100+ datasets found
  1. n

    FEMA National Flood Hazard Layer Viewer

    • data.gis.ny.gov
    Updated Mar 29, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ShareGIS NY (2023). FEMA National Flood Hazard Layer Viewer [Dataset]. https://data.gis.ny.gov/datasets/fema-national-flood-hazard-layer-viewer
    Explore at:
    Dataset updated
    Mar 29, 2023
    Dataset authored and provided by
    ShareGIS NY
    Description

    The National Flood Hazard Layer (NFHL) is a geospatial database that contains current effective flood hazard data. FEMA provides the flood hazard data to support the National Flood Insurance Program. You can use the information to better understand your level of flood risk and type of flooding.The NFHL is made from effective flood maps and Letters of Map Change (LOMC) delivered to communities. NFHL digital data covers over 90 percent of the U.S. population. New and revised data is being added continuously. If you need information for areas not covered by the NFHL data, there may be other FEMA products which provide coverage for those areas.In the NFHL Viewer, you can use the address search or map navigation to locate an area of interest and the NFHL Print Tool to download and print a full Flood Insurance Rate Map (FIRM) or FIRMette (a smaller, printable version of a FIRM) where modernized data exists. Technical GIS users can also utilize a series of dedicated GIS web services that allow the NFHL database to be incorporated into websites and GIS applications. For more information on available services, go to the NFHL GIS Services User Guide.You can also use the address search on the FEMA Flood Map Service Center (MSC) to view the NFHL data or download a FIRMette. Using the “Search All Products” on the MSC, you can download the NFHL data for a County or State in a GIS file format. This data can be used in most GIS applications to perform spatial analyses and for integration into custom maps and reports. To do so, you will need GIS or mapping software that can read data in shapefile format.FEMA also offers a download of a KMZ (keyhole markup file zipped) file, which overlays the data in Google Earth™. For more information on using the data in Google Earth™, please see Using the National Flood Hazard Layer Web Map Service (WMS) in Google Earth™.

  2. a

    FEMA All Flood Hazard Areas

    • it-gis-hub-moco.hub.arcgis.com
    • data-moco.opendata.arcgis.com
    Updated Aug 10, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Montgomery County, Texas IT-GIS (2022). FEMA All Flood Hazard Areas [Dataset]. https://it-gis-hub-moco.hub.arcgis.com/maps/MOCO::fema-all-flood-hazard-areas
    Explore at:
    Dataset updated
    Aug 10, 2022
    Dataset authored and provided by
    Montgomery County, Texas IT-GIS
    Area covered
    Description

    This dataset comes from the FEMA S_Fld_Haz_Ar table. The S_Fld_Haz_Ar table contains information about the flood hazards within the flood risk project area. A spatial file with location information also corresponds with this data table. These zones are used by FEMA to designate the SFHA and for insurance rating purposes. These data are the regulatory flood zones designated by FEMA. A spatial file with location information also corresponds with this data table.This information is needed for the following tables in the FIS report: Flooding Sources Included in this FIS report, and Summary of Hydrologic and Hydraulic Analyses.The spatial elements representing the flood zones are polygons. The entire area of the jurisdiction(s) mapped by the FIRM should have a corresponding flood zone polygon. There is one polygon for each contiguous flood zone designated.FEMA Regulatory Floodway are flood zone polygons marked as a regulatory floodway.FEMA 100 year are flood zone polygons where there is a 1% Annual Chance, also known as the 100 year.FEMA 500 year are flood zone polygons where there is a 0.2% Annual Chance, also known as the 500 year.FEMA minimal flood hazard zone polygons.This map is not intended for insurance rating purposes and is for information only. This map is a representation and approximation of the relative location of geographic information, land marks and physical addresses. The map may not be 100% accurate in locating your address. The floodplains shown on this mapping tool are those delineated on the Federal Emergency Management Agency’s (FEMA) Digital Flood Insurance Rate Map (DFIRM or floodplain map) for Montgomery County. This map is not an official FEMA Digital Flood Insurance Rate Map. The effective DFIRMs are produced, maintained, and published by FEMA and not by Montgomery County. Official determinations are provided by FEMA.

  3. a

    NHC Flood Mapping -Data: River and Lakes with depth rasters

    • hub.arcgis.com
    Updated Oct 4, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Regional District of Central Okanagan (2022). NHC Flood Mapping -Data: River and Lakes with depth rasters [Dataset]. https://hub.arcgis.com/documents/4a25b428f48d456daa4899ba864cba4b
    Explore at:
    Dataset updated
    Oct 4, 2022
    Dataset authored and provided by
    Regional District of Central Okanagan
    Description

