Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Unlock the power of geographical precision with this comprehensive ZIP to FIPS dataset. Seamlessly map ZIP codes to Federal Information Processing Standards (FIPS) codes, enabling accurate location-based analyses. Ideal for geospatial applications, demographic research, and data integration. Explore the seamless fusion of ZIP and FIPS codes for enhanced spatial insights.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
explain the relationship between DMA, FIPS and county
ChatGPT said: Here's a breakdown of the relationship between DMA, FIPS, and county:
🗺️ 1. County A county is a geographic and administrative subdivision of a U.S. state.
For example: Cook County in Illinois or Los Angeles County in California.
The U.S. has over 3,000 counties or county-equivalents.
🔢 2. FIPS Code FIPS = Federal Information Processing Standards code.
Used to uniquely identify geographic areas like states and counties.
It consists of:
State FIPS (2 digits) — e.g., California = 06
County FIPS (3 digits) — e.g., Los Angeles County = 037
Together: 06037 (California + Los Angeles County)
FIPS codes are used in datasets, GIS, and federal data standards to track data consistently across agencies.
📺 3. DMA (Designated Market Area) DMA is a geographic region defined by Nielsen where the population receives the same (or similar) TV and radio content.
Used in advertising, media, and Google Trends to segment the market by media consumption patterns.
There are 210 DMAs in the U.S., each labeled by Nielsen with a DMA code or name (e.g., "New York", "Chicago", "Palm Springs").
📌 How They Relate Concept Level Code Type Example County Local FIPS Los Angeles County (06037) FIPS Code System Numeric Encodes state + county DMA Media Region Name/Index Los Angeles DMA
One DMA contains multiple counties.
Example: The Los Angeles DMA includes Los Angeles County, Orange County, Ventura County, etc.
Each county has a unique FIPS code, but a DMA might span counties in multiple states.
When mapping or analyzing data (e.g., in GIS or Google Trends), you often merge county-level data (FIPS) into DMAs for media or market analysis.
🧭 Example State County FIPS DMA Name DMA Code California Los Angeles 06037 Los Angeles 803 California Orange 06059 Los Angeles 803 California Riverside 06065 Palm Springs 804
👉 DMA for FIPS 02013?
Alaska is unique: it’s sparsely populated and has limited Nielsen DMA coverage.
Most of rural Alaska does not belong to a defined DMA. Instead, large parts of Alaska are treated as “non-DMA” or are grouped into a single large DMA (often labeled Anchorage DMA if included).
Facebook
TwitterThis dataset, which represents county Federal Information Processing System (FIPS) codes for each county as a raster, is utilized by reVX to compute setbacks (distances). Setbacks can be computed either locally (on a per-county basis with specified distances or multipliers) or globally under a generic setback multiplier assumption applied to either the turbine tip height or the base setback distance. A County FIPS code is a five-digit numerical identifier that uniquely identifies counties and county equivalents in the United States The initial two digits represent the FIPS state code, while the final three digits signify the county's unique code within that state. For instance, 55025 corresponds to Dane County, Wisconsin. The first two digits - 55 - represent Wisconsin, and the last three digits - 025 - denote Dane County. Further information can be accessed at the "Federal Information Processing System (FIPS) Codes for States and Counties" resource below.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This file maps the state and county fips codes in the data files to standard state and county names.
Facebook
TwitterThis reference table contains data elements for the 58 Counties in California that can be used to join to other data sets. This data includes the following fields:DHCS County CodeCounty NameCounty Region CodeCounty Region DescriptionFIPS County Code (xxx)FIPS State Code + FIPS County Code (06xxx)North/South Indicator
Facebook
TwitterThere is no story behind this data.
These are just supplementary datasets which I plan on using for plotting county wise data on maps.. (in particular for using with my kernel : https://www.kaggle.com/stansilas/maps-are-beautiful-unemployment-is-not/)
As that data set didn't have the info I needed for plotting an interactive map using highcharter .
Since I noticed that most demographic datasets here on Kaggle, either have state code, state name, or county name + state name but not all of it i.e county name, fips code, state name + state code.
Using these two datasets one can get any combination of state county codes etc.
States.csv has State name + code
US counties.csv has county wise data.
