https://dataverse.cirad.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.18167/DVN1/WMK4GMhttps://dataverse.cirad.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.18167/DVN1/WMK4GM
Forest censuses from the Nouragues research station, CNRS, French Guiana, in the Guyafor network. This dataset gathered trees location, botanical identification and size measurement from the 1992-94 census. The mission of the Nouragues research Station is to foster scientific research in tropical rain forests, at a site remote from major human activities. Guyafor Data Dictionary
Official statistics are produced impartially and free from political influence.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Respondents could report more than one major for their bachelor's degree. This table only counts the first major that was reported and does not necessarily reflect the first degree earned..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, please visit the American Community Survey Technical Documentation website..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
https://dataverse.cirad.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.18167/DVN1/672D3Thttps://dataverse.cirad.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.18167/DVN1/672D3T
Forest censuses from the Nouragues research station, CNRS, French Guiana, in the Guyafor network. This dataset gathered trees location, botanical identification and size measurement from the 2001-02 census. The mission of the Nouragues research Station is to foster scientific research in tropical rain forests, at a site remote from major human activities. Guyafor Data Dictionary
https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
The dataset consists of the distribution of water bodies the country as enumerated in the first Census on Water Bodies in India. State wise data is also available in this dataset by the different types of water bodies in the country. Water bodies have been defined as ‘all natural or man-made units bounded on all sides with some or no masonry work used for storing water for irrigation or other purposes like industrial, pisciculture, domestic/drinking, recreation, religious, ground water recharge etc.’ These water bodies are typically of various types and known by different names such as tanks, reservoirs, ponds and bundhies, among others. A structure where water from ice-melt, streams, springs, rain, or drainage of water from residential or other areas is accumulated or water is stored by diversion from a stream, nala or river has also been treated as water body. Oceans, lagoons, rivers, spring, waterfall, etc which are free flowing without any bounded storage have been excluded in the census. Water tanks and temporary water bodies created for household usage, cattle, and factories have also been excluded.
The 2005 First Edition TIGER/Line files are an extract of selected geographic and cartographic information from the Census TIGER database. The geographic coverage for a single TIGER/Line file is a county or statistical equivalent entity, with the coverage area based on the latest available governmental unit boundaries. The Census TIGER database represents a seamless national file with no overlaps or gaps between parts. However, each county-based TIGER/Line file is designed to stand alone as an independent data set or the files can be combined to cover the whole Nation. The 2005 First Edition TIGER/Line files consist of line segments representing physical features and governmental and statistical boundaries. The files contain information distributed over a series of record types for the spatial objects of a county. There are 19 record types, including the basic data record, the shape coordinate points, and geographic codes that can be used with appropriate software to prepare maps. Other geographic information contained in the files includes attributes such as feature identifiers/census feature class codes (CFCC) used to differentiate feature types, address ranges and ZIP Codes, codes for legal and statistical entities, latitude/longitude coordinates of linear and point features, landmark point features, area landmarks, and area boundaries.
Brazil conducted its first nationwide census in 1872; this census gave total populations of 4.2 million free non-whites, 1.5 million slave non-whites, and 3.8 million whites. Indigenous people and those of mixed indigenous descent were largely excluded from the census, although an overall figure of 0.4 million was given for the entire country. These figures combined to give a total of 9.9 million (modern UN estimates put the total at 10.3 million in 1872; likely due to the census' exclusion of many non-white infants).
