100+ datasets found
  1. fitbit data

    • kaggle.com
    Updated Apr 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BK Vishwas (2022). fitbit data [Dataset]. https://www.kaggle.com/datasets/bkvishwas/fitbit-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 2, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    BK Vishwas
    Description

    Content This dataset generated by respondents to a distributed survey via Amazon Mechanical Turk between 03.12.2016-05.12.2016. Thirty eligible Fitbit users consented to the submission of personal tracker data, including minute-level output for physical activity, heart rate, and sleep monitoring. Individual reports can be parsed by export session ID (column A) or timestamp (column B). Variation between output represents use of different types of Fitbit trackers and individual tracking behaviors / preferences.

  2. Global import data of Fitbit Fitness Watch

    • volza.com
    csv
    Updated May 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Volza FZ LLC (2025). Global import data of Fitbit Fitness Watch [Dataset]. https://www.volza.com/p/fitbit-fitness-watch/import/
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 30, 2025
    Dataset provided by
    Volza
    Authors
    Volza FZ LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Count of importers, Sum of import value, 2014-01-01/2021-09-30, Count of import shipments
    Description

    301 Global import shipment records of Fitbit Fitness Watch with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.

  3. o

    Fitbit Wellness Tracker Data

    • opendatabay.com
    .undefined
    Updated May 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DataDooix LTD (2025). Fitbit Wellness Tracker Data [Dataset]. https://www.opendatabay.com/data/healthcare/a80a4aa4-e633-4752-8785-bb0bf93c656e
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    May 30, 2025
    Dataset authored and provided by
    DataDooix LTD
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Public Health & Epidemiology
    Description

    Explore Fitness, Health, and Wellness Through Comprehensive Tracker Data

    This dataset contains 29 merged files covering minute-level, hourly, and daily tracking across multiple health and wellness metrics. The data is split into two distinct time periods:

    • Export 1: March 12, 2016 - April 11, 2016
    • Export 2: April 12, 2016 - May 12, 2016

    These exports provide detailed insights into user behavior patterns using Fitbit devices, allowing for robust analyses in health and fitness trends.
    Dataset Features: 1. Daily Activity:
    - Aggregated metrics for steps, calories, and intensity.
    - Files: dailyActivity_merged.csv, dailyCalories_merged.csv, dailyIntensities_merged.csv, dailySteps_merged.csv.

    1. Hourly Data:

      • Hourly breakdowns of activity and calorie burn.
      • Files: hourlyCalories_merged.csv, hourlyIntensities_merged.csv, hourlySteps_merged.csv.
    2. Minute-Level Data:

      • High-resolution data in narrow and wide formats for calories, steps, intensity, and METs.
      • Files:
        • Narrow: minuteCaloriesNarrow_merged.csv, minuteIntensitiesNarrow_merged.csv, minuteStepsNarrow_merged.csv, minuteMETsNarrow_merged.csv.
        • Wide: minuteCaloriesWide_merged.csv, minuteIntensitiesWide_merged.csv, minuteStepsWide_merged.csv.
    3. Heart Rate:

      • Second-by-second heart rate data for precise analysis.
      • File: heartrate_seconds_merged.csv.
    4. Sleep Data:

      • Insights into sleep quality, duration, and patterns.
      • Files: minuteSleep_merged.csv, sleepDay_merged.csv.
    5. Weight Logs:

      • Tracking user weight and trends over time.
      • File: weightLogInfo_merged.csv.

    Who can use it:

    • Health Behavior Analysis: Study routines, anomalies, and behavioral trends in activity, sleep, and heart rate.
    • Machine Learning Applications: Develop predictive models for fatigue, health risks, or fitness improvements.
    • Wearable Technology Research: Evaluate user engagement with fitness trackers and related behavioral insights.
    • Personalized Wellness Studies: Correlate heart rate, activity levels, and sleep to derive personalized health strategies.

    Usage:

    1. Fitness and Wellness Trends: Uncover patterns in activity, sleep, and heart rate data.
    2. Temporal Analysis: Study how routines and behaviors change over time.
    3. Predictive Analytics: Build models to predict fatigue or health risks using granular data.
    4. Wearable Insights: Enhance the understanding of Fitbit devices and their impact on user health.

    License

    Free for public use.

    📌 Acknowledgment

    This dataset was collected and shared by:
    Robert Furberg, Julia Brinton, Michael Keating, and Alexa Ortiz

    Original Source:

    Contributors to related analyses:
    - Julen Aranguren
    - Anastasiia Chebotina

  4. o

    Data from: LifeSnaps: a 4-month multi-modal dataset capturing unobtrusive...

    • explore.openaire.eu
    • zenodo.org
    Updated Jul 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sofia Yfantidou; Christina Karagianni; Stefanos Efstathiou; Athena Vakali; Joao Palotti; Dimitrios Panteleimon Giakatos; Thomas Marchioro; Andrei Kazlouski; Elena Ferrari; Šarūnas Girdzijauskas (2022). LifeSnaps: a 4-month multi-modal dataset capturing unobtrusive snapshots of our lives in the wild [Dataset]. http://doi.org/10.5281/zenodo.6832242
    Explore at:
    Dataset updated
    Jul 13, 2022
    Authors
    Sofia Yfantidou; Christina Karagianni; Stefanos Efstathiou; Athena Vakali; Joao Palotti; Dimitrios Panteleimon Giakatos; Thomas Marchioro; Andrei Kazlouski; Elena Ferrari; Šarūnas Girdzijauskas
    Description