    This data layer is part of a collection of GIS data created for the Okanagan Mainstem Floodplain Mapping Project. Notes below apply to the entire project data set.***Download Size is 12.5 GBGeneral Notes1. Please refer to the Disclaimer further below.2. Please review the associated project reports before using the floodplain maps: Northwest Hydraulic Consultants Ltd. (NHC). 2020. ‘Okanagan Mainstem Floodplain Mapping Project’. Report prepared for the Okanagan Basin Water Board (OBWB). 31 March 2020. NHC project number 3004430. Northwest Hydraulic Consultants Ltd. (NHC). 2021. ‘Okanagan Mainstem Floodplain Mapping Project – Development of CGVD1928 Floodplain Mapping’. Letter report prepared for the Okanagan Basin Water Board (OBWB). 30 March 2021. NHC project number 3006034.Northwest Hydraulic Consultants Ltd. (NHC). 2022. ‘Supplemental to the Okanagan Mainstem Floodplain Mapping Project – Current Operations Flood Construction Levels for Okanagan and Wood-Kalamalka Lakes’. Report prepared for the Okanagan Basin Water Board (OBWB). Final. 16 August 2022. NHC project number 3006613.3. These floodplain mapping layers delineate flood inundation extents under the specific flood events. Tributaries are not included in mapping.4. The mapped inundation is based on the calculated water level. Freeboard, wind effects, and wave effects have been added to the calculated water level where noted.5. Where noted, a freeboard allowance of 0.6 m has been added to the calculated flood water level. It has been added to account for local variations in water level and uncertainty in the underlying data and modelling.6. Where noted, the FCL (or COFCL) included in lake mapping layers includes an allowance for wind setup and wave runup based on co-occurrence of the seasonal 200-year wind event. The wind and wave effects extend 40 m shoreward to delineate the expected limit of wave effects. Beyond this limit the FCL (or COFCL) is based on inundation of the flood event without wave effects. Wave effects have been calculated based on generalized shoreline profile and roughness for each shoreline reach. Site specific runup analysis by a Qualified Registrant may be warranted to refine the generalized wave effects shown, which could increase or decrease the FCL (or COFCL) by as much as a metre.7. Underlying hydraulic analysis assumes channel and shoreline geometry is stationary. Erosion, deposition, degradation, and aggradation are expected to occur and may alter actual observed flood levels and extents. Obstructions, such as log-jams, local storm water inflows or other land drainage, groundwater, or tributary flows may cause flood levels to exceed those indicated on the maps.8. The Okanagan floodplain is subject to persistent ponding due to poor drainage. Persistent ponding is not covered by the flood inundation mapping.9. For flood level maps (water level and inundation extents):a. Layers for each flood scenario describe inundation extents, water surface elevations, and depths.b. The calculated water level has been extended perpendicular to flow across the floodplain; thus mapping inundation of isolated areas regardless of likelihood of inundation; whether it be from dike failure, seepage, or local inflows. Distant isolated areas may be conservatively mapped as inundated. Site specific judgement by a Qualified Professional is required to determine validity of isolated inundation.c. Filtering was used to remove isolated areas smaller than 100 m2. Holes in the inundation extent with areas less than 100 m2 were also removed. Isolated areas larger than 100 m2 are included in GIS data layers and are shown on maps if they are within 40 metres of direct inundation or within 40 metres of other retained polygons.d. Okanagan Dam breach, dam overtopping, or overtopping and breaching of Penticton Beach were not modelled. Inundation downstream of the Okanagan Dam on the left bank floodplain is based on river modelling with the assumption that Okanagan Lake levels will not overtop Lakeshore Drive and adjacent high ground. For the design flood scenarios, inundation mapping on the right bank of the Okanagan River from the Okanagan Dam downstream to the Highway 97 bridge and Burnaby Avenue is based on additional lake and river modelling. For other flood scenarios, river and lake inundation has been mapped separately and has not been integrated on the right bank. Inundation mapping on the right bank is based on river modelling as far as the most upstream modelled river cross section.10. For flood hazard maps (depth and velocity):a. Layers describe flood water depths and velocities. Depths and velocities are based on the maximum values from three modelled scenarios: all dikes removed, left bank dikes removed, and right bank dikes removed. Depths do not include freeboard.b. All hazard layers were modelled with the same parameters and boundary conditions as the design flood.11. Flood modelling and mapping is based on a digital elevation model (DEM) with the following coordinate system and datum specifications: Universal Transverse Mercator Zone 11-N (UTM Zone 11-N), North American Datum 1983 Canadian Spatial Reference System epoch 2002.0 (NAD83 CSRS (2002.0)), Canadian Geodetic Vertical Datum 2013 (CGVD2013), Canadian Gravimetric Geoid model of 2013 (CGG2013). FCL values are presented on the maps in both CGVD2013 and CGVD1928 vertical datums. CGVD1928 values are based on the following specifications: NAD83 CSRS (2002.0), CGVD1928, Height Transformation version 2.0 epoch 1997 (HTv2.0 (1997)). COFCL and COFCL values are presented only in CGVD2013.12. The accuracy of simulated flood levels is limited by the reliability and extent of water level, flow, and climatic data. The accuracy of the floodplain extents is limited by the accuracy of the design flood flow, the hydraulic model, and the digital surface representation of local topography. Localized areas above or below the mapped inundation maybe generalized. Therefore, floodplain maps should be considered an administrative tool that indicates flood elevations and floodplain boundaries for a designated flood. A qualified professional is to be consulted for site-specific engineering analysis.13. Industry best practices were followed to generate the floodplain maps. However, actual flood levels and extents may vary from those shown. OBWB and NHC do not assume any liability for variations of flood levels and extents from that shown.Data Sources Design flood events are based on hydrologic modelling of the Okanagan River watershed. The hydraulic response is based on a combination of 1D and 2D numerical models developed by NHC using HEC-RAS software, and NHC SWAN models. The hydraulic models are calibrated to the 2017 flood event and validated to the 2018 flood event; due to limits on data availability the hydrologic model is calibrated using data from 1980-2010. The digital elevation model (DEM) used to develop the model and mapping is based on Lidar data collected from March to November 2018 and provided by Emergency Management BC (EMBC), channel survey conducted by WSP in March, April, and June 2019, and additional survey data. See accompanying report for details NHC (2020).DisclaimerThis document has been prepared by Northwest Hydraulic Consultants Ltd. for the benefit of Okanagan Basin Water Board, Regional District of North Okanagan, Regional District of Central Okanagan, Regional District of Okanagan-Similkameen, Okanagan Nation Alliance for specific application to the Okanagan Mainstem Floodplain Mapping Project, Okanagan Valley, British Columbia, Canada (Ellison, Wood, Kalamalka, Okanagan, Skaha, Vaseux, and Osoyoos lakes and Okanagan River from Okanagan Lake to Osoyoos Lake). The information and data contained herein represent Northwest Hydraulic Consultants Ltd. best professional judgment in light of the knowledge and information available to Northwest Hydraulic Consultants Ltd. at the time of preparation, and was prepared in accordance with generally accepted engineering practices.Except as required by law, this document and the information and data contained herein are to be treated as confidential and may be used and relied upon only by Okanagan Basin Water Board, Regional District of North Okanagan, Regional District of Central Okanagan, Regional District of Okanagan-Similkameen, Okanagan Nation Alliance, its officers and employees. Northwest Hydraulic Consultants Ltd. denies any liability whatsoever to other parties who may obtain access to this document for any injury, loss or damage suffered by such parties arising from their use of, or reliance upon, this report or any of its contents.Data Layer List and Descriptions<!--· River / Lake Model Boundary -River / Lake Model Boundary (NHC): Boundary between Okanagan River and Okanagan Lake modelling and mapping areas for design and flood mapping.Recommended Design Flood (gates open): Ellison, Skaha, Vaseux, and Osoyoos lakeso Lake Shoreline Flood Construction Level (FCL) Zone – Recommended Design Flood with Freeboard and Wave Effect (NHC): Zone defined based on approximate shoreline and the wave breaking boundary plus a buffer; FCLs defined by zone along shoreline; shoreline FCLs take precedence over lake inundation FCLs.o Lake Flood Construction Level (FCL) Zone (Inundation Extent) – Recommended Design Flood with Freeboard (NHC): Design flood inundation extent with freeboard. Design event varies by lake, plus wind setup, plus mid-century climate change; plus freeboard 0.6m.o Lake Inundation Extent – Recommended Design Flood without Freeboard (NHC): Design flood inundation extent without freeboard. Design event varies by lake, plus wind setup, plus mid-century climate change.o Depth Grids§ Ellison Lake Depth – Recommended Design without Freeboard (NHC): ELLISON LAKE: 200-YEAR MID-CENTURY. Design flood depth