The state of Minas Gerais had the largest population, at over two million people, with the neighboring states of Bahia and Rio de Janeiro with the second and third largest populations respectively. East Brazil was the region with the largest population, followed by the northeast and then south. In terms of ethnicity, non-whites outnumbered white people in every region except for the south, and free people of color outnumbered slaves in every state except for Rio de Janeiro.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Respondents could report more than one major for their bachelor's degree. This table only counts the first major that was reported and does not necessarily reflect the first degree earned..This table shows the total number of degrees per field, not the total number of respondents. If a respondent had degrees in more than one field, then each degree would be counted in its respective field. For example if Respondent A majored in Psychology and Respondent B majored in Psychology and Engineering, three majors would be counted in the table (two Psychology majors, and one Engineering major). If a respondent received multiple degrees within the same category, these degrees would only count once in the table. For example, if a respondent majored in Chemical Engineering and Mechanical Engineering, this would count as only one major since both fields fall within Engineering..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
Historical population as enumerated and corrected from 1790 through 2020. North Carolina was one of the 13 original States and by the time of the 1790 census had essentially its current boundaries. The Census is mandated by the United States Constitution and was first completed for 1790. The population has been counted every ten years hence, with some limitations. In 1790 census coverage included most of the State, except for areas in the west, parts of which were not enumerated until 1840. The population for 1810 includes Walton County, enumerated as part of Georgia although actually within North Carolina. Historical populations shown here reflect the population of the respective named county and not necessarily the population of the area of the county as it was defined for a particular census. County boundaries shown in maps reflect boundaries as defined in 2020. Historic boundaries for some counties may include additional geographic areas or may be smaller than the current geographic boundaries. Notes below list the county or counties with which the population of a currently defined county were enumerated historically (Current County: Population counted in). The current 100 counties have been in place since the 1920 Census, although some modifications to the county boundaries have occurred since that time. For historical county boundaries see: Atlas of Historical County Boundaries Project (newberry.org)County Notes: Note 1: Total for 1810 includes population (1,026) of Walton County, reported as a Georgia county but later determined to be situated in western North Carolina. Total for 1890 includes 2 Indians in prison, not reported by county. Note 2: Alexander: *Iredell, Burke, Wilkes. Note 3: Avery: *Caldwell, Mitchell, Watauga. Note 4: Buncombe: *Burke, Rutherford; see also note 22. Note 5: Caldwell: *Burke, Wilkes, Yancey. Note 6: Cleveland: *Rutherford, Lincoln. Note 7: Columbus: *Bladen, Brunswick. Note 8: Dare: *Tyrrell, Currituck, Hyde. Note 9: Hoke: *Cumberland, Robeson. Note 10: Jackson: *Macon, Haywood. Note 11: Lee: *Moore, Chatham. Note 12: Lenoir: *Dobbs (Greene); Craven. Note 13: McDowell: *Burke, Rutherford. Note 14: Madison: *Buncombe, Yancey. Note 15: Mitchell: *Yancey, Watauga. Note 16: Pamlico: *Craven, Beaufort. Note 17: Polk: *Rutherford, Henderson. Note 18: Swain: *Jackson, Macon. Note 19: Transylvania: *Henderson, Jackson. Note 20: Union: *Mecklenburg, Anson. Note 21: Vance: *Granville, Warren, Franklin. Note 22: Walton: Created in 1803 as a Georgia county and reported in 1810 as part of Georgia; abolished after a review of the State boundary determined that its area was located in North Carolina. By 1820 it was part of Buncombe County. Note 23: Watauga: *Ashe, Yancey, Wilkes; Burke. Note 24: Wilson: *Edgecombe, Nash, Wayne, Johnston. Note 25: Yancey: *Burke, Buncombe. Note 26: Alleghany: *Ashe. Note 27: Haywood: *Buncombe. Note 28: Henderson: *Buncombe. Note 29: Person: Caswell. Note 30: Clay: Cherokee. Note 31: Graham: Cherokee. Note 32: Harnett: Cumberland. Note 33: Macon: Haywood.
Note 34: Catawba: Lincoln. Note 35: Gaston: Lincoln. Note 36: Cabarrus: Mecklenburg.
Note 37: Stanly: Montgomery. Note 38: Pender: New Hanover. Note 39: Alamance: Orange.
Note 40: Durham: Orange, Wake. Note 41: Scotland: Richmond. Note 42: Davidson: Rowan. Note 43: Davie: Rowan.Note 44: Forsyth: Stokes. Note 45: Yadkin: Surry.
Note 46: Washington: Tyrrell.Note 47: Ashe: Wilkes. Part III. Population of Counties, Earliest Census to 1990The 1840 population of Person County, NC should be 9,790. The 1840 population of Perquimans County, NC should be 7,346.
