CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This tool--a simple csv or Stata file for merging--gives you a fast way to assign Census county FIPS codes to variously presented county names. This is useful for dealing with county names collected from official sources, such as election returns, which inconsistently present county names and often have misspellings. It will likely take less than ten minutes the first time, and about one minute thereafter--assuming all versions of your county names are in this file. There are about 3,142 counties in the U.S., and there are 77,613 different permutations of county names in this file (ave=25 per county, max=382). Counties with more likely permutations have more versions. Misspellings were added as I came across them over time. I DON'T expect people to cite the use of this tool. DO feel free to suggest the addition of other county name permutations.
A listing of NYS counties with accompanying Federal Information Processing System (FIPS) and US Postal Service ZIP codes sourced from the NYS GIS Clearinghouse.
A crosswalk dataset matching US ZIP codes to corresponding county codes
The denominators used to calculate the address ratios are the ZIP code totals. When a ZIP is split by any of the other geographies, that ZIP code is duplicated in the crosswalk file.
**Example: **ZIP code 03870 is split by two different Census tracts, 33015066000 and 33015071000, which appear in the tract column. The ratio of residential addresses in the first ZIP-Tract record to the total number of residential addresses in the ZIP code is .0042 (.42%). The remaining residential addresses in that ZIP (99.58%) fall into the second ZIP-Tract record.
So, for example, if one wanted to allocate data from ZIP code 03870 to each Census tract located in that ZIP code, one would multiply the number of observations in the ZIP code by the residential ratio for each tract associated with that ZIP code.
https://redivis.com/fileUploads/4ecb405e-f533-4a5b-8286-11e56bb93368%3E" alt="">(Note that the sum of each ratio column for each distinct ZIP code may not always equal 1.00 (or 100%) due to rounding issues.)
County definition
In the United States, a county is an administrative or political subdivision of a state that consists of a geographic region with specific boundaries and usually some level of governmental authority. The term "county" is used in 48 U.S. states, while Louisiana and Alaska have functionally equivalent subdivisions called parishes and boroughs, respectively.
Further reading
The following article demonstrates how to more effectively use the U.S. Department of Housing and Urban Development (HUD) United States Postal Service ZIP Code Crosswalk Files when working with disparate geographies.
Wilson, Ron and Din, Alexander, 2018. “Understanding and Enhancing the U.S. Department of Housing and Urban Development’s ZIP Code Crosswalk Files,” Cityscape: A Journal of Policy Development and Research, Volume 20 Number 2, 277 – 294. URL: https://www.huduser.gov/portal/periodicals/cityscpe/vol20num2/ch16.pdf
Contact information
Questions regarding these crosswalk files can be directed to Alex Din with the subject line HUD-Crosswalks.
Acknowledgement
This dataset is taken from the U.S. Department of Housing and Urban Development (HUD) office: https://www.huduser.gov/portal/datasets/usps_crosswalk.html#codebook
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This code is used to generate a combined data set of US ZIP, FIPS, and County data for most ZIP Codes in the U.S. (41,867 to be exact).
Code to generate the data set from the government files listed below can be found here.
The dataset is organized as follows:
The data used to create this data set was taken from several recent government data sets.
These are:
The final csv is in 'latin1' encoding to preserve the Spanish county names in Puerto Rico.
This data is from, and shall remain in the public domain, and the onus of responsibility lies with the user of this data.
State, County and City FIPS (Federal Information Processing Standards) codes are a set of numeric designations given to state, cities and counties by the U.S. federal government. All geographic data submitted to the FRA must have a FIPS code.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Dataset created to link between County - State Name, State-County FIPS, and ZIP Code.
https://www.huduser.gov/portal/datasets/usps.html
https://www2.census.gov/geo/docs/reference/codes/files/national_county.txt https://www.census.gov/geo/reference/codes/cou.html
Data cleaned by Data4Democracy and hosted originally on Data.World: https://github.com/Data4Democracy/zip-code-to-county https://data.world/niccolley/us-zipcode-to-county-state
ZCTA data from USPS 6.2017 release.