Picture : https://unsplash.com/search/usa-states?photo=-RO2DFPl7wE
Counties : https://www.census.gov/geo/reference/codes/cou.html
State :
Not Applicable.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This code is used to generate a combined data set of US ZIP, FIPS, and County data for most ZIP Codes in the U.S. (41,867 to be exact).
Code to generate the data set from the government files listed below can be found here.
The dataset is organized as follows:
The data used to create this data set was taken from several recent government data sets.
These are:
The final csv is in 'latin1' encoding to preserve the Spanish county names in Puerto Rico.
This data is from, and shall remain in the public domain, and the onus of responsibility lies with the user of this data.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Polygons depict the boundaries of Washington State's incorporated municipalities, as recorded by the Washington State Office of Financial Management. Attributes include city names as provided by the Washington State Office of Financial Management, and Federal Information Processing Standard codes(FIPS) as provided by the National Institute of Standards and Technology. The Washington State Office of Financial Management provided FIPS codes for cities incorporated after the National Institute of Standards and Technology's FIPS code publication date. GNIS (Geographic Name Information System) codes provided by the Washington State Department of Revenue have been included for this quarter. The calendar date shown by Time_Period_Of_Content is the date of annexation approval and certification by the Washington State Office of Financial Management. Please direct questions about this dataset to: TransportationGISDataSteward@wsdot.wa.gov.
Facebook
Twitter"""
This dataset provides a detailed breakdown of demographic information for counties across the United States, derived from the U.S. Census Bureau's 2023 American Community Survey (ACS). The data includes population counts by gender, race, and ethnicity, alongside unique identifiers for each county using State and County FIPS codes.
The dataset includes the following columns: - County: Name of the county. - State: Name of the state the county belongs to. - State FIPS Code: Federal Information Processing Standard (FIPS) code for the state. - County FIPS Code: FIPS code for the county. - FIPS: Combined State and County FIPS codes, a unique identifier for each county. - Total Population: Total population in the county. - Male Population: Number of males in the county. - Female Population: Number of females in the county. - Total Race Responses: Total race-related responses recorded in the survey. - White Alone: Number of individuals identifying as White alone. - Black or African American Alone: Number of individuals identifying as Black or African American alone. - Hispanic or Latino: Number of individuals identifying as Hispanic or Latino.
NAME field for clarity.This dataset is highly versatile and suitable for: - Demographic Analysis: - Analyze population distribution by gender, race, and ethnicity. - Geographic Studies: - Use FIPS codes to map counties geographically. - Data Visualizations: - Create visual insights into demographic trends across counties.
Special thanks to the U.S. Census Bureau for making this data publicly available and to the Kaggle community for fostering a collaborative space for data analysis and exploration. """
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Humanity's role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the 'anthropocene', as humans are 'overwhelming the great forces of nature'. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed 'manufactured capital', 'technomass', 'human-made mass', 'in-use stocks' or 'socioeconomic material stocks', they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with 'real' (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called 'built structures') represent the overwhelming majority of all socioeconomic material stocks. This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Spatial extentThis subdataset covers the West Coast CONUS, i.e. CA OR WA For the remaining CONUS, see the related identifiers. Temporal extentThe map is representative for ca. 2018. Data formatThe data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided. Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types). Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e. t at 10m x 10m kt at 100m x 100m Mt at 1km x 1km Gt at 10km x 10km For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming. Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv. Material layersNote that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers): A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337. Further informationFor further information, please see the publication.A web-visualization of this dataset is available here.Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. PublicationD. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gómez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, and H. Haberl (2023): Unveiling patterns in human dominated landscapes through mapping the mass of US built structures. Nature Communications 14, 8014. https://doi.org/10.1038/s41467-023-43755-5 FundingThis research was primarly funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404. AcknowledgmentsWe thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.
Facebook
TwitterThis CT Planning Regions layer consists of individual polygons representing each of the 9 planning regions that make up the state of Connecticut.
This feature layer is directly derived from the CTDOT Municipalities feature layer geometry, created by CT Department of Transportation. The municipalities are dissolved into their associated regional Councils of Governments.
This feature layer includes US Census Federal Information Processing Standards (FIPS) codes that are associated with each municipality. This was included based on information from Connecticut County to County Subdivision Crosswalk from the US Census.