2020 Census P.L. 94-171 is the first detailed data release from the 2020 Decennial Census of Population and Housing. The web layer is based on an extract for Table P1 – Race at the place level geography of Broward County, Florida. The data extract was then joined to the 2020 Census TIGER/Line Shapefiles.
For details on field names, table hierarchy, and table contents refer to TABLE (MATRIX) SECTION in Chapter 6. Data Dictionary, https://www2.census.gov/programs-surveys/decennial/2020/technical-documentation/complete-tech-docs/summary-file/2020Census_PL94_171Redistricting_StatesTechDoc_English.pdf" STYLE="text-decoration:underline;">2020 Census State Public Law 94-171 Summary File Technical Documentation.
A broad and generalized selection of 2014-2018 US Census Bureau 2018 5-year American Community Survey population data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico Census tracts). The selection is not comprehensive, but allows a first-level characterization of total population, male and female, and both broad and narrowly-defined age groups. In addition to the standard selection of age-group breakdowns (by male or female), the dataset provides supplemental calculated fields which combine several attributes into one (for example, the total population of persons under 18, or the number of females over 65 years of age). The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. While the ACS contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by Census tract boundaries in New Mexico. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
2020 TIGER FilesTopologically Integrated Geographic Encoding and Referencing (TIGER) files are a product of the U.S. Census Bureau. These files include vector data on features such as transportation and hydrography, landmarks, Congressional Districts, and census blocks and tracts.Full technical documentation for TIGER/Line® Shapefiles can be found here.2020 Redistricting DataPublic Law (P.L.) 94-171, enacted by Congress in December 1975, requires the Census Bureau to provide states the opportunity to identify the small area geography for which they need data in order to conduct legislative redistricting. The law also requires the U.S. Census Bureau to furnish tabulations of population to each state, including for those small areas the states have identified, within one year of Census day.Since the first Census Redistricting Data Program, conducted as part of the 1980 census, the U.S. Census Bureau has included summaries for the major race groups specified by the Statistical Programs and Standards Office of the U.S. Office of Management and Budget (OMB) in Directive 15 (as issued in 1977 and revised in 1997). Originally, the tabulation groups included White, Black, American Indian/Alaska Native, and Asian/Pacific Islander, plus “some other race.” These race data were also cross-tabulated by Hispanic/Non-Hispanic origin. At the request of the state legislatures and the Department of Justice, for the 1990 Census Redistricting Data Program, voting age (18 years old and over) was added to the cross-tabulation of race and Hispanic origin. For the 2000 Census, these categories were revised to the current categories used today.To view the full technical documentation for the 2020 Census Redistricting Data, please click here.
The purpose of the census was to provide demographic and socio-economic statistics in Uganda. The long term objective of the 2002 census was to maintain approximate decennial censuses and ensure availability of time series population benchmark statistical information at various administrative levels for the development of a coordinated and integrated data collection system in the country.The enumeration covered all persons resident in Uganda on the census night. Special arrangements were made to enumerate institutional, homeless, hotel and mobile populations. The census collected data on the demographic and socio-economic characteristics of the population; household and housing conditions, agriculture, activities of micro and small enterprises and the community characteristics.
The main purpose of the Agricultural module was to provide appropriate sampling frames for a detailed Census of Agriculture in 2003, and a Census of Livestock in 2004. There was evidence of deliberate falsification of data from Kotido District. Therefore the analysis excludes data for Kotido District.
The immediate objectives of the census were: - To create/update census field maps and lists of EAs for the control of the 2002 census and construction of efficient area sampling frames; - Effectively complete conducting a Population and Housing census with an Agricultural and Livestock module; - To generate basic demographic and socio-economic data from the 2002 census disaggregated by sex, age and administrative areas; - To compile agricultural and livestock sampling frames to be used in the subsequent sample surveys of these components; - To evaluate, analyze and disseminate the census results at all administrative levels.
The census covered the whole country.
The census covered all the household members, all persons aged 5 years and above resident in the houseold, all persons aged 10 years and above resident in the household and all women aged 12 to 54 years resident in the household.