  4. c

    FEMA National Flood Hazard Layer (NFHL)

    • data.cityofrochester.gov
    • hub.arcgis.com
    Updated Oct 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open_Data_Admin (2024). FEMA National Flood Hazard Layer (NFHL) [Dataset]. https://data.cityofrochester.gov/maps/7c2a63ae78b34151b1bd575f7ae76337
    Explore at:
    Dataset updated
    Oct 10, 2024
    Dataset authored and provided by
    Open_Data_Admin
    Area covered
    Description

    FEMA provides access to the National Flood Hazards Layer (NFHL) through web mapping services. The maps depict effective flood hazard information and supporting data. The primary flood hazard classification is indicated in the Flood Hazard Zones layer.The NFHL layers include:Flood hazard zones and labelsRiver Miles MarkersCross-sections and coastal transects and their labelsLetter of Map Revision (LOMR) boundaries and case numbersFlood Insurance Rate Map (FIRM) boundaries, labels and effective datesCoastal Barrier Resources System (CBRS) and Otherwise Protected Area (OPA) unitsCommunity boundaries and namesLeveesHydraulic and flood control structuresProfile and coastal transect baselinesLimit of Moderate Wave Action(LiMWA)Not all effective Flood Insurance Rate Maps (FIRM) have GIS data available. To view a list of available county and single-jurisdiction flood study data in GIS format and check the status of the NFHL GIS services, please visit the NFHL Status Page.Preliminary & Pending National Flood Hazard LayersThe Preliminary and Pending NFHL dataset represents the current pre-effective flood data for the country. These layers are updated as new preliminary and pending data becomes available, and data is removed from these layers as it becomes effective.For more information, please visit FEMA's website.To download map panels or GIS Data, go to: NFHL on FEMA GeoPlatform.Preliminary & Pending DataPreliminary data are for review and guidance purposes only. By viewing preliminary data and maps, the user acknowledges that the information provided is preliminary and subject to change. Preliminary data are not final and are presented in this national layer as the best information available at this time. Additionally, preliminary data cannot be used to rate flood insurance policies or enforce the Federal mandatory purchase requirement. FEMA will remove preliminary data once pending data are available.Pending data are for early awareness of upcoming changes to regulatory flood map information. Until the data becomes effective, when it will appear in FEMA's National Flood Hazard Layer (NFHL), the data should not be used to rate flood insurance policies or enforce the Federal mandatory purchase requirement. FEMA will remove pending data once effective data are available.To better understand Preliminary data please see the View Your Community's Preliminary Flood Hazard Data webpage.FEMA GeoPlatformFEMA's GIS flood map services are available through FEMAs GeoPlatform, an ArcGIS Online portal containing a variety of FEMA-related data.To view the NFHL on the FEMA GeoPlatform go to NFHL on FEMA GeoPlatform.To view the Preliminary and Pending national layers on the FEMA Geoplatform go to FEMA's Preliminary & Pending National Flood Hazard Layer.Technical InformationFlood hazard and supporting data are developed using specifications for horizontal control consistent with 1:12,000–scale mapping. If you plan to display maps from the NFHL with other map data for official purposes, ensure that the other information meets FEMA’s standards for map accuracy.The minimum horizontal positional accuracy for base map hydrographic and transportation features used with the NFHL is the NSSDA radial accuracy of 38 feet. United States Geological Survey (USGS) imagery and map services that meet this standard can be found by visiting the Knowledge Sharing Site (KSS) for Base Map Standards (420). Other base map standards can be found at https://riskmapportal.msc.fema.gov/kss/MapChanges/default.aspx. You will need a username and password to access this information.The NFHL data are from FEMA’s FIRM databases. New data are added continually. The NFHL also contains map changes to FIRM data made by LOMRs.The NFHL is stored in North American Datum of 1983, Geodetic Reference System 80 coordinate system, though many of the NFHL GIS web services support the Web Mercator Sphere projection commonly used in web mapping applications.Organization & DisplayThe NFHL is organized into many data layers. The layers display information at map scales appropriate for the data. A layer indicating the availability of NFHL data is displayed at map scales smaller than 1:250,000, regional overviews at map scales between 1:250,000 and 1:50,000, and detailed flood hazard maps at map scales of 1:50,000 and larger. The "Scalehint" item in the Capabilities file for the Web Map Service encodes the scale range for a layer.In addition, there are non-NFHL datasets provided in the GIS web services, such as information about the availability of flood data and maps, the national map panel scheme, and point locations for LOMA and LOMR-Fs. The LOMA are positioned less accurately than are the NFHL data.Layers in the public NFHL GIS services:Use the numbers shown below when referencing layers by number.0. NFHL Availability1. LOMRs2. LOMAs3. FIRM Panels4. Base Index5. PLSS6. Toplogical Low Confidence Areas7. River Mile Markers8. Datum Conversion Points9. Coastal Gages10. Gages11. Nodes12. High Water Marks13. Station Start Points14. Cross-Sections15. Coastal Transects16. Base Flood Elevations17. Profile Baselines18. Transect Baselines19. Limit of Moderate Wave Action20. Water Lines21. Coastal Barrier Resources System Area22. Political Jurisdictions23. Levees24. General Structures25. Primary Frontal Dunes26. Hydrologic Reaches27. Flood Hazard Boundaries28. Flood Hazard Zones29. Submittal Information30. Alluvial Fans31. Subbasins32. Water Areas

  5. Flood Hazard Area

    • catalog.data.gov
    • datadiscoverystudio.org
    • +4more
    Updated Dec 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Emergency Management Agency (Point of Contact) (2020). Flood Hazard Area [Dataset]. https://catalog.data.gov/dataset/flood-hazard-area
    Explore at:
    Dataset updated
    Dec 2, 2020
    Dataset provided by
    Federal Emergency Management Agencyhttp://www.fema.gov/
    Description

    The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision (LOMRs) that have been issued against those databases since their publication date. The DFIRM Database is the digital, geospatial version of the flood hazard information shown on the published paper Flood Insurance Rate Maps(FIRMs). The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The NFHL data are derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The specifications for the horizontal control of DFIRM data are consistent with those required for mapping at a scale of 1:12,000. The NFHL data contain layers in the Standard DFIRM datasets except for S_Label_Pt and S_Label_Ld. The NFHL is available as State or US Territory data sets. Each State or Territory data set consists of all DFIRMs and corresponding LOMRs available on the publication date of the data set.