Image from Reddit.
This dataset, which represents county Federal Information Processing System (FIPS) codes for each county as a raster, is utilized by reVX to compute setbacks (distances). Setbacks can be computed either locally (on a per-county basis with specified distances or multipliers) or globally under a generic setback multiplier assumption applied to either the turbine tip height or the base setback distance. A County FIPS code is a five-digit numerical identifier that uniquely identifies counties and county equivalents in the United States The initial two digits represent the FIPS state code, while the final three digits signify the county's unique code within that state. For instance, 55025 corresponds to Dane County, Wisconsin. The first two digits - 55 - represent Wisconsin, and the last three digits - 025 - denote Dane County. Further information can be accessed at the "Federal Information Processing System (FIPS) Codes for States and Counties" resource below.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a listing of Federal Information Processing Standard (FIPS) codes for each of the 67 counties in Pennsylvania. Information gathered from census data - https://www.census.gov/library/reference/code-lists/ansi.html For more technical details :
Federal Information Processing Standards Publications (FIPS PUBS) are issued by the National Institute of Standards and Technology (NIST) after approval by the Secretary of Commerce pursuant to Section 111 (d) of the Federal Property and Administrative Services Act of 1949 as amended by the Computer Security Act of 1987, Public Law 100-235.
Federal Information Processing Standard (FIPS) 6-4, Counties and Equivalent Entities of the U.S., Its Possessions, and Associated Areas -- 90 Aug 31 , provides the names and codes that represent the counties and other entities treated as equivalent legal and/or statistical subdivisions of the 50 States, the District of Columbia, and the possessions and freely associated areas of the United States. Counties are considered to be the "first-order subdivisions" of each State and statistically equivalent entity, regardless of their local designations (county, parish, borough, etc.).
A list of Connecticut municipalities with the 3-digit tax code and the 2010 10-digit FIPS code for county subdivisions, assigned by the U.S. Census Bureau
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This file maps the state and county fips codes in the data files to standard state and county names.
description: The US Census Bureau's online County Look-up Tool provides the unique 3-digit code for the Identification of Counties and Equivalent Entities of the United States, its Possessions, and Insular Areas.; abstract: The US Census Bureau's online County Look-up Tool provides the unique 3-digit code for the Identification of Counties and Equivalent Entities of the United States, its Possessions, and Insular Areas.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘US Zipcodes to County State to FIPS Crosswalk’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/danofer/zipcodes-county-fips-crosswalk on 28 January 2022.
--- Dataset description provided by original source is as follows ---
Dataset created to link between County - State Name, State-County FIPS, and ZIP Code.
https://www.huduser.gov/portal/datasets/usps.html
https://www2.census.gov/geo/docs/reference/codes/files/national_county.txt https://www.census.gov/geo/reference/codes/cou.html
Data cleaned by Data4Democracy and hosted originally on Data.World: https://github.com/Data4Democracy/zip-code-to-county https://data.world/niccolley/us-zipcode-to-county-state
ZCTA data from USPS 6.2017 release.
Image from Reddit.
--- Original source retains full ownership of the source dataset ---
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de445718https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de445718
Abstract (en): This data collection contains FIPS codes for state, county, county subdivision, and place, along with the 1990 Census tract number for each side of the street for the urban cores of 550 counties in the United States. Street names, including prefix and/or suffix direction (north, southeast, etc.) and street type (avenue, lane, etc.) are provided, as well as the address range for that portion of the street located within a particular Census tract and the corresponding Census tract number. The FIPS county subdivision and place codes can be used to determine the correct Census tract number when streets with identical names and ranges exist in different parts of the same county. Contiguous block segments that have consecutive address ranges along a street and that have the same geographic codes (state, county, Census tract, county subdivision, and place) have been collapsed together and are represented by a single record with a single address range. 2006-01-12 All files were removed from dataset 551 and flagged as study-level files, so that they will accompany all downloads. (1) Due to the number of files in this collection, parts have been eliminated here. For a complete list of individual part names designated by state and county, consult the ICPSR Website. (2) There are two types of records in this collection, distinguished by the first character of each record. A "0" indicates a street name/address range record that can be used to find the Census tract number and other geographic codes from a street name and address number. A "2" indicates a geographic code/name record that can be used to find the name of the state, county, county subdivision, and/or place from the FIPS code. The "0" records contain 18 variables and the "2" records contain 10 variables.
