As of 2023, roughly 5.03 million out of Finland's total population of 5.6 million were of Finnish origin. After Finnish and European origins, the largest inhabitant groups in Finland were of Asian and African origin.
As of 2024, roughly 5.01 million out of Finland's total population of 5.64 million were of Finnish origin. The majority of non-Finnish inhabitants were immigrants from Europe including Cyprus and Turkey. Around 305,300 inhabitants were of European origin, followed by 212,481 inhabitants of Asian origin.
As of 2024, approximately 5.22 million inhabitants in Finland were Finnish citizens, while around 411,100 had a foreign nationality. Over the shown period, the non-Finnish population increased by roughly 191,400.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
The urban indicators data available here are analyzed, compiled and published by UN-Habitat’s Global Urban Observatory which supports governments, local authorities and civil society organizations to develop urban indicators, data and statistics. Urban statistics are collected through household surveys and censuses conducted by national statistics authorities. Global Urban Observatory team analyses and compiles urban indicators statistics from surveys and censuses. Additionally, Local urban observatories collect, compile and analyze urban data for national policy development. Population statistics are produced by the United Nations Department of Economic and Social Affairs, World Urbanization Prospects.
A data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
There were 3 834 000 Facebook users in Finland in June 2024, which accounted for 67.5% of its entire population. The majority of them were women - 55.3%. People aged 25 to 34 were the largest user group (891 100). The highest difference between men and women occurs within people aged 65 and above, where women lead by 183 800.
Contains data from UNESCO's data portal covering various indicators.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
There were 2 499 400 Instagram users in Finland in January 2024, which accounted for 44% of its entire population. The majority of them were women - 58.2%. People aged 25 to 34 were the largest user group (651 900). The highest difference between men and women occurs within people aged 35 to 44, where women lead by 207 100.
All the data for this dataset is provided from CARMA: Data from CARMA (www.carma.org) This dataset provides information about Power Plant emissions in Finland. Power Plant emissions from all power plants in Finland were obtained by CARMA for the past (2000 Annual Report), the present (2007 data), and the future. CARMA determine data presented for the future to reflect planned plant construction, expansion, and retirement. The dataset provides the name, company, parent company, city, state, zip, county, metro area, lat/lon, and plant id for each individual power plant. The dataset reports for the three time periods: Intensity: Pounds of CO2 emitted per megawatt-hour of electricity produced. Energy: Annual megawatt-hours of electricity produced. Carbon: Annual carbon dioxide (CO2) emissions. The units are short or U.S. tons. Multiply by 0.907 to get metric tons. Carbon Monitoring for Action (CARMA) is a massive database containing information on the carbon emissions of over 50,000 power plants and 4,000 power companies worldwide. Power generation accounts for 40% of all carbon emissions in the United States and about one-quarter of global emissions. CARMA is the first global inventory of a major, sector of the economy. The objective of CARMA.org is to equip individuals with the information they need to forge a cleaner, low-carbon future. By providing complete information for both clean and dirty power producers, CARMA hopes to influence the opinions and decisions of consumers, investors, shareholders, managers, workers, activists, and policymakers. CARMA builds on experience with public information disclosure techniques that have proven successful in reducing traditional pollutants. Please see carma.org for more information
Grandmothers provide key care to their grandchildren in both contemporary and historic human populations. The length of the grandmother-grandchild relationship provides a basis for such interactions, but its variation and determinants have rarely been studied in different contexts, despite changes in age-specific mortality and fertility rates likely having affected grandmotherhood patterns across the demographic transition. Understanding how often and long grandmothers have been available for their grandchildren in different conditions may help explain the large differences between grandmaternal effects found in different societies, and is vital for developing theories concerning the evolution of menopause, post-reproductive longevity, and family living. Using an extensive genealogical dataset from Finland spanning the demographic transition, we quantify the length of grandmotherhood and its determinants from 1790–1959. We found that shared time between grandmothers and grandchildren was consistently low before the demographic transition, only increasing greatly during the 20th century. Whilst reduced childhood mortality and increasing adult longevity had a role in this change, grandmaternal age at birth remained consistent across the study period. Our findings further understanding of the temporal context of grandmother-grandchild relationships, and emphasise the need to consider the demography of grandmotherhood in a number of disciplines, including biology (e.g. evolution of the family), sociology (e.g. changing family structures), population health (e.g. changing age structures), and economics (e.g. workforce retention).
The number of Twitter users in Finland was forecast to continuously decrease between 2024 and 2028 by in total 0.1 million users (-12.5 percent). The Twitter user base is estimated to amount to 0.75 million users in 2028. User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Denmark and Sweden.
The number of Facebook users in Finland was forecast to continuously decrease between 2024 and 2028 by in total 0.1 million users (-2.83 percent). The Facebook user base is estimated to amount to 3.44 million users in 2028. User figures, shown here regarding the platform facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Facebook users in countries like Denmark and Iceland.
As of 2023, there were 89 prisoners from Estonia in Finnish prisons, followed by 56 inmates from Romania. The Finnish prison system counted a total of 3,166 inmates that year, including sentenced prisoners, remand prisoners, and fine default prisoners.
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
There were 1 492 000 Linkedin users in Finland in February 2022, which accounted for 26.3% of its entire population. People aged 25 to 34 were the largest user group (760 000).
Not seeing a result you expected?
Learn how you can add new datasets to our index.
As of 2023, roughly 5.03 million out of Finland's total population of 5.6 million were of Finnish origin. After Finnish and European origins, the largest inhabitant groups in Finland were of Asian and African origin.