Objectives: Demonstrate the application of decision trees—classification and regression trees (CARTs), and their cousins, boosted regression trees (BRTs)—to understand structure in missing data. Setting: Data taken from employees at 3 different industrial sites in Australia. Participants: 7915 observations were included. Materials and methods: The approach was evaluated using an occupational health data set comprising results of questionnaires, medical tests and environmental monitoring. Statistical methods included standard statistical tests and the ‘rpart’ and ‘gbm’ packages for CART and BRT analyses, respectively, from the statistical software ‘R’. A simulation study was conducted to explore the capability of decision tree models in describing data with missingness artificially introduced. Results: CART and BRT models were effective in highlighting a missingness structure in the data, related to the type of data (medical or environmental), the site in which it was collected, the number of visits, and the presence of extreme values. The simulation study revealed that CART models were able to identify variables and values responsible for inducing missingness. There was greater variation in variable importance for unstructured as compared to structured missingness. Discussion: Both CART and BRT models were effective in describing structural missingness in data. CART models may be preferred over BRT models for exploratory analysis of missing data, and selecting variables important for predicting missingness. BRT models can show how values of other variables influence missingness, which may prove useful for researchers. Conclusions: Researchers are encouraged to use CART and BRT models to explore and understand missing data.
We propose a framework for meta-analysis of qualitative causal inferences. We integrate qualitative counterfactual inquiry with an approach from the quantitative causal inference literature called extreme value bounds. Qualitative counterfactual analysis uses the observed outcome and auxiliary information to infer what would have happened had the treatment been set to a different level. Imputing missing potential outcomes is hard and when it fails, we can fill them in under best- and worst-case scenarios. We apply our approach to 63 cases that could have experienced transitional truth commissions upon democratization, 8 of which did. Prior to any analysis, the extreme value bounds around the average treatment effect on authoritarian resumption are 100 percentage points wide; imputation shrinks the width of these bounds to 51 points. We further demonstrate our method by aggregating specialists' beliefs about causal effects gathered through an expert survey, shrinking the width of the bounds to 44 points.
NamUs is the only national repository for missing, unidentified, and unclaimed persons cases. The program provides a singular resource hub for law enforcement, medical examiners, coroners, and investigating professionals. It is the only national database for missing, unidentified, and unclaimed persons that allows limited access to the public, empowering family members to take a more proactive role in the search for their missing loved ones.
Although social scientists devote considerable effort to mitigating measurement error during data collection, they often ignore the issue during data analysis. And although many statistical methods have been proposed for reducing measurement error-induced biases, few have been widely used because of implausible assumptions, high levels of model dependence, difficult computation, or inapplicability with multiple mismeasured variables. We develop an easy-to-use alternative without these problems; it generalizes the popular multiple imputation (MI) framework by treating missing data problems as a limiting special case of extreme measurement error, and corrects for both. Like MI, the proposed framework is a simple two-step procedure, so that in the second step researchers can use whatever statistical method they would have if there had been no problem in the first place. We also offer empirical illustrations, open source software that implements all the methods described herein, and a companion paper with technical details and extensions (Blackwell, Honaker, and King, 2014b). Notes: This is the first of two articles to appear in the same issue of the same journal by the same authors. The second is “A Unified Approach to Measurement Error and Missing Data: Details and Extensions.” See also: Missing Data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A variety of tools and methods have been used to measure behavioral symptoms of attention-deficit/hyperactivity disorder (ADHD). Missing data is a major concern in ADHD behavioral studies. This study used a deep learning method to impute missing data in ADHD rating scales and evaluated the ability of the imputed dataset (i.e., the imputed data replacing the original missing values) to distinguish youths with ADHD from youths without ADHD. The data were collected from 1220 youths, 799 of whom had an ADHD diagnosis, and 421 were typically developing (TD) youths without ADHD, recruited in Northern Taiwan. Participants were assessed using the Conners’ Continuous Performance Test, the Chinese versions of the Conners’ rating scale-revised: short form for parent and teacher reports, and the Swanson, Nolan, and Pelham, version IV scale for parent and teacher reports. We used deep learning, with information from the original complete dataset (referred to as the reference dataset), to perform missing data imputation and generate an imputation order according to the imputed accuracy of each question. We evaluated the effectiveness of imputation using support vector machine to classify the ADHD and TD groups in the imputed dataset. The imputed dataset can classify ADHD vs. TD up to 89% accuracy, which did not differ from the classification accuracy (89%) using the reference dataset. Most of the behaviors related to oppositional behaviors rated by teachers and hyperactivity/impulsivity rated by both parents and teachers showed high discriminatory accuracy to distinguish ADHD from non-ADHD. Our findings support a deep learning solution for missing data imputation without introducing bias to the data.