This dataset was created to facilitate the conversion of Uniform Crime Reporting (UCR) Program state and county codes to Federal Information Processing Standards (FIPS) state and county codes. The four UCR agency-level data files archived at ICPSR in Uniform Crime Reporting Program Data: United States contain UCR state and county codes as geographic identifiers. Researchers who wish to use these data with other sources, such as Census data, may want to convert these UCR codes to FIPS codes in order to link the different data sources. This file was created to facilitate this linkage. It contains state abbreviations, UCR state and county codes, FIPS state and county codes, and county names for all counties present in the UCR data files since 1990. These same FIPS codes were used to create the UCR County-Level Detailed Arrest and Offense files from 1990-1996.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Address Range / Feature Name Relationship File (ADDRFN.dbf) contains a record for each address range / linear feature name relationship. The purpose of this relationship file is to identify all street names associated with each address range. An edge can have several feature names; an address range located on an edge can be associated with one or any combination of the available feature names (an address range can be linked to multiple feature names). The address range is identified by the address range identifier (ARID) attribute that can be used to link to the Address Ranges Relationship File (ADDR.dbf). The linear feature name is identified by the linear feature identifier (LINEARID) attribute that can be used to link to the Feature Names Relationship File (FEATNAMES.dbf).
There is no story behind this data.
These are just supplementary datasets which I plan on using for plotting county wise data on maps.. (in particular for using with my kernel : https://www.kaggle.com/stansilas/maps-are-beautiful-unemployment-is-not/)
As that data set didn't have the info I needed for plotting an interactive map using highcharter
.
Since I noticed that most demographic datasets here on Kaggle, either have state code
, state name
, or county name + state name
but not all of it i.e county name, fips code, state name + state code.
Using these two datasets one can get any combination of state county codes etc.
States.csv has State name + code
US counties.csv has county wise data.
Picture : https://unsplash.com/search/usa-states?photo=-RO2DFPl7wE
Counties : https://www.census.gov/geo/reference/codes/cou.html
State :
Not Applicable.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
🇺🇸 미국
Data SourcesAmerican Community Survey (ACS):Conducted by: U.S. Census BureauDescription: The ACS is an ongoing survey that provides detailed demographic and socio-economic data on the population and housing characteristics of the United States.Content: The survey collects information on various topics such as income, education, employment, health insurance coverage, and housing costs and conditions.Frequency: The ACS offers more frequent and up-to-date information compared to the decennial census, with annual estimates produced based on a rolling sample of households.Purpose: ACS data is essential for policymakers, researchers, and communities to make informed decisions and address the evolving needs of the population.CDC/ATSDR Social Vulnerability Index (SVI):Created by: ATSDR’s Geospatial Research, Analysis & Services Program (GRASP)Utilized by: CDCDescription: The SVI is designed to identify and map communities that are most likely to need support before, during, and after hazardous events.Content: SVI ranks U.S. Census tracts based on 15 social factors, including unemployment, minority status, and disability, and groups them into four related themes. Each tract receives rankings for each Census variable and for each theme, as well as an overall ranking, indicating its relative vulnerability.Purpose: SVI data provides insights into the social vulnerability of communities at both the tract and zip code levels, helping public health officials and emergency response planners allocate resources effectively.Utilization and IntegrationBy integrating data from both the ACS and the SVI, this dataset enables an in-depth analysis and understanding of various socio-economic and demographic indicators at the census tract level. This integrated data is valuable for research, policymaking, and community planning purposes, allowing for a comprehensive understanding of social and economic dynamics across different geographical areas in the United States.ApplicationsTargeted Interventions: Facilitates the development of targeted