  6. Flood Hazard Areas (DFIRM) - Statewide

    • opendata.hawaii.gov
    • geoportal.hawaii.gov
    • +4more
    Updated Sep 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Planning (2021). Flood Hazard Areas (DFIRM) - Statewide [Dataset]. https://opendata.hawaii.gov/dataset/flood-hazard-areas-dfirm-statewide
    Explore at:
    pdf, arcgis geoservices rest api, zip, csv, html, ogc wfs, ogc wms, geojson, kmlAvailable download formats
    Dataset updated
    Sep 18, 2021
    Dataset provided by
    Federal Emergency Management Agencyhttp://www.fema.gov/
    Authors
    Office of Planning
    Description

    [Metadata] Flood Hazard Areas for the State of Hawaii as of May, 2021, downloaded from the FEMA Flood Map Service Center, May 1, 2021. The Statewide GIS Program created the statewide layer by merging all county layers (downloaded on May 1, 2021), as the Statewide layer was not available from the FEMA Map Service Center. For more information, please refer to summary metadata: https://files.hawaii.gov/dbedt/op/gis/data/s_fld_haz_ar_state.pdf. The National Flood Hazard Layer (NFHL) data incorporates all Flood Insurance Rate Map (FIRM) databases published by the Federal Emergency Management Agency (FEMA), and any Letters of Map Revision (LOMRs) that have been issued against those databases since their publication date. It is updated on a monthly basis. The FIRM Database is the digital, geospatial version of the flood hazard information shown on the published paper FIRMs. The FIRM Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The FIRM Database is derived from Flood Insurance Studies (FISs), previously published FIRMs, flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by FEMA. The NFHL is available as State or US Territory data sets. Each State or Territory data set consists of all FIRM Databases and corresponding LOMRs available on the publication date of the data set. The specification for the horizontal control of FIRM Databases is consistent with those required for mapping at a scale of 1:12,000. This file is georeferenced to the Earth's surface using the Geographic Coordinate System (GCS) and North American Datum of 1983.

    For additional information, please summary metadata https://files.hawaii.gov/dbedt/op/gis/data/s_fld_haz_ar_state.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.

  7. d

    NYC Stormwater Flood Maps

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated Oct 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). NYC Stormwater Flood Maps [Dataset]. https://catalog.data.gov/dataset/nyc-stormwater-flood-maps
    Explore at:
    Dataset updated
    Oct 19, 2024
    Dataset provided by
    data.cityofnewyork.us
    Area covered
    New York
    Description

    A collection of citywide Geographic Information System (GIS) layers that show areas of potential flooding scenarios under varying sea level rise conditions. Please see the New York City Stormwater Resiliency Plan for more information about the methodology applied to develop the maps. Please direct questions or comments to StormwaterResiliency@cityhall.nyc.gov. This collection contains the following NYC Stormwater Flood Maps: NYC Stormwater Flood Map - Extreme Flood (3.66 inches/hr) with 2080 Sea Level Rise NYC Stormwater Flood Map - Moderate Flood (2.13 inches/hr) with 2050 Sea Level Rise NYC Stormwater Flood Map - Moderate Flood (2.13 inches/hr) with Current Sea Levels NYC Stormwater Flood Map - Limited Flood (1.77 inches/hr) with Current Sea Levels https://www1.nyc.gov/assets/orr/pdf/publications/stormwater-resiliency-plan.pdf Source Data: http://nyc.gov/stormwater-map

  8. Historic Flood Map

    • environment.data.gov.uk
    Updated Feb 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environment Agency (2025). Historic Flood Map [Dataset]. https://environment.data.gov.uk/dataset/889885c0-d465-11e4-9507-f0def148f590
    Explore at:
    Dataset updated
    Feb 6, 2025
    Dataset authored and provided by
    Environment Agencyhttps://www.gov.uk/ea
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    The Historic Flood Map is a GIS layer showing the maximum extent of individual Recorded Flood Outlines from river, the sea and groundwater springs that meet a set criteria. It shows areas of land that have previously been subject to flooding in England. This excludes flooding from surface water, except in areas where it is impossible to determine whether the source is fluvial or surface water but the dominant source is fluvial.

    The majority of records began in 1946 when predecessor bodies to the Environment Agency started collecting detailed information about flooding incidents, although we hold limited details about flooding incidents prior to this date.

    If an area is not covered by the Historic Flood Map it does not mean that the area has never flooded, only that we do not currently have records of flooding in this area that meet the criteria for inclusion. It is also possible that the pattern of flooding in this area has changed and that this area would now flood or not flood under different circumstances. Outlines that don’t meet this criteria are stored in the Recorded Flood Outlines dataset.

    The Historic Flood Map takes into account the presence of defences, structures, and other infrastructure where they existed at the time of flooding. It will include flood extents that may have been affected by overtopping, breaches or blockages.

    Flooding is shown to the land and does not necessarily indicate that properties were flooded internally.

  9. l

    Flood Zones

    • data.lacounty.gov
    • geohub.lacity.org
    • +2more
    Updated Jun 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2020). Flood Zones [Dataset]. https://data.lacounty.gov/datasets/flood-zones
    Explore at:
    Dataset updated
    Jun 15, 2020
    Dataset authored and provided by
    County of Los Angeles
    Description

    The Federal Emergency Management Agency (FEMA) creates and provides authoritative data related to flood insurance. Using that data, the Los Angeles County Department of Public Works has developed a public-facing web viewer for accessing flood zone information in the County of Los Angeles (Flood Zone Determination Website). Flood Zones are represented by letters for special flood hazard areas by FEMA. For example, Zone A areas have a 1 percent annual chance of flooding. This flood is also called the 100-year flood. Property owners with structures in Flood Zone A, which have a federally backed mortgage are required to obtain flood insurance.

    Looking for more than just a current flood map? Visit Search All Products to access the FEMA website and obtain a full range of flood risk products for your community.

    Purpose:

    To provide flood zone information to the public.

    Supplemental Information:

    Data from Flood Insurance Rate Maps (FIRMs), where available digitally, can be found on the official FEMA’s National Flood Hazard Layer. The DFIRM Database is the digital, geospatial version of the flood hazard information shown on the published paper Flood Insurance Rate Maps (FIRMs) FEMA Flood Maps can be obtained from the FEMA Flood Map Service Center (MSC) The National Flood Hazard Layer (NFHL) is a digital database that contains flood hazard mapping data from FEMAs National Flood Insurance Program (NFIP). This map data is derived from Flood Insurance Rate Map (FIRM) databases and Letters of Map Revision (LOMRs). The NFHL is for community officials and members looking to view effective regulatory flood hazard information in a Geographic Information Systems (GIS) application.

    FEMA has additional information on the National Flood Insurance Program and Flood Hazard Mapping.