Connecticut’s 9 planning regions provide a geographic framework within which municipalities can jointly address common interests and coordinate such interests with state plans and programs. CGS Section 16a-4a authorizes the Secretary of the Office of Policy and Management (OPM) to designate or redesignate the boundaries of logical planning regions. CGS Section 4-124j authorizes the member municipalities of each planning region to establish a formal regional governance structure known as a council of governments (COG).
These regions have been recognized as county-equivalents and supersede the eight legacy counties in the state.
For more information see:
CT Office of Policy and Management, Regional Councils of Governments in Connecticut Final Change to County Equivalents in Connecticut [PDF] Final Federal Register Notice CT Office of the Secretary of the State, Regional Councils of Governments
Field name
Field description
PlanningRegion
Name of the Councils of Governments planning region.
PlanningRegion FIPS
US Census FIPS code associated with the Councils of Governments planning region.
StateFIPS
US Census FIPS code associated with the state.
PlanningRegionFIPS_GEOID
Full US Census FIPS for the COG.
ObjectID
Unique Object ID.
CT Municipalities
CT Counties
CT Councils of Governments
CT Planning Regions
Facebook
TwitterMaps US states by their FIPS code to common English name
Facebook
TwitterThe TIGER/Line Files include both incorporated places (legal entities) and census designated places or CDPs (statistical entities). An incorporated place is established to provide governmental functions for a concentration of people as opposed to a minor civil division (MCD), which generally is created to provide services or administer an area without regard, necessarily, to population. Places always nest within a State, but may extend across county and county subdivision boundaries. An incorporated place usually is a city, town, village, or borough, but can have other legal descriptions. CDPs are delineated for the decennial census as the statistical counterparts of incorporated places. CDPs are delineated to provide data for settled concentrations of population that are identifiable by name, but are not legally incorporated under the laws of the State in which they are located. The boundaries for CDPs often are defined in partnership with State, local, and/or tribal officials and usually coincide with visible features or the boundary of an adjacent incorporated place or another legal entity. CDP boundaries often change from one decennial census to the next with changes in the settlement pattern and development; a CDP with the same name as in an earlier census does not necessarily have the same boundary. The only population/housing size requirement for CDPs for the 2010 Census is that they must contain some housing and population. The boundaries of all 2020 Census incorporated places are as of January 1, 2020 as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The boundaries of all 2020 Census CDPs were delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP).STATEFP 2 String State FIPS codeCONCTYFP 5 String Consolidated city FIPS codeCONCTYNS 8 String Consolidated city GNIS codeGEOID 7 String Consolidated city identifier; a concatenation of current state FIPS code and consolidated city FIPS codeNAME 100 String Consolidated city nameNAMELSAD 100 String Name and the translated legal/statistical area description for consolidated cityLSAD 2 String Legal/statistical area description code for consolidated cityCLASSFP 2 String FIPS class codeMTFCC 5 String MAF/TIGER Feature Class Code (G4120)FUNCSTAT 1 String Functional statusALAND 14 Number Land areaAWATER 14 Number Water areaINTPTLAT 11 String Latitude of the internal pointINTPTLON 12 String Longitude of the internal poinhttps://www2.census.gov/geo/pdfs/maps-data/data/tiger/tgrshp_rd18/TGRSHPRD18_TechDoc.pdf
Facebook
TwitterDataset Summary About this data: This layer presents the USA 2020 Census tracts within the City of Rochester boundary. The geography is sourced from US Census Bureau 2020 TIGER FGDB (National Sub-State) and cut by the City of Rochester boundary. Data Dictionary: STATE_ABBR: The two-letter abbreviation for a state (such as NY). STATE_FIPS: The two-digit Federal Information Processing Standards (FIPS) code assigned to each US state. New York State is 36. COUNTY_FIP: The three-digit Federal Information Processing Standards (FIPS) code assigned to each US county. Monroe County is 055. STCO_FIPS: The five-digit Federal Information Processing Standards (FIPS) code assigned to iedntify a unique county, typically as a concatenation of the State FIPS code and the County FIPS code. TRACT_FIPS: The six-digit number assigned to each census tract in a US county. FIPS: A unique geographic identifier, typically as a concatenation of State FIPS code, County FIPS code, and Census tract code. POPULATION: The population of a census tract. POP_SQMI: The population per square mile of a census tract. SQMI: The size of a census tract in square miles. Division: The name of the City of Rochester data division that the census tract falls in to. Source: This data comes from the Census Bureau.