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The utility of fossils in evolutionary contexts is dependent on their accurate placement in phylogenetic frameworks, yet intrinsic and widespread missing data make this problematic. The complex taphonomic processes occurring during fossilization can make it difficult to distinguish absence from non-preservation, especially in the case of exceptionally preserved soft-tissue fossils: is a particular morphological character (e.g. appendage, tentacle or nerve) missing from a fossil because it was never there (phylogenetic absence), or just happened to not be preserved (taphonomic loss)? Missing data has not been tested in the context of interpretation of non-present anatomy nor in the context of directional shifts and biases in affinity. Here, complete taxa, both simulated and empirical, are subjected to data loss through the replacement of present entries (1s) with either missing (?s) or absent (0s) entries. Both cause taxa to drift down trees, from their original position, toward the root. Absolute thresholds at which downshift is significant are extremely low for introduced absences (2 entries replaced, 6 % of present characters). The opposite threshold in empirical fossil taxa is also found to be low; two absent entries replaced with presences causes fossil taxa to drift up trees. As such, only a few instances of non-preserved characters interpreted as absences will cause fossil organisms to be erroneously interpreted as more primitive than they were in life. This observed sensitivity to coding non-present morphology presents a problem for all evolutionary studies that attempt to use fossils to reconstruct rates of evolution or unlock sequences of morphological change. Stem-ward slippage, whereby fossilization processes cause organisms to appear artificially primitive, appears to be a ubiquitous and problematic phenomenon inherent to missing data, even when no decay biases exist. Absent characters therefore require explicit justification and taphonomic frameworks to support their interpretation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Missing data counting for the SAS datafile
Abstract: Given the methodological sophistication of the debate over the “political resource curse”—the purported negative relationship between natural resource wealth (in particular oil wealth) and democracy—it is surprising that scholars have not paid more attention to the basic statistical issue of how to deal with missing data. This article highlights the problems caused by the most common strategy for analyzing missing data in the political resource curse literature—listwise deletion—and investigates how addressing such problems through the best-practice technique of multiple imputation affects empirical results. I find that multiple imputation causes the results of a number of influential recent studies to converge on a key common finding: A political resource curse does exist, but only since the widespread nationalization of petroleum industries in the 1970s. This striking finding suggests that much of the controversy over the political resource curse has been caused by a neglect of missing-data issues.
{"references": ["Taieb, S.B., Bontempi, G., Atiya, A.F., Sorjamaa, A., 2012. A review and comparison of strategies for multi-step ahead time series forecasting based on the nn5 forecasting competition. Expert Systems with Applications 39(8), 7067 - 7083.", "Neural Forecasting Competitions, 2008. NN5 forecasting competition for artificial neural networks and computational intelligence. Accessed: 2020-05-10. URL http://www.neural-forecasting-competition.com/NN5/"]} This dataset was used in the NN5 forecasting competition. It contains 111 time series from the banking domain. The goal is predicting the daily cash withdrawals from ATMs in UK. The original dataset contains missing values. A missing value on a particular day is replaced by the median across all the same days of the week along the whole series.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Missing data is an inevitable aspect of every empirical research. Researchers developed several techniques to handle missing data to avoid information loss and biases. Over the past 50 years, these methods have become more and more efficient and also more complex. Building on previous review studies, this paper aims to analyze what kind of missing data handling methods are used among various scientific disciplines. For the analysis, we used nearly 50.000 scientific articles that were published between 1999 and 2016. JSTOR provided the data in text format. Furthermore, we utilized a text-mining approach to extract the necessary information from our corpus. Our results show that the usage of advanced missing data handling methods such as Multiple Imputation or Full Information Maximum Likelihood estimation is steadily growing in the examination period. Additionally, simpler methods, like listwise and pairwise deletion, are still in widespread use.