    LifeSnaps Dataset Documentation Ubiquitous self-tracking technologies have penetrated various aspects of our lives, from physical and mental health monitoring to fitness and entertainment. Yet, limited data exist on the association between in the wild large-scale physical activity patterns, sleep, stress, and overall health, and behavioral patterns and psychological measurements due to challenges in collecting and releasing such datasets, such as waning user engagement, privacy considerations, and diversity in data modalities. In this paper, we present the LifeSnaps dataset, a multi-modal, longitudinal, and geographically-distributed dataset, containing a plethora of anthropological data, collected unobtrusively for the total course of more than 4 months by n=71 participants, under the European H2020 RAIS project. LifeSnaps contains more than 35 different data types from second to daily granularity, totaling more than 71M rows of data. The participants contributed their data through numerous validated surveys, real-time ecological momentary assessments, and a Fitbit Sense smartwatch, and consented to make these data available openly to empower future research. We envision that releasing this large-scale dataset of multi-modal real-world data, will open novel research opportunities and potential applications in the fields of medical digital innovations, data privacy and valorization, mental and physical well-being, psychology and behavioral sciences, machine learning, and human-computer interaction. The following instructions will get you started with the LifeSnaps dataset and are complementary to the original publication. Data Import: Reading CSV For ease of use, we provide CSV files containing Fitbit, SEMA, and survey data at daily and/or hourly granularity. You can read the files via any programming language. For example, in Python, you can read the files into a Pandas DataFrame with the pandas.read_csv() command. Data Import: Setting up a MongoDB (Recommended) To take full advantage of the LifeSnaps dataset, we recommend that you use the raw, complete data via importing the LifeSnaps MongoDB database. To do so, open the terminal/command prompt and run the following command for each collection in the DB. Ensure you have MongoDB Database Tools installed from here. For the Fitbit data, run the following: mongorestore --host localhost:27017 -d rais_anonymized -c fitbit

  5. Lifesnaps Fitbit dataset

    • kaggle.com
    Updated Feb 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Skylar Carroll (2023). Lifesnaps Fitbit dataset [Dataset]. https://www.kaggle.com/datasets/skywescar/lifesnaps-fitbit-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 3, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Skylar Carroll
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Taken verbatim from the source: Ubiquitous self-tracking technologies have penetrated various aspects of our lives, from physical and mental health monitoring to fitness and entertainment. Yet, limited data exist on the association between in the wild large-scale physical activity patterns, sleep, stress, and overall health, and behavioral patterns and psychological measurements due to challenges in collecting and releasing such datasets, such as waning user engagement, privacy considerations, and diversity in data modalities. In this paper, we present the LifeSnaps dataset, a multi-modal, longitudinal, and geographically-distributed dataset, containing a plethora of anthropological data, collected unobtrusively for the total course of more than 4 months by n=71 participants, under the European H2020 RAIS project. LifeSnaps contains more than 35 different data types from second to daily granularity, totaling more than 71M rows of data. The participants contributed their data through numerous validated surveys, real-time ecological momentary assessments, and a Fitbit Sense smartwatch, and consented to make these data available openly to empower future research. We envision that releasing this large-scale dataset of multi-modal real-world data, will open novel research opportunities and potential applications in the fields of medical digital innovations, data privacy and valorization, mental and physical well-being, psychology and behavioral sciences, machine learning, and human-computer interaction.

  6. Global export data of Fitbit

    • volza.com
    csv
    Updated Aug 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Volza FZ LLC (2025). Global export data of Fitbit [Dataset]. https://www.volza.com/exports-vietnam/vietnam-export-data-of-fitbit
    Explore at:
    csvAvailable download formats
    Dataset updated
    Aug 7, 2025
    Dataset provided by
    Volza
    Authors
    Volza FZ LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Count of exporters, Sum of export value, 2014-01-01/2021-09-30, Count of export shipments
    Description

    3114 Global export shipment records of Fitbit with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.

  7. Global import data of Fitbit

    • volza.com
    csv
    Updated Apr 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Volza FZ LLC (2025). Global import data of Fitbit [Dataset]. https://www.volza.com/trade-data-global/global-exporters-importers-export-import-data-of-fitbit-and-hscode-8517-to-india
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 7, 2025
    Dataset provided by
    Volza
    Authors
    Volza FZ LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Count of importers, Sum of import value, 2014-01-01/2021-09-30, Count of import shipments
    Description

    28 Global import shipment records of Fitbit with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.

  8. H

    Replication Data for: Using machine learning methods to predict physical...

    • dataverse.harvard.edu
    csv
    Updated Mar 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harvard Dataverse (2020). Replication Data for: Using machine learning methods to predict physical activity types with Apple Watch and Fitbit data using indirect calorimetry as the criterion. [Dataset]. http://doi.org/10.7910/DVN/ZS2Z2J
    Explore at:
    csv(748903), csv(522483), csv(1375726)Available download formats
    Dataset updated
    Mar 5, 2020
    Dataset provided by
    Harvard Dataverse
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Objectives There is considerable promise for using commercial wearable devices for measuring physical activity at the population level. The objective of this study was to examine whether commercial wearable devices could accurately predict lying, sitting, and different physical activity intensity in a lab based protocol. Methods We recruited a convenience sample of 46 participants (26 women) to wear three devices, a GENEActiv, and Apple Watch Series 2, a Fitbit Charge HR2. Participants completed a 65-minute protocol with 40-minutes of total treadmill time and 25-minutes of sitting or lying time. Indirect calorimetry was used to measure energy expenditure. The outcome variable for the study was the activity class; lying, sitting, walking self-paced, 3 METS, 5 METS, and 7 METS. Minute-by-minute heart rate, steps, distance, and calories from Apple Watch and Fitbit were included in four different machine learning models. Results Our analysis dataset included 3656 and 2608 minutes of Apple Watch and Fitbit data, respectively. We test decision trees, support vector machines, random forest, and rotation forest models. Rotation forest models had the highest classification accuracies at 82.6% for Apple Watch and 89.3% for Fitbit. Classification accuracies for Apple Watch data ranged from 72.5% for sitting to 89.0% for 7 METS. For Fitbit, accuracies varied between 86.2 for sitting to 92.6% for 7 METS. Conclusion This study demonstrated that commercial wearable devices, Apple Watch and Fitbit, were able to predict physical activity type with a reasonable accuracy. The results support the use of minute by minute data from Apple Watch and Fitbit combined machine learning approaches for scalable physical activity type classification at the population level.