interventions to address the needs of vulnerable populations within specific zip codes.Resource Allocation: Assists emergency response planners in allocating resources more effectively based on community vulnerability at the zip code level.Research: Provides a rich dataset for academic and applied research in socio-economic and demographic studies at a granular zip code level.Community Planning: Supports the planning and development of community programs and initiatives aimed at improving living conditions and reducing vulnerabilities within specific zip code areas.Note: Due to limitations in the data environment, variable names may be truncated. Refer to the provided table for a clear understanding of the variables. CSV Variable NameShapefile Variable NameDescriptionStateNameStateNameName of the stateStateFipsStateFipsState-level FIPS codeState nameStateNameName of the stateCountyNameCountyNameName of the countyCensusFipsCensusFipsCounty-level FIPS codeState abbreviationStateFipsState abbreviationCountyFipsCountyFipsCounty-level FIPS codeCensusFipsCensusFipsCounty-level FIPS codeCounty nameCountyNameName of the countyAREA_SQMIAREA_SQMITract area in square milesE_TOTPOPE_TOTPOPPopulation estimates, 2013-2017 ACSEP_POVEP_POVPercentage of persons below poverty estimateEP_UNEMPEP_UNEMPUnemployment Rate estimateEP_HBURDEP_HBURDHousing cost burdened occupied housing units with annual income less than $75,000EP_UNINSUREP_UNINSURUninsured in the total civilian noninstitutionalized population estimate, 2013-2017 ACSEP_PCIEP_PCIPer capita income estimate, 2013-2017 ACSEP_DISABLEP_DISABLPercentage of civilian noninstitutionalized population with a disability estimate, 2013-2017 ACSEP_SNGPNTEP_SNGPNTPercentage of single parent households with children under 18 estimate, 2013-2017 ACSEP_MINRTYEP_MINRTYPercentage minority (all persons except white, non-Hispanic) estimate, 2013-2017 ACSEP_LIMENGEP_LIMENGPercentage of persons (age 5+) who speak English "less than well" estimate, 2013-2017 ACSEP_MUNITEP_MUNITPercentage of housing in structures with 10 or more units estimateEP_MOBILEEP_MOBILEPercentage of mobile homes estimateEP_CROWDEP_CROWDPercentage of occupied housing units with more people than rooms estimateEP_NOVEHEP_NOVEHPercentage of households with no vehicle available estimateEP_GROUPQEP_GROUPQPercentage of persons in group quarters estimate, 2014-2018 ACSBelow_5_yrBelow_5_yrUnder 5 years: Percentage of Total populationBelow_18_yrBelow_18_yrUnder 18 years: Percentage of Total population18-39_yr18_39_yr18-39 years: Percentage of Total population40-64_yr40_64_yr40-64 years: Percentage of Total populationAbove_65_yrAbove_65_yrAbove 65 years: Percentage of Total populationPop_malePop_malePercentage of total population malePop_femalePop_femalePercentage of total population femaleWhitewhitePercentage population of white aloneBlackblackPercentage population of black or African American aloneAmerican_indianamerican_iPercentage population of American Indian and Alaska native aloneAsianasianPercentage population of Asian aloneHawaiian_pacific_islanderhawaiian_pPercentage population of Native Hawaiian and Other Pacific Islander aloneSome_othersome_otherPercentage population of some other race aloneMedian_tot_householdsmedian_totMedian household income in the past 12 months (in 2019 inflation-adjusted dollars) by household size – total householdsLess_than_high_schoolLess_than_Percentage of Educational attainment for the population less than 9th grades and 9th to 12th grade, no diploma estimateHigh_schoolHigh_schooPercentage of Educational attainment for the population of High school graduate (includes equivalency)Some_collegeSome_collePercentage of Educational attainment for the population of Some college, no degreeAssociates_degreeAssociatesPercentage of Educational attainment for the population of associate degreeBachelor’s_degreeBachelor_sPercentage of Educational attainment for the population of Bachelor’s degreeMaster’s_degreeMaster_s_dPercentage of Educational attainment for the population of Graduate or professional degreecomp_devicescomp_devicPercentage of Household having one or more types of computing devicesInternetInternetPercentage of Household with an Internet subscriptionBroadbandBroadbandPercentage of Household having Broadband of any typeSatelite_internetSatelite_iPercentage of Household having Satellite Internet serviceNo_internetNo_internePercentage of Household having No Internet accessNo_computerNo_computePercentage of Household having No computerThis table provides a mapping between the CSV variable names and the shapefile variable names, along with a brief description of each variable.