Census/enumeration data [cen]
Face-to-face [f2f]
The questionnaires for the 2002 Uganda Population and Housing Census were based on 1991 Census model with some modifications and additions. A household questionnaire was administered in each household, which collected various information on household members including sex, age, disability, religion, date of birth and orphanhood status. The household questionnaire also included the agricultural and micro and small enterprises modules. In addition to a household questionnaire, questionnaires were administered in each household for women aged 12-54, all persons aged 5 years and above, and also all persons aged 10 years and above.
Preliminary editing was carried out to identify, investigate and resolve inconsistencies resulting from possible data entry and / or coding errors. After completion of the preliminary editing, the edited data was subjected to the edit programmes in two phases. The first run was to undertake structural edits which in turn was ensuring that the entries were logical. The second run of the programme was aimed at ensuring completeness of content and as a result, missing values had to be imputed following logic embedded in the computer programs according to the editing specifications or rules established.
A series of data quality tables are available to review the quality of the data and include the following: - Estimation of Population in an Area - Distribution of Households and Primary Sampling Units among strata - Age Tolerance limits used in matching individuals - Distribution of missing EAs during matching by strata - Distribution of EAs among strata - Un-weighted Number of matched and non-matched cases - Estimates of the Coverage rates - Population Estimates - Rate of Agreement by characteristics, residence and Region - Net Difference rate and Index of Inconsistency by characteristics - A list of PES indicators selected for computation of sampling errors - Reliability of Estimates Based on Selected Indicators at National Level - Reliability of Estimates Based on Selected Indicators For Urban Areas - Reliability of estimates Based on Selected indicators for rural Areas by Regions
The results of each of these data quality tables are shown in the appendix of the final report and are also given in the external resources section
Abstract copyright UK Data Service and data collection copyright owner.
The 2023 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system.
The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.
National coverage
Households and persons
UNITS IDENTIFIED: - Dwellings: Yes - Vacant units: No - Households: Yes - Individuals: Yes - Group quarters: Yes - Special populations: Homeless people, temporarily absent persons, and temporary residents
UNIT DESCRIPTIONS: - Dwellings: Housing stock are living quarters irrespective of ownership, including residential buildings, special houses (like hostels, houses for lonely and old people, children's homes, boarding houses for disabled, school hostels and boarding school), flats, service housings, other living accomodations in other buildings suited for living. - Households: A group of people sharing the same housing unit (or one person living alone), jointly keeping the house, i.e. fully or partially pooling their individual budgets for common expenditures for food and daily living needs or having a common budget who may or may not be related by kinship. - Group quarters: Groups of people living at the same institution (housing unit), sharing meals, without having individual budgets or common consumer expenditures, subject to the same general rules, and usually unelated by kinship.
All population inside the country, including private and institutional households and their housing conditions
Census/enumeration data [cen]
MICRODATA SOURCE: National Statistical Committee of the Kyrgyz Republic
SAMPLE DESIGN: 20% sample drawn by the country: systematic sample of every 5th household or every 5th individual in collective household 10% sample drawn by MPC from the 20% sample: systematic sample of every 2nd household
SAMPLE UNIT: Households
SAMPLE FRACTION: 10%
SAMPLE SIZE (person records): 476,886 (persons in private and selected households only)
Face-to-face [f2f]
There are two forms: "List of residents and their housing conditions" (Form 1) and "Census questionnaire" (Form 2).
COVERAGE: 100%
2020 Census P.L. 94-171 is the first detailed data release from the 2020 Decennial Census of Population and Housing. The web layer is based on an extract for Table H1 – Occupancy Status at the block group level geography of Broward County, Florida. The data extract was then joined to the 2020 Census TIGER/Line Shapefiles.
For details on field names, table hierarchy, and table contents refer to TABLE (MATRIX) SECTION in Chapter 6. Data Dictionary, 2020 Census State Public Law 94-171 Summary File Technical Documentation.