  9. fitbit data

    • kaggle.com
    Updated Oct 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chuks Chinedu (2021). fitbit data [Dataset]. https://www.kaggle.com/chukschinedu/fitbit-data/activity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 7, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Chuks Chinedu
    Description

    Dataset

    This dataset was created by Chuks Chinedu

    Contents

  10. Fitbit and Withings Data Collected from Living Labs

    • zenodo.org
    json
    Updated May 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mikel Hernandez; Mikel Hernandez; Gorka Epelde; Gorka Epelde; Evdokimos Konstantinidis; Evdokimos Konstantinidis (2024). Fitbit and Withings Data Collected from Living Labs [Dataset]. http://doi.org/10.5281/zenodo.10777370
    Explore at:
    jsonAvailable download formats
    Dataset updated
    May 28, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Mikel Hernandez; Mikel Hernandez; Gorka Epelde; Gorka Epelde; Evdokimos Konstantinidis; Evdokimos Konstantinidis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data is composed of different files, each one containing measurements for different physiological monitoring variables collected from Fitbit and Withings devices collected for the H2020 VITALISE project. The next list explains what each file contains.

    • heart_rate_2023-04-23.json and heart_rate_2023-04-24.json: Contains heart rate measurements (beats/min) in the Fitbit source format taken for one subject during one day (each file represents a day) and samples every 5 minutes.
    • fat_free_mass-2023-04-21-2023-10-20-37e23d5a-1901-4ce3-bcac-f4ea36bc0b1d.json: Contains fat free mass (kg) mesurements taken form Withings Device and transformed to the VITALISE data model for a subject during 6 months. There are 69 measurements in total.
    • fat_mass_weight-2023-04-21-2023-10-20-37e23d5a-1901-4ce3-bcac-f4ea36bc0b1d.json: Contains fat mass weight (kg) mesurements taken form Withings Device and transformed to the VITALISE data model for a subject during 6 months. There are 69 measurements in total.
    • fat_ratio-2023-04-21-2023-10-20-37e23d5a-1901-4ce3-bcac-f4ea36bc0b1d.json: Contains fat ratio (%) mesurements taken form Withings Device and transformed to the VITALISE data model for a subject during 6 months. There are 69 measurements in total.
    • hydration-2023-04-21-2023-10-20-37e23d5a-1901-4ce3-bcac-f4ea36bc0b1d.json: Contains hydration (kg) mesurements taken form Withings Device and transformed to the VITALISE data model for a subject during 6 months. There are 69 measurements in total.
    • muscle_mass-2023-04-21-2023-10-20-37e23d5a-1901-4ce3-bcac-f4ea36bc0b1d.json: Contains muscle mass (kg) mesurements taken form Withings Device and transformed to the VITALISE data model for a subject during 6 months. There are 69 measurements in total.
    • weight-2023-04-21-2023-10-20-37e23d5a-1901-4ce3-bcac-f4ea36bc0b1dd.json: Contains body weight (kg) mesurements taken form Withings Device and transformed to the VITALISE data model for a subject during 6 months. There are 69 measurements in total.
  11. S

    1. Amazon Fitbit Review data set

    • scidb.cn
    Updated Sep 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    linweizhen (2022). 1. Amazon Fitbit Review data set [Dataset]. http://doi.org/10.57760/sciencedb.j00133.00042
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 2, 2022
    Dataset provided by
    Science Data Bank
    Authors
    linweizhen
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Description

    The Instant Data Scraper crawler crawler crawler crawls the Amazon review Data set.

  12. h

    sleep-score-fitbit

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    aai530-group6, sleep-score-fitbit [Dataset]. https://huggingface.co/datasets/aai530-group6/sleep-score-fitbit
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset authored and provided by
    aai530-group6
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Fitbit Sleep Score Data

      About the Dataset
    
    
    
    
    
      Description
    

    The Fitbit Sleep Score dataset, available on Kaggle, comprises detailed sleep data sourced from an individual's Fitbit device. It includes metrics such as overall sleep score, revitalization score, deep sleep duration, resting heart rate, and restlessness, each timestamped for in-depth analysis.

      Data Fields
    

    timestamp: The specific date and time the sleep data was recorded. overall_score: An… See the full description on the dataset page: https://huggingface.co/datasets/aai530-group6/sleep-score-fitbit.