  10. W

    USA Flood Hazard Areas

    • wifire-data.sdsc.edu
    • gis-calema.opendata.arcgis.com
    • +1more
    csv, esri rest +4
    Updated Jul 14, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2020). USA Flood Hazard Areas [Dataset]. https://wifire-data.sdsc.edu/dataset/usa-flood-hazard-areas
    Explore at:
    csv, kml, esri rest, geojson, zip, htmlAvailable download formats
    Dataset updated
    Jul 14, 2020
    Dataset provided by
    CA Governor's Office of Emergency Services
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description
    The Federal Emergency Management Agency (FEMA) produces Flood Insurance Rate maps and identifies Special Flood Hazard Areas as part of the National Flood Insurance Program's floodplain management. Special Flood Hazard Areas have regulations that include the mandatory purchase of flood insurance.

    Dataset Summary

    Phenomenon Mapped: Flood Hazard Areas
    Coordinate System: Web Mercator Auxiliary Sphere
    Extent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, the Northern Mariana Islands and American Samoa
    Visible Scale: The layer is limited to scales of 1:1,000,000 and larger. Use the USA Flood Hazard Areas imagery layer for smaller scales.
    Publication Date: April 1, 2019

    This layer is derived from the April 1, 2019 version of the National Flood Hazard Layer feature class S_Fld_Haz_Ar. The data were aggregated into eight classes to produce the Esri Symbology field based on symbology provided by FEMA. All other layer attributes are derived from the National Flood Hazard Layer. The layer was projected to Web Mercator Auxiliary Sphere and the resolution set to 1 meter.

    To improve performance Flood Zone values "Area Not Included", "Open Water", "D", "NP", and No Data were removed from the layer. Areas with Flood Zone value "X" subtype "Area of Minimal Flood Hazard" were also removed. An imagery layer created from this dataset provides access to the full set of records in the National Flood Hazard Layer.

    A web map featuring this layer is available for you to use.

    What can you do with this Feature Layer?

    Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.

    ArcGIS Online
    • Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but an imagery layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application.
    • Change the layer’s transparency and set its visibility range
    • Open the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.
    • Change the layer’s style and filter the data. For example, you could change the symbology field to Special Flood Hazard Area and set a filter for = “T” to create a map of only the special flood hazard areas.
    • Add labels and set their properties
    • Customize the pop-up
    ArcGIS Pro
    • Add this layer to a 2d or 3d map. The same scale limit as Online applies in Pro
    • Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Areas up to 1,000-2,000 features can be exported successfully.
    • Change the symbology and the attribute field used to symbolize the data
    • Open table and make interactive selections with the map
    • Modify the pop-ups
    • Apply Definition Queries to create sub-sets of the layer
    This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
  11. n

    North Carolina Effective Flood Zones

    • nconemap.gov
    • nc-risk-management-open-data-ncem-gis.hub.arcgis.com
    • +3more
    Updated May 6, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of North Carolina - Emergency Management (2019). North Carolina Effective Flood Zones [Dataset]. https://www.nconemap.gov/maps/a178aae74ee347d786e853e5a442eea2
    Explore at:
    Dataset updated
    May 6, 2019
    Dataset authored and provided by
    State of North Carolina - Emergency Management
    Area covered
    Description

    North Carolina Effective Flood zones: In 2000, the Federal Emergency Management Agency (FEMA) designated North Carolina a Cooperating Technical Partner State, formalizing an agreement between FEMA and the State to modernize flood maps. This partnership resulted in creation of the North Carolina Floodplain Mapping Program (NCFMP). As a CTS, the State assumed primary ownership and responsibility of the Flood Insurance Rate Maps (FIRMs) for all North Carolina communities as part of the National Flood Insurance Program (NFIP). This project includes conducting flood hazard analyses and producing updated, Digital Flood Insurance Rate Maps (DFIRMs). Floodplain management is a process that aims to achieve reduced losses due to flooding. It takes on many forms, but is realized through a series of federal, state, and local programs and regulations, in concert with industry practice, to identify flood risk, implement methods to protect man-made development from flooding, and protect the natural and beneficial functions of floodplains. FIRMs are the primary tool for state and local governments to mitigate areas of flooding. Individual county databases can be downloaded from https://fris.nc.gov Updated Jan 17th, 2025.

  12. f

    GIS-based flood hazard mapping using relative frequency ratio method: A case...

    • plos.figshare.com
    xlsx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kashif Ullah; Jiquan Zhang (2023). GIS-based flood hazard mapping using relative frequency ratio method: A case study of Panjkora River Basin, eastern Hindu Kush, Pakistan [Dataset]. http://doi.org/10.1371/journal.pone.0229153
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Kashif Ullah; Jiquan Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Hindu Kush, Pakistan, Panjkora
    Description

    Flood is the most devastating and prevalent disaster among all-natural disasters. Every year, flood claims hundreds of human lives and causes damage to the worldwide economy and environment. Consequently, the identification of flood-vulnerable areas is important for comprehensive flood risk management. The main objective of this study is to delineate flood-prone areas in the Panjkora River Basin (PRB), eastern Hindu Kush, Pakistan. An initial extensive field survey and interpretation of Landsat-7 and Google Earth images identified 154 flood locations that were inundated in 2010 floods. Of the total, 70% of flood locations were randomly used for building a model and 30% were used for validation of the model. Eight flood parameters including slope, elevation, land use, Normalized Difference Vegetation Index (NDVI), topographic wetness index (TWI), drainage density, and rainfall were used to map the flood-prone areas in the study region. The relative frequency ratio was used to determine the correlation between each class of flood parameter and flood occurrences. All of the factors were resampled into a pixel size of 30×30 m and were reclassified through the natural break method. Finally, a final hazard map was prepared and reclassified into five classes, i.e., very low, low, moderate, high, very high susceptibility. The results of the model were found reliable with area under curve values for success and prediction rate of 82.04% and 84.74%, respectively. The findings of this study can play a key role in flood hazard management in the target region; they can be used by the local disaster management authority, researchers, planners, local government, and line agencies dealing with flood risk management.