https://www.icpsr.umich.edu/web/ICPSR/studies/9787/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/9787/terms
This data collection contains FIPS codes for state, county, county subdivision, and place, along with the 1990 Census tract number for each side of the street for the urban cores of 550 counties in the United States. Street names, including prefix and/or suffix direction (north, southeast, etc.) and street type (avenue, lane, etc.) are provided, as well as the address range for that portion of the street located within a particular Census tract and the corresponding Census tract number. The FIPS county subdivision and place codes can be used to determine the correct Census tract number when streets with identical names and ranges exist in different parts of the same county. Contiguous block segments that have consecutive address ranges along a street and that have the same geographic codes (state, county, Census tract, county subdivision, and place) have been collapsed together and are represented by a single record with a single address range.
This essential dataset is tailored for real estate investors, home service providers, and Proptech companies, offering in-depth information that drives strategic decision-making and market analysis for Property Owner Data.
The dataset includes detailed address data, owner data, and mailing address data, providing a thorough understanding of each property’s profile. Real estate investors can leverage this data to identify high-potential investment opportunities and analyze market trends with greater accuracy. Home service providers can utilize the mailing address data to target specific properties and optimize their outreach efforts. For Proptech companies, this dataset enhances the development of innovative solutions and data-driven platforms.
Powered by BatchData, a leader in high-quality, up-to-date property information, this dataset ensures you receive the most accurate and current data available. Explore BatchService’s USA Property Owner Data to gain a competitive edge and make informed decisions in the dynamic real estate market.
Basic Property Data Includes: - Property ID - Address City - Address County - Address County FIPS Code - Address Hash - Address House Number - Address Latitude - Address Longitude - Address State - Address Street - Address Zip - Address Zip+4 Code - APN (Assessor's Parcel Number) - Property Owner Full Name - Property Owner First Name - Property Owner Middle Name - Property Owner Last Name - Property Owner Mailing Address City - Property Owner Mailing Address County - Property Owner Mailing Address State - Property Owner Mailing Address Street - Property Owner Mailing Address Zip - Property Owner Mailing Address Zip+4 code
BatchService also has 700+ additional datapoints available ranging from listing information, property characteristics, mortgage data, contact information and more.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This tool--a simple csv or Stata file for merging--gives you a fast way to assign Census county FIPS codes to variously presented county names. This is useful for dealing with county names collected from official sources, such as election returns, which inconsistently present county names and often have misspellings. It will likely take less than ten minutes the first time, and about one minute thereafter--assuming all versions of your county names are in this file. There are about 3,142 counties in the U.S., and there are 77,613 different permutations of county names in this file (ave=25 per county, max=382). Counties with more likely permutations have more versions. Misspellings were added as I came across them over time. I DON'T expect people to cite the use of this tool. DO feel free to suggest the addition of other county name permutations.