  13. T

    Fitbit and BEVO Beacon Data

    • dataverse.tdl.org
    csv, pdf
    Updated May 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Congyu Wu; Congyu Wu (2021). Fitbit and BEVO Beacon Data [Dataset]. http://doi.org/10.18738/T8/SPHD4F
    Explore at:
    csv(24513), csv(1205171), csv(12259), csv(16921), csv(16874), csv(8361), csv(16898), csv(16923), csv(204), csv(8619), csv(15678), csv(9248), csv(17173), csv(9439), csv(13276), csv(60), csv(87), csv(8701), csv(17236), csv(450), csv(8096), csv(21816), csv(16107), csv(9480), csv(15260), csv(8123), csv(16914), csv(8335), csv(9545), csv(17086), csv(16982), csv(480), csv(22095), csv(18369), csv(795), csv(118), csv(2321), csv(9222), csv(13564), csv(8721), csv(17181), csv(17000), csv(16864), csv(30470), csv(8068), csv(734), csv(8443), csv(267), csv(76), csv(16899), csv(16604), csv(8711), csv(8121), csv(17206), csv(396), csv(22533), csv(9322), csv(9203), csv(9199), csv(16886), csv(8219), csv(17263), csv(9716), csv(6472), csv(17491), csv(2331), csv(4672), csv(8806), csv(9875), csv(1209285), csv(8917), csv(16937), csv(8497), csv(8634), csv(8445), csv(8507), csv(9216), csv(9562), csv(18389), csv(1432), csv(8301), csv(2549), csv(14496), csv(10053), csv(203), csv(2967), csv(9003), csv(9592), csv(1226), csv(16900), csv(2354), csv(16944), csv(16905), csv(17192), csv(17025), csv(18585), csv(8397), csv(9969), csv(73201), csv(1317), csv(17166), csv(8103), csv(327), csv(16894), csv(8367), csv(2251), csv(17218), csv(8423), csv(4321), csv(16877), csv(22743), csv(391), csv(22006), csv(16909), csv(16897), csv(16924), csv(8834), csv(607), csv(20244), csv(17200), csv(28163), csv(17879), csv(17172), csv(78), csv(17188), csv(16913), csv(8943), csv(8514), csv(16823), csv(8452), csv(2196), csv(1084), csv(8405), csv(906), csv(2667), csv(17015), csv(238), csv(8978), csv(8521), csv(37860), csv(8672), csv(19181), csv(2301), csv(14856567), csv(1520), csv(21003), csv(9744), csv(568), csv(70), csv(5967), csv(80), csv(12895), csv(264), csv(22579), csv(1548), csv(16890), csv(61), csv(17269), csv(1949336), csv(9187), csv(387), csv(717), csv(22987), csv(16895), csv(19853), csv(84), csv(82), csv(1544), csv(8112), csv(12040), csv(22255), csv(8248), csv(8974), csv(16926), csv(37796), csv(16928), csv(21731), csv(5899), csv(19750), csv(8118), csv(8097), csv(18408), csv(5084), csv(5757), csv(738), csv(12713), csv(13095), csv(282), csv(9220), csv(8565), csv(7123), csv(8449), csv(22183), csv(13737), csv(9602), csv(809), csv(856), csv(8929), csv(8715), csv(148), csv(752), csv(9740), csv(8916), csv(8281), csv(9746), csv(19469), csv(8189), csv(16346), csv(8673), csv(5928), csv(794), csv(19164), csv(8402), csv(968), csv(252), csv(16960), csv(16973), csv(17150), csv(16863), csv(1439), csv(21795), csv(2309), csv(16885), csv(1828107), csv(9068), csv(16866), csv(8215), csv(8944), csv(21670), csv(33405), csv(9568), csv(8435), csv(9085), csv(17932), csv(32658), csv(9788045), csv(9190), csv(116), csv(8731), csv(7345), csv(780), csv(16871), csv(2627), csv(547), csv(33492), csv(9314), csv(597), csv(8876), csv(16952), csv(17981), csv(12294), csv(17002), csv(2949), csv(1374), csv(115136), csv(2878), csv(9646), csv(8683), csv(17017), csv(4512), csv(16938), csv(81), csv(3018), csv(8698), csv(651), csv(16970), csv(22237), csv(9526), csv(25787), csv(16915), csv(775), csv(6162), csv(17187), csv(1210747), csv(8709), csv(9268), csv(8591), csv(9238), csv(17783), csv(16935), csv(1352), csv(18161), csv(8472), csv(8820), csv(16906), csv(17224), csv(6881), csv(8960), csv(16889), csv(8968), csv(16917), csv(9331), csv(8384), csv(9735), csv(16918), csv(17027), csv(53582), csv(8391), csv(8255), csv(3420), csv(2351), csv(205), csv(2210), csv(11353), csv(11392), csv(16988), csv(16904), csv(8642), csv(8687), csv(701), csv(8274), csv(16907), csv(16893), csv(9586), csv(648), csv(8780), csv(711766), csv(79), csv(1567), csv(228), csv(18488), csv(18741), csv(377), csv(779), csv(177), csv(8575), csv(20906), csv(17178), csv(13427575), csv(8584), csv(209), csv(6348), csv(14102), csv(7049), csv(16912), csv(280), csv(18268), csv(9664), csv(16860), csv(8761), csv(16859), csv(2966), csv(4516), csv(5475), csv(6865), csv(1782027), csv(5938), csv(17288), csv(8590), csv(17190), csv(8409), csv(19307), csv(5464), csv(8895), csv(492), csv(1315911), csv(8674), csv(8254), csv(9223), csv(9197), csv(17186), csv(17156), csv(88), csv(8406), csv(9700), csv(16896), csv(8113), csv(16975), csv(8168), csv(16974), csv(5079), csv(16908), csv(18904), csv(21461), csv(3434), csv(451), csv(21152), csv(16985), csv(2002365), csv(9211), csv(16945), csv(9884), csv(8207), csv(8606), csv(16977), csv(8124), csv(9673), csv(18762), csv(8353), csv(1318), csv(1460), csv(1530), csv(576), csv(21367), csv(9557), csv(9281), csv(8620), csv(8360), csv(716), csv(16887), csv(16882), csv(5315), csv(8345), csv(6919), csv(17704), csv(16384), csv(8963), csv(17193), csv(14236), csv(8417), csv(652), csv(941), csv(21563), csv(6893), csv(8638), csv(336), csv(5396