  13. r

    Data from: Flood Hazard Areas

    • rigis.org
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Jun 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental Data Center (2022). Flood Hazard Areas [Dataset]. https://www.rigis.org/datasets/flood-hazard-areas
    Explore at:
    Dataset updated
    Jun 24, 2022
    Dataset authored and provided by
    Environmental Data Center
    Area covered
    Description

    This hosted feature layer has been published in RI State Plane Feet NAD 83.Statewide flood hazard areas compiled from county-based Digital Flood Insurance Rate Map (DFIRM) databases for Rhode Island. The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. TheDFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA), and in this case redistributed by the Rhode Island Geographic Information System (RIGIS) at the request of the Rhode Island Emergency Management Agency.This dataset provides the user with information on the flood risk hazard zones throughout the state of Rhode Island. Note: the above summary is a slightly modified version adapted from source metadata records provided by FEMA. To provide the user with information on the statewide flood risk based on information provided by the Federal Emergency Management Agency (FEMA) in the DFIRM databases created specifically for the five counties of Rhode Island (Bristol, Kent, Newport, Providence, and Washington). This dataset provides information on the likelihood that a flood may occur at a given location in the state. The files and information used to create this dataset were originally provided to the Rhode Island Emergency Management Agency (RIEMA) by FEMA.This information was in the form of DFIRM databases for each of the five RI counties. This information was then redistributed by RIGIS at the request of RIEMA. The information provided by this data is only a subset of the information available in the original DFIRM databases located on the RIGIS website. For a specific county's complete DFIRM database, please visit the RIGIS website and download the appropriate DFIRM database. This metadata record is specific to this dataset and only contains information relevant to this dataset as provided by FEMA the original DFIRM metadata records. These can be found and referenced in the /DOCUMENT folder that is downloaded as part of a DFIRM package for a specific Rhode Island county. Another valuable source of documentation is FEMA's "Guidelines and Specifications for Flood Hazard Mapping Partners". It is currently available online at https://www.fema.gov/guidelines-and-standards-flood-risk-analysis-and-mapping. The Guide offers a tremendous amount of information regarding how DFIRM data are created, and detailed information about the individual files that constitute a DFIRM database.

  14. m

    FEMA National Flood Hazard Layer for Massachusetts (Tile Service)

    • gis.data.mass.gov
    Updated Aug 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MassGIS - Bureau of Geographic Information (2023). FEMA National Flood Hazard Layer for Massachusetts (Tile Service) [Dataset]. https://gis.data.mass.gov/maps/fema-national-flood-hazard-layer-for-massachusetts-tile-service
    Explore at:
    Dataset updated
    Aug 2, 2023
    Dataset authored and provided by
    MassGIS - Bureau of Geographic Information
    Area covered
    Description

    This cached tiled map service, hosted at MassGIS' ArcGIS Online site, represents FEMA National Flood Hazard Layer (NFHL) data currently available for Massachusetts. At scales 1:80,000 and closer, flood zone abbreviation labels appear (from the FLD_ZONE field). The National Flood Hazard Layer (NFHL) dataset represents the current effective flood risk data for those parts of the country where maps have been modernized by the Federal Emergency Management Agency (FEMA). It is a compilation of effective Flood Insurance Rate Map (FIRM) databases and any Letters of Map Revision (LOMR) that have been issued against those databases since their publication date. The NFHL is updated as new data reaches its designated effective date and becomes valid for regulatory use under the National Flood Insurance Program (NFIP). See full metadata from MassGIS.

    All data included in this layer are considered "final" by FEMA. Any preliminary data that appear on maps displayed at community meetings, etc., are not included here.

    This map service includes data published by FEMA as of July 2, 2023.

    To display a legend for this layer, add https://massgis.maps.arcgis.com/home/item.html?id=8455678914e64b03b565b97d07577279 to your map along with this service

  15. a

    STORMWATER

    • opendata.atlantaregional.com
    Updated Mar 25, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of East Point (2019). STORMWATER [Dataset]. https://opendata.atlantaregional.com/maps/eastpointgis::stormwater/about
    Explore at:
    Dataset updated
    Mar 25, 2019
    Dataset authored and provided by
    City of East Point
    Area covered
    Description

    On January 25, 2018 FEMA replaced this map with a new NFHL map with additional functionality which allows users to print official flood maps. On April 1, 2018 this map and NFHL link will no longer function. Please update your bookmark to https://hazards-fema.maps.arcgis.com/apps/webappviewer/index.html?id=8b0adb51996444d4879338b5529aa9cd. For more information on NFHL data availability, please visit the NFHL GIS Services page at https://hazards.fema.gov/femaportal/wps/portal/NFHLWMSAs of August 1, 2017 all FEMA systems will require the use of the “https” protocol, and “http” links will no longer function. This may impact NFHL web services. The FEMA GeoPlatform (including this map) will not be affected by this change. For more information on how NFHL GIS services will be impacted, please visit the NFHL GIS Services page at https://hazards.fema.gov/femaportal/wps/portal/NFHLWMS.An NFHL FIRMette print service is now available HERE. (For a video tutorial, click here.)OverviewThe National Flood Hazard Layer (NFHL) dataset represents the current effective flood data for the country, where maps have been modernized. It is a compilation of effective Flood Insurance Rate Map (FIRM) databases and Letters of Map Change (LOMCs). The NFHL is updated as studies go effective. For more information, visit FEMA's Map Service Center (MSC). Base Map ConsiderationsThe default base map is from a USGS service and conforms to FEMA's specification for horizontal accuracy. This base map from The National Map (TNM) consists of National Agriculture Imagery Program (NAIP) and high resolution orthoimagery (HRO) that combine the visual attributes of an aerial photograph with the spatial accuracy and reliability of a map. This map should be considered the best online resource to use for official National Flood Insurance Program (NFIP) purposes when determining locations in relation to regulatory flood hazard information. If a different base map is used with the NFHL, the accuracy specification may not be met and the resulting map should be used for general reference only, and not official NFIP purposes. Users can download a simplified base map from the USGS service via: https://viewer.nationalmap.gov/services/ For the specifics of FEMA’s policy on the use of digital flood hazard data for NFIP purposes see: http://www.fema.gov/library/viewRecord.do?id=3235Letter of Map Amendment (LOMA) pointsLOMA point locations are approximate. The location of the LOMA is referenced in the legal description of the letter itself. Click the LOMA point for a link to the letter (use the arrows at the top of the popup window to bring up the LOMA info, if needed).This LOMA database may include LOMAs that are no longer effective. To be certain a particular LOMA is currently valid, please check relevant documentation at https://msc.fema.gov/ . Relevant documents can be found for a particular community by choosing to "Search All Products", and finding the community by State and County. Documents include LOMAs found in the "Effective Products" and "LOMC" folders, as well as Revalidations (those LOMAs which are still considered to be effective after a map is revised).Updates3/27/2017 - Updated all references to https to prevent issues with mixed content.5/11/2016 - Added link to NFHL FIRMette Print Service. Updated LOMA and CBRS popup notes.2/20/2014 - Created a General Reference map for use when the USGS base map service is down. Renamed this map to "Official".Further InformationSpecific questions about FEMA flood maps can be directed to FEMAMapSpecialist@riskmapcds.comFor more flood map data, tool, and viewing options, visit the FEMA NFHL page. Information about connecting to web map services (REST, WMS, WFS) can be found here.Several fact sheets are available to help you learn more about FEMA’s NFHL utility: National Flood Hazard Layer (NFHL) GIS Services Users GuideNational Flood Hazard Layer (NFHL): New Products and Services for FEMA's Flood Hazard Map DataMoving to Digital Flood Hazard Information Standards for Flood Risk Analysis and MappingNFHL GIS Data: Perform Spatial Analyses and Make Custom Maps and Reports