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Humanity's role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the 'anthropocene', as humans are 'overwhelming the great forces of nature'. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed 'manufactured capital', 'technomass', 'human-made mass', 'in-use stocks' or 'socioeconomic material stocks', they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with 'real' (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called 'built structures') represent the overwhelming majority of all socioeconomic material stocks. This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Spatial extentThis dataset covers the whole CONUS. Due to upload constraints, detailed data were split into 7 regions and were uploaded into sub-repositories - see related identifiers. (This repository holds aggregated values for the whole CONUS) Great Plains Mid West North East Rocky Mountains South South West West Coast Temporal extentThe map is representative for ca. 2018. Data formatThe data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided. Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types). Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e. t at 10m x 10m kt at 100m x 100m Mt at 1km x 1km Gt at 10km x 10km For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming. Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv. Material layersNote that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers): A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337. Further informationFor further information, please see the publication.A web-visualization of this dataset is available here.Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. PublicationD. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gómez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, and H. Haberl (2023): Unveiling patterns in human dominated landscapes through mapping the mass of US built structures. Nature Communications 14, 8014. https://doi.org/10.1038/s41467-023-43755-5 FundingThis research was primarly funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404. AcknowledgmentsWe thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC, and Wolfgang Wagner for granting access to preprocessed Sentinel-1 data.
Facebook
TwitterA crosswalk dataset matching US ZIP codes to corresponding county codes
The denominators used to calculate the address ratios are the ZIP code totals. When a ZIP is split by any of the other geographies, that ZIP code is duplicated in the crosswalk file.
**Example: **ZIP code 03870 is split by two different Census tracts, 33015066000 and 33015071000, which appear in the tract column. The ratio of residential addresses in the first ZIP-Tract record to the total number of residential addresses in the ZIP code is .0042 (.42%). The remaining residential addresses in that ZIP (99.58%) fall into the second ZIP-Tract record.
So, for example, if one wanted to allocate data from ZIP code 03870 to each Census tract located in that ZIP code, one would multiply the number of observations in the ZIP code by the residential ratio for each tract associated with that ZIP code.
https://redivis.com/fileUploads/4ecb405e-f533-4a5b-8286-11e56bb93368%3E" alt="">(Note that the sum of each ratio column for each distinct ZIP code may not always equal 1.00 (or 100%) due to rounding issues.)
County definition
In the United States, a county is an administrative or political subdivision of a state that consists of a geographic region with specific boundaries and usually some level of governmental authority. The term "county" is used in 48 U.S. states, while Louisiana and Alaska have functionally equivalent subdivisions called parishes and boroughs, respectively.
Further reading
The following article demonstrates how to more effectively use the U.S. Department of Housing and Urban Development (HUD) United States Postal Service ZIP Code Crosswalk Files when working with disparate geographies.
Wilson, Ron and Din, Alexander, 2018. “Understanding and Enhancing the U.S. Department of Housing and Urban Development’s ZIP Code Crosswalk Files,” Cityscape: A Journal of Policy Development and Research, Volume 20 Number 2, 277 – 294. URL: https://www.huduser.gov/portal/periodicals/cityscpe/vol20num2/ch16.pdf
Contact information
Questions regarding these crosswalk files can be directed to Alex Din with the subject line HUD-Crosswalks.