), csv(16968), csv(893), csv(5832), csv(9793), csv(8466), csv(17234), csv(9235), csv(8668), csv(2852), csv(17265), csv(9739), csv(8915), csv(16910), csv(22306), csv(11833), csv(16925), csv(8749), csv(1563), csv(16901), csv(16435), csv(1215), csv(16881), csv(3441), csv(389), csv(16954), csv(9012), csv(6655), csv(995), csv(8654), csv(198), csv(9708), csv(382), csv(13349), csv(1270), csv(961), csv(16961), csv(8519), csv(724), csv(8562), csv(8365), csv(8937), csv(1394), csv(17179), csv(9839), csv(20196), csv(17175), csv(16927), csv(8961), csv(8891), csv(15320), csv(56713), csv(19400), csv(9441), csv(8551), csv(23290), csv(18520), csv(22468), csv(8352), csv(8520), csv(17922), csv(207), csv(1399355), csv(338), csv(8545), csv(17254), csv(9175), csv(18506), csv(8167), csv(8689), csv(16878), csv(24207), csv(617), csv(8336), csv(16903), csv(8898), csv(16911), csv(860), csv(9825), csv(2996), csv(17737), csv(22238), csv(8970), csv(9022), csv(16902), csv(13648), csv(341), csv(125), csv(16932), csv(786), csv(109212), csv(8868), csv(44692), csv(13234), csv(16949), csv(723), csv(37318), csv(16892), csv(585), csv(1861410), csv(9398), csv(270), csv(8700), csv(16875), csv(16965), csv(8959), csv(17152), csv(18743), csv(8671), csv(16879), csv(13386), csv(8120), csv(16862), csv(8570), csv(215), csv(8217), csv(19952), csv(2132), csv(5856), csv(712), csv(8748), csv(1096), csv(984), csv(17018), csv(8738), csv(784), csv(8677), csv(8440), csv(1996616), csv(2626), csv(13004), csv(17228), csv(16632), csv(324), csv(6875), csv(8918), csv(1376), csv(534), csv(8986), csv(1650), csv(1516), csv(1765), csv(16934), csv(8838), csv(17225), csv(8573), csv(894), csv(11578), csv(16950), csv(331), csv(13369), csv(200), csv(8098), csv(8536), csv(9102), csv(8516), csv(1999), csv(1539717), csv(1348), csv(12494396), csv(3626), csv(17131), csv(9343), csv(1323), csv(19258), csv(18449), csv(903), csv(8494), csv(17210), csv(3007), csv(18766), csv(8743), csv(20501), csv(17282), csv(8309), csv(548), csv(2658), csv(8740), csv(322), csv(16855), csv(1191803), csv(1360), csv(657), csv(6534), csv(3890), csv(8376), csv(149), csv(735), csv(9748), csv(14260), csv(8569), csv(17001), csv(8664), csv(17243), csv(22033), csv(9518), csv(1511), csv(9591), csv(9000), csv(8277), csv(340), csv(21892), csv(17205), csv(773), csv(6129), csv(21728), csv(16997), csv(1908396), csv(246), csv(9685), csv(17253), csv(8145), csv(33469), csv(22151), csv(8561), csv(7228), csv(13626), csv(210), csv(16111), csv(4375), csv(6668), csv(120), csv(2676), csv(20604), csv(17461), csv(16948), csv(16850), csv(1538), csv(381), csv(9642), csv(525), csv(8101), csv(21168), csv(953), csv(9780), csv(1413), csv(1046), csv(8539), csv(3481), csv(8964), csv(8870), csv(7284), csv(17614), csv(16888), csv(8754), csv(828), csv(20574), csv(16933), csv(16865), csv(8247), csv(8713), csv(86), csv(21898), csv(16951), csv(18259), csv(1435), csv(22050), csv(9339), csv(6921), csv(9407), csv(8424), csv(2683), csv(2272), csv(8239), csv(1618099), csv(18160), csv(18122), csv(1209290), csv(8381), csv(17194), csv(300), csv(5619), csv(2976), csv(2687), csv(201), csv(748), csv(16839), csv(21682), csv(256), csv(8429), csv(8827), csv(9701), csv(22009), csv(8691), csv(8682), csv(8015), csv(8102), csv(222), csv(8694), csv(8510), csv(9595), csv(17008), csv(19096), csv(16987), csv(873), csv(375), csv(122), csv(8945), csv(16374), csv(571), csv(123), csv(8934), csv(17204), csv(121), csv(8407), csv(459), csv(172), csv(16371), csv(17136), csv(92623), csv(3448), csv(17151), csv(8983), csv(18154), csv(3282), csv(8660), csv(17195), csv(8746), csv(8676), csv(758), csv(16883), csv(12508), csv(371), csv(8508), csv(8268), csv(15053), csv(8195), csv(1325), csv(20375), csv(561), csv(18210), csv(9329), csv(2605), csv(3454), csv(33475), csv(3456), csv(1717), csv(128030), csv(999), csv(17116), csv(15286), csv(30015), csv(16870), csv(6491), csv(1191860), csv(260533), csv(202), csv(9485), csv(6438), csv(9201), csv(9327), csv(8699), csv(206), csv(15177247), csv(263), csv(801), csv(8184), csv(8741), csv(16891), csv(601), csv(8090), csv(37021), csv(9717), csv(4339), csv(3029), csv(16990), csv(9691), csv(13579), csv(8240), csv(2566), csv(33576), csv(757), csv(17197), csv(8969), csv(114), csv(18718), csv(9498), csv(20385), csv(1490), csv(2968), csv(4513), csv(7612), csv(11731), csv(471), csv(1418), csv(8328), csv(4369), csv(14232), csv(8513), csv(1916484), csv(8787), csv(8646), csv(726), csv(20088), csv(7154), csv(17157), csv(8625), csv(1403), csv(9183), csv(17249), csv(1996607), csv(17300), csv(8837), csv(16983), csv(912), csv(33396), csv(8925), csv(8975), csv(7922), csv(7895), csv(16958), csv(8774), csv(17641), csv(3021), csv(7309), csv(7429), csv(2228), csv(2583), csv(4569), csv(8284), csv(20839), csv(21103), csv(8681), csv(8214), csv(21343), csv(926), csv(17296), csv(512), csv(9574), csv(8202), csv(710), csv(16929), csv(17283), csv(9015), csv(8751), csv(8344), csv(9112), csv(16957), csv(22011), csv(248), csv(918), csv(9507), csv