  16. d

    2023TulareFloodingIncident Flood Structure Status Map

    • catalog.data.gov
    • data.ca.gov
    • +5more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CAL FIRE (2024). 2023TulareFloodingIncident Flood Structure Status Map [Dataset]. https://catalog.data.gov/dataset/2023tularefloodingincident-flood-structure-status-map-4f682
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    CAL FIRE
    Description

    This map feeds into a web app that allows a user to examine the known status of structures damaged by the flooding. If a structure point does not appear on the map it may still have been impacted by the fire. Specific addresses can be searched for in the search bar. Use the imagery and topographic basemaps and photos to positively identify a structure. Photos may only be available for damaged and destroyed structures.For more information about the wildfire response efforts, visit the CAL FIRE incident page.

  17. d

    National Flood Hazard - Letter of Map Revision (LOMR)

    • catalog.data.gov
    • data.lojic.org
    Updated Apr 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Louisville/Jefferson County Information Consortium (2023). National Flood Hazard - Letter of Map Revision (LOMR) [Dataset]. https://catalog.data.gov/dataset/national-flood-hazard-letter-of-map-revision-lomr-a2b77
    Explore at:
    Dataset updated
    Apr 13, 2023
    Dataset provided by
    Louisville/Jefferson County Information Consortium
    Description

    The S_LOMR feature class should contain at least one record for each Letter of Map Revision incorporated into the NFHL. Multipart polygons are not allowed. The spatial entities representing LOMRs are polygons. The spatial information contains the bounding polygon for each LOMR area, broken on panel boundaries.Technical Reference - http://www.fema.gov/media-library-data/1449862521789-e97ed4c7b7405faa7c3691603137ec40/FIRM_Database_Technical_Reference_Nov_2015.pdfFlood hazard and supporting data are developed using specifications for horizontal control consistent with 1:12,000–scale mapping. If you plan to display maps from the National Flood Hazard Layer with other map data for official purposes, ensure that the other information meets FEMA’s standards for map accuracy. The minimum horizontal positional accuracy for base map hydrographic and transportation features used with the NFHL is the NSSDA radial accuracy of 38 feet. USGS imagery and map services that meet this standard can be found by visiting the Knowledge Sharing Site (KSS) for Base Map Standards (420). Other base map standards can be found at https://riskmapportal.msc.fema.gov/kss/MapChanges/default.aspx. You will need a username and password to access this information.The NFHL data are from FEMA’s Flood Insurance Rate Map (FIRM) databases. New data are added continually. The NFHL also contains map changes to FIRM data made by Letters of Map Revision (LOMRs). The NFHL is stored in North American Datum of 1983, Geodetic Reference System 80 coordinate system, though many of the NFHL GIS web services support the Web Mercator Sphere projection commonly used in web mapping applications.

  18. g

    IE GSI Groundwater Flood Probability and Historic Flood Maps 20k Ireland...

    • geohive.ie
    • ga.geohive.ie
    • +1more
    Updated Jul 9, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    geohive_curator (2020). IE GSI Groundwater Flood Probability and Historic Flood Maps 20k Ireland (ROI) ITM [Dataset]. https://www.geohive.ie/maps/f8dc65ff853a407dbd8aac24aa4a7e5d
    Explore at:
    Dataset updated
    Jul 9, 2020
    Dataset authored and provided by
    geohive_curator
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Area covered
    Description

    Groundwater is the water that soaks into the ground from rain and can be stored beneath the ground. Groundwater floods occur when the water stored beneath the ground rises above the land surface. The Historic Groundwater Flood Map shows the observed peak flood extents caused by groundwater in Ireland. This map was made using satellite images (Copernicus Programme Sentinel-1), field data, aerial photos, as well as flood records from the past. Most of the data was collected during the flood events of winter 2015 / 2016, as in most areas this data showed the largest floods on record.This map is to the scale 1:20,000. This means it should be viewed at that scale. When printed at that scale 1cm on the map relates to a distance of 200m.The map is a vector dataset. Vector data portray the world using points, lines, and polygons (area). The floods are shown as polygons. Each polygon has info about the type of flood, the data source, and the area of the flood.The flood extents were calculated using data and techniques with various precision levels, and as such, it may not show the true historic peak flood extents.The Winter 2015/2016 Surface Water Flooding map shows fluvial (rivers) and pluvial (rain) floods, excluding urban areas, during the winter 2015/2016 flood event, and was developed as a by-product of the historic groundwater flood map.This map is to the scale 1:20,000. This means it should be viewed at that scale. When printed at that scale 1cm on the map relates to a distance of 200m.The map is a vector dataset. The floods are shown as polygons. Each polygon has info about the type of flood, the data source, and the area of the flood.The flood extents were made using remote sensing images (Copernicus Programme Sentinel-1), which covered any site in Ireland every 4-6 days. As such, it may not show the true peak flood extents.The Synthetic Aperture Radar (SAR) Seasonal Flood Maps shows observed peak flood extents which took place between Autumn 2015 and Summer 2021. The maps were made using Synthetic Aperture Radar (SAR) images from the Copernicus Programme Sentinel-1 satellites. SAR systems emit radar pulses and record the return signal at the satellite. Flat surfaces such as water return a low signal. Based on this low signal, SAR imagery can be classified into non-flooded and flooded (i.e. flat) pixels.Flood extents were created using Python 2.7 algorithms developed by Geological Survey Ireland. They were refined using a series of post processing filters. Please read the lineage for more information.The flood maps shows flood extents which have been observed to occur. A lack of flooding in any part of the map only implies that a flood was not observed. It does not imply that a flood cannot occur in that location at present or in the future.This flood extent are to the scale 1:20,000. This means they should be viewed at that scale. When printed at that scale 1cm on the maps relates to a distance of 200m.They are vector datasets. Vector data portray the world using points, lines, and polygons (areas). The flood extents are shown as polygons. Each polygon has information on the confidence of the flood extent (high, medium or low), a flood id and a unique id.The Groundwater Flooding High Probability map shows the expected flood extent of groundwater flooding in limestone regions for annual exceedance probabilities (AEP’s) of 10%, which correspond with a return period of every 10 years. The map was created using groundwater levels measured in the field, satellite images and hydrological models.This map is to the scale 1:20,000. This means it should be viewed at that scale. When printed at that scale 1cm on the map relates to a distance of 200m.The map is a vector dataset. The floods are shown as polygons. Each polygon has info on the data source, and the area of the flood.The flood extents were calculated using remote sensing data and hydrological modelling techniques with various precision levels. As such, it should be used with caution.The Groundwater Flooding Medium Probability map shows the expected flood extent of groundwater flooding in limestone regions for annual exceedance probabilities (AEP’s) of 1%, which correspond with a return period of every 100 years. The map was created using groundwater levels measured in the field, satellite images and hydrological models.This map is to the scale 1:20,000. This means it should be viewed at that scale. When printed at that scale 1cm on the map relates to a distance of 200m.The map is a vector dataset. The floods are shown as polygons. Each polygon has info on the data source, and the area of the flood.The flood extents were calculated using remote sensing data and hydrological modelling techniques with various precision levels. As such, it should be used with caution.The Groundwater Flooding Low Probability map shows the expected flood extent of groundwater flooding in limestone regions for annual exceedance probabilities (AEP’s) of 0.1%, which correspond with a return period of every 1000 years.The map was created using groundwater levels measured in the field, satellite images and hydrological models.This map is to the scale 1:20,000. This means it should be viewed at that scale. When printed at that scale 1cm on the map relates to a distance of 200m.The map is a vector dataset. Vector data portray the world using points, lines, and polygons (area). The floods are shown as polygons. Each polygon has info on the data source, and the area of the flood.The flood extents were calculated using remote sensing data and hydrological modelling techniques with various precision levels. As such, it should be used with caution.