Acknowledgement
This dataset is taken from the U.S. Department of Housing and Urban Development (HUD) office: https://www.huduser.gov/portal/datasets/usps_crosswalk.html#codebook
Facebook
Twitter(SEE SUPPLEMENTAL INFORMATION SECTION FOR FILE-SPECIFIC INFORMATION.)Digital orthophoto quarter-quads are now available for most of the United States and its Territories. Quarter-quad DOQs cover an area measuring 3.75-minutes longitude by 3.75-minutes latitude. Quarter-quad DOQs are available in both Native and GeoTIFF formats. Native format consists of an ASCII keyword header followed by a series of 8-bit binary image lines for B/W and 24-bit band-interleaved-by-pixel (BIP) for color. DOQs in native format are cast to the Universal Transverse Mercator (UTM) projection and referenced to either the North American Datum (NAD) of 1927 (NAD27) or the NAD of 1983 (NAD83). GeoTIFF format consists of a georeferenced Tagged Image File Format (TIFF), with all geographic referencing information embedded within the .tif file. DOQs in GeoTIFF format are cast to the UTM projection and referenced to NAD83. The average file size of a B/W quarter quad is 40-45 megabytes, and a color file is generally 140-150 megabytes. Quarter-quad DOQs are distributed on CD-ROM, DVD, and File Transfer Protocol (FTP) as uncompressed files.A downloadable software is available (DOQQ-to-GeoTIFF conversion) which will convert a DOQ image from Native to GeoTIFF format in either NAD27 or NAD83. NOTE: This EML metadata file does not contain important geospatial data processing information. Before using any NWT LTER geospatial data read the arcgis metadata XML file in either ISO or FGDC compliant format, using ArcGIS software (ArcCatalog > description), or by viewing the .xml file provided with the geospatial dataset.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual- chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the New Mexico West (FIPS 3003) State Plane projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:12,000.
Facebook
Twitterdescription: The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual- chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the Delaware (FIPS 0700) State Plane projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:12,000. Coastal study data as defined in FEMA Gudelines and Specifications, Appendix D: Guidance for Coastal Flooding Analyses and Mapping, submitted as a result of a coastal study. Appendix D notes that a variety of analytical methodologies may be used to establish Base (1-percent-annual-chance) Flood Elevations (BFEs) and floodplains throughout coastal areas of the United States. Appendix D itemizes references for the methodologies currently in use by FEMA for specific coastal flood hazards, provides general guidance for documentation of a coastal flood hazard analysis, specifies flood hazard analysis procedures for the Great Lakes coasts, and outlines intermediate data submissions for coastal flood hazard analyses with new storm surge modeling and revised stillwater flood level (SWFL). (Source: FEMA Guidelines and Specs, Appendix D Guidance for Coastal Flooding Analyses and Mapping, Section D.1); abstract: The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual- chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the Delaware (FIPS 0700) State Plane projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:12,000. Coastal study data as defined in FEMA Gudelines and Specifications, Appendix D: Guidance for Coastal Flooding Analyses and Mapping, submitted as a result of a coastal study. Appendix D notes that a variety of analytical methodologies may be used to establish Base (1-percent-annual-chance) Flood Elevations (BFEs) and floodplains throughout coastal areas of the United States. Appendix D itemizes references for the methodologies currently in use by FEMA for specific coastal flood hazards, provides general guidance for documentation of a coastal flood hazard analysis, specifies flood hazard analysis procedures for the Great Lakes coasts, and outlines intermediate data submissions for coastal flood hazard analyses with new storm surge modeling and revised stillwater flood level (SWFL). (Source: FEMA Guidelines and Specs, Appendix D Guidance for Coastal Flooding Analyses and Mapping, Section D.1)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Humanity's role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the 'anthropocene', as humans are 'overwhelming the great forces of nature'. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed 'manufactured capital', 'technomass', 'human-made mass', 'in-use stocks' or 'socioeconomic material stocks', they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with 'real' (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called 'built structures') represent the overwhelming majority of all socioeconomic material stocks. This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Spatial extentThis subdataset covers the South West CONUS, i.e. AZ NM NV TX For the remaining CONUS, see the related identifiers. Temporal extentThe map is representative for ca. 2018. Data formatThe data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided. Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types). Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e. t at 10m x 10m kt at 100m x 100m Mt at 1km x 1km Gt at 10km x 10km For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming. Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv. Material layersNote that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers): A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337. Further informationFor further information, please see the publication.A web-visualization of this dataset is available here.Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. PublicationD. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gómez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, and H. Haberl (2023): Unveiling patterns in human dominated landscapes through mapping the mass of US built structures. Nature Communications 14, 8014. https://doi.org/10.1038/s41467-023-43755-5 FundingThis research was primarly funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404. AcknowledgmentsWe thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Unlock the power of geographical precision with this comprehensive ZIP to FIPS dataset. Seamlessly map ZIP codes to Federal Information Processing Standards (FIPS) codes, enabling accurate location-based analyses. Ideal for geospatial applications, demographic research, and data integration. Explore the seamless fusion of ZIP and FIPS codes for enhanced spatial insights.