(9678), csv(8791), csv(21446), csv(1484), csv(17176), csv(2038), csv(17691), csv(15485), csv(8659), csv(983), csv(17013), csv(9161), csv(8662), csv(220), csv(902), csv(119), csv(16931), csv(19358), csv(345), csv(1616534), csv(8995), csv(16964), csv(15309), csv(1743), csv(16939), csv(9636), csv(70197), csv(8294), csv(17495), csv(16955), csv(2244), csv(13966), csv(299), csv(3471), csv(15313), csv(8906), csv(214), csv(386), csv(117), csv(1628), csv(13610), csv(16869), csv(1860393), csv(63602), csv(21516), csv(1275), csv(8773), csv(8940), csv(22440), csv(1489), csv(8530), csv(412), csv(22463), csv(2983), csv(945), csv(8566), csv(1081), csv(3364), csv(8669), csv(17625), csv(21672), csv(17092), csv(6476), csv(8320), csv(9676), csv(242), csv(16815), csv(9017), csv(424), csv(22248), csv(8138), csv(8100), csv(19957), csv(8883), csv(8577), csv(2700), csv(1884), csv(13921), csv(8299), csv(1350), csv(8271), csv(18046), csv(503), csv(2179), csv(1087), csv(8224), csv(1102), csv(8372), csv(8996), csv(8723), csv(16981), csv(17168), csv(1693), csv(1322), csv(17872), csv(8550), csv(5916), csv(16382), csv(998387), csv(5725), csv(403), csv(9835), csv(16131), csv(9655), csv(854), csv(3057), csv(12262), csv(2784), csv(6920), csv(1428), csv(6540), csv(8517), csv(17161), csv(8525), csv(16837), csv(3322), csv(16876), csv(17184), csv(2188), csv(33498), csv(21783), csv(17972), csv(646), csv(8210), csv(5830), csv(16916), csv(3427), csv(9455), csv(8542), csv(1757), csv(8788), csv(20959), csv(2724), csv(8319), csv(6901), csv(901), csv(9662), csv(20159), csv(17251), csv(8139), csv(6635), csv(5597), csv(8971), csv(463), csv(18033), csv(1504), csv(17239), csv(8794), csv(8064), csv(762), csv(452), csv(18710), csv(1324), csv(9747), csv(6020), csv(8633), csv(8117), csv(6209), csv(21955), csv(445), csv(8349), csv(18582), csv(16830), csv(9510), csv(8130), csv(16919), csv(16857), csv(1685942), csv(22394), csv(468), csv(16920), csv(16094), csv(2510), csv(9788), csv(8680), csv(8623), csv(2020), csv(17284), csv(8817), csv(8522), csv(1209294), csv(16946), csv(12604), csv(7611), csv(16827), csv(16941), csv(9428), csv(8129), csv(1113), csv(8359), csv(144), csv(7229), csv(8631), csv(9594), csv(4514), csv(928), csv(89581), csv(8279), csv(769), csv(5688), csv(9660), csv(8722), csv(126), csv(17028), csv(9792), csv(21602), csv(159), csv(1105), csv(9194), csv(8523), csv(4368), csv(8718), csv(9728), csv(124994), csv(2685), csv(1000), csv(3279), csv(17309), csv(9619), csv(2513), csv(7381), csv(8595), csv(8686), csv(22021), csv(9460), csv(9409), csv(17222), csv(2153), csv(17312), csv(5490), csv(7678446), csv(85279), csv(21145), csv(9149), csv(13632), csv(35571), csv(236), csv(3969), csv(16969), csv(16930), csv(6880), csv(2107), csv(11781), csv(8856), csv(17134), csv(5887), csv(8663), csv(13005), csv(17183), csv(1482), csv(18351), csv(7010), csv(8874), csv(19132), csv(5908), csv(295), csv(18182), csv(8766), csv(18136), csv(17814), csv(9256), csv(1050212), csv(17146), csv(8649), csv(19265), csv(8949), csv(1209307), csv(3712), csv(17125), csv(12895467), csv(27102), csv(17180), csv(8888), csv(32466), csv(162), csv(8810), csv(16980), csv(21863), csv(18492), csv(9794), csv(9500), csv(861), csv(8386), csv(4431), csv(9903), csv(15995), csv(16873), csv(747), csv(14248), csv(21634), csv(435), csv(9841), csv(1803), csv(235), csv(1535), csv(16947), csv(2920), csv(2241), csv(8447), csv(18394), csv(783), csv(2742), csv(2984), csv(8160), csv(29876), csv(8753), csv(18201), csv(6915), csv(21127), csv(21045), csv(189), csv(18961), csv(3109), csv(1488), csv(293), csv(19001), csv(8503), csv(9332), csv(9173), csv(8580), csv(33480), csv(3030), csv(20532), csv(1446), csv(8385), csv(9261), csv(8147), csv(125670), csv(9653), csv(8705), csv(22632), csv(3061), csv(16996), csv(1997891), csv(8437), csv(16972), csv(8666), csv(17185), csv(2059), csv(17706), csv(1379), csv(6514), csv(1906), csv(2284), csv(603), csv(18042), csv(1106), csv(2732), csv(6808), csv(21940), csv(17182), csv(754), csv(11328), csv(2042), csv(1098), csv(8684), csv(17020), csv(792), csv(546), csv(27202), csv(24057), csv(33518), csv(4480), csv(25659), csv(4967), csv(22365), csv(8104), csv(8922), csv(7016), csv(22264), csv(17216), csv(9237), csv(19196), csv(8369), csv(9644), csv(1392), csv(37879), csv(11265), csv(8564), csv(8419), csv(3939), csv(6632), csv(19167), csv(6097), csv(124), csv(8829), csv(17174), csv(17163), csv(7256), csv(8770), csv(9006), csv(1432247), csv(8801), csv(7286), csv(3537), csv(17164), csv(7052), csv(9364), csv(127), csv(5934), csv(9216058), csv(7877), csv(8264), csv(1326), csv(8222), csv(9770), csv(9177), csv(8350), csv(3051), csv(6488), csv(16845), csv(18060), pdf(90825)Available download formats
    Dataset updated
    May 28, 2021
    Dataset provided by
    Texas Data Repository
    Authors
    Congyu Wu; Congyu Wu
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Fitbit and BEVO Beacon data. All participants do not have both Fitbit and BEVO Beacon data available.