  19. n

    Flood Hazard Zones

    • prep-response-portal.napsgfoundation.org
    • hub.arcgis.com
    Updated Jun 20, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NAPSG Foundation (2018). Flood Hazard Zones [Dataset]. https://prep-response-portal.napsgfoundation.org/maps/flood-hazard-zones
    Explore at:
    Dataset updated
    Jun 20, 2018
    Dataset authored and provided by
    NAPSG Foundation
    Area covered
    Description

    THIS LAYER IS HOSTED BY FEMA, not NAPSG Foundation. We are simply pointing to their layer with this ArcGIS Online item. The National Flood Hazard Layer (NFHL) dataset represents the current effective flood data for the country, where maps have been modernized. It is a compilation of effective Flood Insurance Rate Map (FIRM) databases and Letters of Map Change (LOMCs). The NFHL is updated as studies go effective. For more information, visit FEMA's Map Service Center (MSC). You can view this information in a standalone viewer here: https://hazards-fema.maps.arcgis.com/apps/webappviewer/index.html?id=8b0adb51996444d4879338b5529aa9cdREST URL: https://hazards.fema.gov/gis/nfhl/rest/services/public/NFHL/MapServerBase Map ConsiderationsThe default base map is from an ESRI service and conforms to FEMA's specification for horizontal accuracy. This base map is composed of the orthoimagery used when the Flood Insurance Rate Maps (FIRMs) were initially created combined with standard imagery products managed by ESRI. This map should be considered the best online resource to use for official National Flood Insurance Program (NFIP) purposes when determining locations in relation to regulatory flood hazard information. If a different base map is used with the NFHL, the accuracy specification may not be met and the resulting map should be used for general reference only, and not official NFIP purposes.Further InformationFor more flood map data, tool, and viewing options, visit the FEMA NFHL page.Several fact sheets are available to help you learn more about FEMA’s NFHL utility: National Flood Hazard Layer (NFHL) GIS Services Users GuideNational Flood Hazard Layer (NFHL): New Products and Services for FEMA's Flood Hazard Map DataNFHL GIS Data: Perform Spatial Analyses and Make Custom Maps and Reports

  20. m

    FEMA National Flood Hazard Layer Legend

    • gis.data.mass.gov
    • geo-massdot.opendata.arcgis.com
    • +1more
    Updated Mar 10, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MassGIS - Bureau of Geographic Information (2015). FEMA National Flood Hazard Layer Legend [Dataset]. https://gis.data.mass.gov/maps/massgis::fema-national-flood-hazard-layer-legend/about
    Explore at:
    Dataset updated
    Mar 10, 2015
    Dataset authored and provided by
    MassGIS - Bureau of Geographic Information
    Area covered
    Description

    Map service that provides a legend for the FEMA National Flood Hazard Layer. Display this along with the FEMA NFHL tiled map service at https://tiles.arcgis.com/tiles/hGdibHYSPO59RG1h/arcgis/rest/services/FEMA_National_Flood_Hazard_Layer/MapServer (metadata at https://massgis.maps.arcgis.com/home/item.html?id=630c74171705455592a8fa947c3f849f), which, being a tiled service hosted at ArcGIS Online, does not have a legend associated with it when displayed in ArcGIS Online or ArcGIS for Desktop.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ShareGIS NY (2023). FEMA National Flood Hazard Layer Viewer [Dataset]. https://data.gis.ny.gov/datasets/fema-national-flood-hazard-layer-viewer

FEMA National Flood Hazard Layer Viewer

Explore at:
Dataset updated
Mar 29, 2023
Dataset authored and provided by
ShareGIS NY
Description

The National Flood Hazard Layer (NFHL) is a geospatial database that contains current effective flood hazard data. FEMA provides the flood hazard data to support the National Flood Insurance Program. You can use the information to better understand your level of flood risk and type of flooding.The NFHL is made from effective flood maps and Letters of Map Change (LOMC) delivered to communities. NFHL digital data covers over 90 percent of the U.S. population. New and revised data is being added continuously. If you need information for areas not covered by the NFHL data, there may be other FEMA products which provide coverage for those areas.In the NFHL Viewer, you can use the address search or map navigation to locate an area of interest and the NFHL Print Tool to download and print a full Flood Insurance Rate Map (FIRM) or FIRMette (a smaller, printable version of a FIRM) where modernized data exists. Technical GIS users can also utilize a series of dedicated GIS web services that allow the NFHL database to be incorporated into websites and GIS applications. For more information on available services, go to the NFHL GIS Services User Guide.You can also use the address search on the FEMA Flood Map Service Center (MSC) to view the NFHL data or download a FIRMette. Using the “Search All Products” on the MSC, you can download the NFHL data for a County or State in a GIS file format. This data can be used in most GIS applications to perform spatial analyses and for integration into custom maps and reports. To do so, you will need GIS or mapping software that can read data in shapefile format.FEMA also offers a download of a KMZ (keyhole markup file zipped) file, which overlays the data in Google Earth™. For more information on using the data in Google Earth™, please see Using the National Flood Hazard Layer Web Map Service (WMS) in Google Earth™.

Search
Clear search
Close search
Google apps
Main menu