https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides a comprehensive overview of online sales transactions across different product categories. Each row represents a single transaction with detailed information such as the order ID, date, category, product name, quantity sold, unit price, total price, region, and payment method.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This comprehensive dataset offers detailed information on approximately 17,000 FIFA football players, meticulously scraped from SoFIFA.com.
It encompasses a wide array of player-specific data points, including but not limited to player names, nationalities, clubs, player ratings, potential, positions, ages, and various skill attributes. This dataset is ideal for football enthusiasts, data analysts, and researchers seeking to conduct in-depth analysis, statistical studies, or machine learning projects related to football players' performance, characteristics, and career progressions.
This dataset is ideal for data analysis, predictive modeling, and machine learning projects. It can be used for:
Please ensure to adhere to the terms of service of SoFIFA.com and relevant data protection laws when using this dataset. The dataset is intended for educational and research purposes only and should not be used for commercial gains without proper authorization.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains 1,888 records merged from five publicly available heart disease datasets. It includes 14 features that are crucial for predicting heart attack and stroke risks, covering both medical and demographic factors. Below is a detailed description of each feature.
This dataset is a combination of five publicly available heart disease datasets, with a total of 1,888 records. Merging these datasets provides a more robust foundation for training machine learning models aimed at predicting heart attack risk.
Heart Attack Analysis & Prediction Dataset
Number of Records: 304
Reference: Rahman, 2021
Heart Disease Dataset
Number of Records: 1,026
Reference: Lapp, 2019
Heart Attack Prediction (Dataset 3)
Number of Records: 295
Reference: Damarla, 2020
Heart Attack Prediction (Dataset 4)
Number of Records: 271
Reference: Anand, 2018
Heart CSV Dataset
Number of Records: 290
Reference: Nandal, 2022
This dataset includes 14 features known to contribute to heart attack risk. It is ideal for training machine learning models aimed at early detection and prevention of heart disease. The records have been cleaned by removing missing data to ensure data integrity. This dataset can be applied to various machine learning algorithms, including classification models such as Decision Trees, Neural Networks, and others.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf
ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days. In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 hourly data on single levels from 1940 to present".
Not seeing a result you expected?
Learn how you can add new datasets to our index.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides a comprehensive overview of online sales transactions across different product categories. Each row represents a single transaction with detailed information such as the order ID, date, category, product name, quantity sold, unit price, total price, region, and payment method.