  14. H

    Replication Data for: Systematic Review of the Reliability and Validity of...

    • dataverse.harvard.edu
    Updated Dec 3, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel Fuller (2019). Replication Data for: Systematic Review of the Reliability and Validity of Commercially Available Wearable Devices for Measuring Steps, Energy Expenditure, and Heart Rate [Dataset]. http://doi.org/10.7910/DVN/O7GQIM
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 3, 2019
    Dataset provided by
    Harvard Dataverse
    Authors
    Daniel Fuller
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Introduction: Consumer-wearable activity trackers are small electronic devices engineered to monitor and record fitness and health-related measures. The purpose of this systematic review is to examine the validity and reliability of commercial wearables in measuring step count, heart rate, and energy expenditure. Method: We extracted information about commercial wearable devices (e.g., price, size, battery life, sensors, measurements, algorithms) using an Internet search conducted from November 2016- January 2017. From this search we identified devices to be included in the review. Database searches were conducted in PubMed, Embase, and SPORTDiscus, and only included articles published in the English language up to May 2019. Studies were excluded if they did not identify the device used and if they did not examine the validity and/or reliability of a device. Studies including the general population and all special populations were included. We operationalized validity as criterion (as compared to other measures) and construct (degree to which device is measuring what it purports) validity. Reliability measures focused on intradevice and interdevice reliability. Results: We included 158 publications examining 9 different commercial wearable device brands. Fitbit was by far the most studied brand. In lab-based settings Fitbit, Apple, and Samsung appeared to measure steps accurately. Heart rate was more variable with Apple Watch, Garmin was the most accurate and Fitbit tended towards underestimation. For energy expenditure, no brand was accurate. We also examined validity between devices within a specific brand. Conclusion: Activity trackers are still an emerging market and the devices are constantly being upgraded and redesigned to new models, suggesting the need for more current reviews and research.

  15. Fitbit Import Data from Singapore - Seair.co.in

    • seair.co.in
    Updated Mar 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seair Exim (2024). Fitbit Import Data from Singapore - Seair.co.in [Dataset]. https://www.seair.co.in
    Explore at:
    .bin, .xml, .csv, .xlsAvailable download formats
    Dataset updated
    Mar 5, 2024
    Dataset provided by
    Seair Exim Solutions
    Authors
    Seair Exim
    Area covered
    Singapore
    Description

    Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.

  16. o

    Crowd-Sourced Fitbit Datasets 03.12.2016-05.12.2016

    • explore.openaire.eu
    • data.niaid.nih.gov
    • +1more
    Updated May 31, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert Furberg; Julia Brinton; Michael Keating; Alexa Ortiz (2016). Crowd-Sourced Fitbit Datasets 03.12.2016-05.12.2016 [Dataset]. http://doi.org/10.5281/zenodo.53894
    Explore at:
    Dataset updated
    May 31, 2016
    Authors
    Robert Furberg; Julia Brinton; Michael Keating; Alexa Ortiz
    Description

    These datasets were generated by respondents to a distributed survey via Amazon Mechanical Turk between 03.12.2016-05.12.2016. Thirty eligible Fitbit users consented to the submission of personal tracker data, including minute-level output for physical activity, heart rate, and sleep monitoring. Individual reports can be parsed by export session ID (column A) or timestamp (column B). Variation between output represents use of different types of Fitbit trackers and individual tracking behaviors / preferences.