In the past four centuries, the population of the United States has grown from a recorded 350 people around the Jamestown colony of Virginia in 1610, to an estimated 331 million people in 2020. The pre-colonization populations of the indigenous peoples of the Americas have proven difficult for historians to estimate, as their numbers decreased rapidly following the introduction of European diseases (namely smallpox, plague and influenza). Native Americans were also omitted from most censuses conducted before the twentieth century, therefore the actual population of what we now know as the United States would have been much higher than the official census data from before 1800, but it is unclear by how much. Population growth in the colonies throughout the eighteenth century has primarily been attributed to migration from the British Isles and the Transatlantic slave trade; however it is also difficult to assert the ethnic-makeup of the population in these years as accurate migration records were not kept until after the 1820s, at which point the importation of slaves had also been illegalized. Nineteenth century In the year 1800, it is estimated that the population across the present-day United States was around six million people, with the population in the 16 admitted states numbering at 5.3 million. Migration to the United States began to happen on a large scale in the mid-nineteenth century, with the first major waves coming from Ireland, Britain and Germany. In some aspects, this wave of mass migration balanced out the demographic impacts of the American Civil War, which was the deadliest war in U.S. history with approximately 620 thousand fatalities between 1861 and 1865. The civil war also resulted in the emancipation of around four million slaves across the south; many of whose ancestors would take part in the Great Northern Migration in the early 1900s, which saw around six million black Americans migrate away from the south in one of the largest demographic shifts in U.S. history. By the end of the nineteenth century, improvements in transport technology and increasing economic opportunities saw migration to the United States increase further, particularly from southern and Eastern Europe, and in the first decade of the 1900s the number of migrants to the U.S. exceeded one million people in some years. Twentieth and twenty-first century The U.S. population has grown steadily throughout the past 120 years, reaching one hundred million in the 1910s, two hundred million in the 1960s, and three hundred million in 2007. In the past century, the U.S. established itself as a global superpower, with the world's largest economy (by nominal GDP) and most powerful military. Involvement in foreign wars has resulted in over 620,000 further U.S. fatalities since the Civil War, and migration fell drastically during the World Wars and Great Depression; however the population continuously grew in these years as the total fertility rate remained above two births per woman, and life expectancy increased (except during the Spanish Flu pandemic of 1918).
Since the Second World War, Latin America has replaced Europe as the most common point of origin for migrants, with Hispanic populations growing rapidly across the south and border states. Because of this, the proportion of non-Hispanic whites, which has been the most dominant ethnicity in the U.S. since records began, has dropped more rapidly in recent decades. Ethnic minorities also have a much higher birth rate than non-Hispanic whites, further contributing to this decline, and the share of non-Hispanic whites is expected to fall below fifty percent of the U.S. population by the mid-2000s. In 2020, the United States has the third-largest population in the world (after China and India), and the population is expected to reach four hundred million in the 2050s.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
U.S. Census Block GroupsThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Census Bureau (USCB), displays Census block groups in the 50 states, the District of Columbia, and Puerto Rico. Per the USCB, "Block Groups (BGs) are clusters of blocks within the same census tract. Each census tract contains at least one BG, and BGs are uniquely numbered within census tracts. BGs have a valid code range of 0 through 9. BGs have the same first digit of their 4-digit census block number from the same decennial census. BGs coded 0 are intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and Great Lakes water areas. Block groups generally contain between 600 and 3,000 people. A BG usually covers a contiguous area but never crosses county or census tract boundaries. They may, however, cross the boundaries of other geographic entities like county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian / Alaska Native / Native Hawaiian areas".Block Group 2 - Census Tract 010400 (Santa Fe, NM area)Data version: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Census Block Groups) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 70 (Series Information for Block Group State-based TIGER/Line Shapefiles, Current)OGC API Features Link: (U.S. Census Block Groups - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: What are census blocks?For feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the "boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes."For other NGDA Content: Esri Federal Datasets
Official statistics are produced impartially and free from political influence.
https://dataverse.cirad.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.18167/DVN1/WMK4GMhttps://dataverse.cirad.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.18167/DVN1/WMK4GM
Forest censuses from the Nouragues research station, CNRS, French Guiana, in the Guyafor network. This dataset gathered trees location, botanical identification and size measurement from the 1992-94 census. The mission of the Nouragues research Station is to foster scientific research in tropical rain forests, at a site remote from major human activities. Guyafor Data Dictionary