  17. S

    Fitbit Statistics By Website Traffic, Demographics, Market Share, Country...

    • sci-tech-today.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sci-Tech Today (2025). Fitbit Statistics By Website Traffic, Demographics, Market Share, Country And Facts (2025) [Dataset]. https://www.sci-tech-today.com/stats/fitbit-statistics-updated/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Sci-Tech Today
    License

    https://www.sci-tech-today.com/privacy-policyhttps://www.sci-tech-today.com/privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    Global
    Description

    Introduction

    Fitbit statistics: In today's health-conscious society, monitoring personal wellness metrics has become increasingly important. Fitbit, a leader in wearable technology, offers users detailed insights into their daily activities, sleep patterns, and heart health. On average, Fitbit users take between 10,000 to 18,000 steps per day, aligning with general fitness recommendations.

    Sleep tracking data reveals that users typically achieve about 6.5 hours of sleep each night, accompanied by an average Sleep Score of 77. Regarding cardiovascular health, the average resting heart rate among Fitbit users is approximately 65 beats per minute, with variations influenced by factors such as age and gender. These statistics underscore Fitbit's role in providing users with actionable data to support their health and wellness goals.

    Let's delve into the fascinating insights through Fitbit statistics and explore what they can tell us about the brand’s performance in 2025.

  18. Fitbit Refined Data

    • kaggle.com
    Updated Apr 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Athul Nambolan (2022). Fitbit Refined Data [Dataset]. https://www.kaggle.com/athul3000/fitbit-refined-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 25, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Athul Nambolan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    CSV files after merging of tables of Fitbit data shared at fitbit-dataset

    Meta-data file: Link This dataset is created for analysis for the google capstone project for quicker loading of combined useful data

    Major changes from the source dataset:

    Sleep and Heart Rate Variability (HRV) data is extracted from the heartrate_seconds file in the source data-set combined with the Daily_merged file. Hourly_merged also contains combined data. Heartrate data resampled at 1 min & 1 hour added to the dataset.

  19. Fitbit Fitness Tracker Data

    • kaggle.com
    Updated Aug 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    haseeb85 (2022). Fitbit Fitness Tracker Data [Dataset]. https://www.kaggle.com/datasets/haseeb85/fitbit-fitness-tracker-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 17, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    haseeb85
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    FitBit Fitness Tracker Data (CC0: Public Domain, dataset made available through Mobius): This Kaggle data set contains personal fitness tracker from thirty fitbit users. Thirty eligible Fitbit users consented to the submission of personal tracker data, including minute-level output for physical activity, heart rate, and sleep monitoring. It includes information about daily activity, steps, and heart rate that can be used to explore users’ habits.

  20. d

    Replication Data for: Dataset of Consumer-Based Activity Trackers as a Tool...

    • search.dataone.org
    • dataverse.no
    Updated Feb 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Henriksen, André; Johannessen, Erlend; Hartvigsen, Gunnar; Grimsgaard, Sameline; Hopstock, Laila Arnesdatter (2025). Replication Data for: Dataset of Consumer-Based Activity Trackers as a Tool for Physical Activity Monitoring in Epidemiological Studies During the COVID-19 Pandemic [Dataset]. http://doi.org/10.18710/TGGCSZ
    Explore at:
    Dataset updated
    Feb 13, 2025
    Dataset provided by
    DataverseNO
    Authors
    Henriksen, André; Johannessen, Erlend; Hartvigsen, Gunnar; Grimsgaard, Sameline; Hopstock, Laila Arnesdatter
    Description

    Data were collected from 113 participants, who shared their physical activity (PA) data using privately owned smart watches and activity trackers from Garmin and Fitbit. This data set consists of two data files: "data.csv" and "data raw.csv": The first file ("data.csv") contains daily averages for steps, total energy expenditure (TEE), activity energy expenditure (AEE), moderate-to-vigorous physical activity (MVPA), light PA (LPA), moderate PA (MPA), vigorous PA (VPA), and sedentary time, grouped by month. In addition, daily averages for the whole year of 2019 and 2020 are included. Finally, separate variables for the first and second half of March 2020 (pre- and post COVID-19 lockdown in Norway) are included. The second file ("data raw.csv") contains raw daily values for steps, TEE, AEE, MVPA, LPA, MPA, VPA, sedentary time, and non-wear time.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
BK Vishwas (2022). fitbit data [Dataset]. https://www.kaggle.com/datasets/bkvishwas/fitbit-data
Organization logo

fitbit data

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Apr 2, 2022
Dataset provided by
Kagglehttp://kaggle.com/
Authors
BK Vishwas
Description

Content This dataset generated by respondents to a distributed survey via Amazon Mechanical Turk between 03.12.2016-05.12.2016. Thirty eligible Fitbit users consented to the submission of personal tracker data, including minute-level output for physical activity, heart rate, and sleep monitoring. Individual reports can be parsed by export session ID (column A) or timestamp (column B). Variation between output represents use of different types of Fitbit trackers and individual tracking behaviors / preferences.

Search
Clear search
Close search
Google apps
Main menu