A polygon feature class that depicts the inundation limits representing flood risk information and supporting data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The FIRM Database is derived from Flood Insurance Studies (FISs), previously published FIRMs, flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by FEMA. The FIRM is the basis for floodplain management, mitigation, and insurance activities for the National Flood Insurance Program (NFIP). Insurance applications include enforcement of the mandatory purchase requirement of the Flood Disaster Protection Act, which "... requires the purchase of flood insurance by property owners who are being assisted by Federal programs or by Federally supervised, regulated or insured agencies or institutions in the acquisition or improvement of land facilities located or to be located in identified areas having special flood hazards, " Section 2 (b) (4) of the Flood Disaster Protection Act of 1973. In addition to the identification of Special Flood Hazard Areas (SFHAs), the risk zones shown on the FIRMs are the basis for the establishment of premium rates for flood coverage offered through the NFIP. The FIRM Database presents the flood risk information depicted on the FIRM in a digital format suitable for use in electronic mapping applications. The FIRM Database serves to archive the information collected during the Flood Risk Project.
Urban growth models have increasingly been used by planners and policy makers to visualize, organize, understand, and predict urban growth. However, these models reveal a wide disparity in their attention to policy factors. Some urban growth models capture few if any specific policy effects (e.g.,as model variables), while others integrate certain policies but not others. Since zoning policies are the most widely used form of land use control in the United States, their conspicuous absence from so many urban growth models is surprising. This research investigated the impacts of zoning on urban growth by calibrating and simulating a cellular automaton urban growth model, SLEUTH, under two conditions in a South Florida location. The first condition integrated restrictive agricultural zoning into SLEUTH, while the other ignored zoning data. Goodness of fit metrics indicate that including the agricultural zoning data improved model performance. The results further suggest that agricultural zoning has been somewhat successful in retarding urban growth in South Florida. Ignoring zoning information is detrimental to SLEUTH performance in particular, and urban growth modeling in general.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A polygon feature class of Federal Emergency Management Agency (FEMA) flood hazard zones within Miami-Dade County. The data depicts the inundation limits representing flood risk information and supporting data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The FIRM Database is derived from Flood Insurance Studies (FISs), previously published FIRMs, flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by FEMA.Updated: Every 10 yrs The data was created using: Projected Coordinate System: WGS_1984_Web_Mercator_Auxiliary_SphereProjection: Mercator_Auxiliary_Sphere
Polygon feature class of Federal Emergency Management Agency (FEMA) Flood Hazard Zones for Miami-Dade County.
Flood Zones dataset current as of 2012. Identify the boundaries of the Flood Zone area.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A table of the Flood Zones.Updated: Every 10 yrs
This map represents Flood Insurance Rate Map (FIRM) data important for floodplain management, mitigation, and insurance activities for the National Flood Insurance Program (NFIP). The 100-year flood is referred to as the 1% annual exceedance probability flood, since it is a flood that has a 1% chance of being equaled or exceeded in any single year.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A polygon feature class of the Federal Emergency Management Agency (FEMA) Flood Zones for Miami-Dade County (1994).Updated: Not Planned The data was created using: Projected Coordinate System: WGS_1984_Web_Mercator_Auxiliary_SphereProjection: Mercator_Auxiliary_Sphere
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A polygon feature class of the Coastal A Zone boundaries. Developed to aid the spatial location of the Coastal A Zones in Miami-Dade County for permitting purposes. Based on the Miami-Dade County Digital Flood Insurance Rate Map (DFIRM), effective September 11, 2009 published by FEMA and the ASCE 24 guidelines. 'Coastal A� Zone according to FEMA, is the area landward of a V Zone or landward of an open coast without mapped V Zones. In a coastal A Zone, the principal source of flooding will be astronomical tides, storm surges, seiches or tsunamis and not riverine flooding. During base flood conditions, the potential for breaking wave heights between 1.5 feet and 3.0 ft, will exist.Updated: Not Planned The data was created using: Projected Coordinate System: WGS_1984_Web_Mercator_Auxiliary_SphereProjection: Mercator_Auxiliary_Sphere
In 2022, Miami, FL was the U.S. metropolitan area with the highest structural damage costs due to flood risk across office, retail, and multi-residential buildings. At the time, costs to repair damages or replace buildings at flood risk at this metro area were estimated at over one billion U.S. dollars. Trailing second was New York's metro area, with an estimated expense of 582 million dollars. New York was also the U.S. metropolitan area with the highest number of buildings at flood risk, with a over 30 thousand retail, office, and multi-residential buildings.
The flooding extent polygons are based on wave-driven total water levels for the coral reef-lined coast of Florida. The wave and sea level conditions were propagated using the XBeach open-source model (available at https://oss.deltares.nl/web/xbeach) over 100-m spaced shore-normal transects modified to account for base, mean elevation, and mean erosion scenarios. The impact of future coral reef degradation on coastal protection was examined for two different seafloor elevation-change scenarios based on DEM projections of the study area out 100 years from 2001 using either 1) historical rates of mean elevation-change as a conservative change model, or 2) historical rates of mean erosion. Methods describing the generation of the 'mean elevation' and 'mean erosion' scenarios are described in detail in Yates and others (2018, 2019a, and 2019b). The greater colonization results in higher rugosity and thus hydrodynamic roughness via friction and was parameterized per van Dongeren and others (2013) and Quataert and others (2015). Where the locations along each transect were coincident with one of the damage-assessment locations, a reduction in roughness, and/or an increase in profile depth were applied. The changes to bathymetry and roughness were then carried on to each XBeach model run to ascertain the change in flooding during large storm events due to the projected reef degradation. These flood extents can be combined with economic, ecological, and engineering tools to provide a rigorous financial valuation of the projected future coastal protection benefits of Florida’s coral reefs.
Geospatial data about Miami-Dade County, Florida Storm Drain Area. Export to CAD, GIS, PDF, CSV and access via API.
These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer called the Sea Level Rise and Coastal Flooding Impacts Viewer. It depicts potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The Sea Level Rise and Coastal Flooding Impacts Viewer may be accessed at: https://coast.noaa.gov/slr. This metadata record describes the Florida Keys digital elevation model (DEM), which is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea Level Rise and Coastal Flooding Impacts Viewer described above. This DEM includes the best available lidar known to exist at the time of DEM creation that met project specifications. This DEM includes data for Miami-Dade and Monroe Counties. The DEM was produced from the following lidar data sets: 1. 2015 Miami-Dade County, Florida Lidar 2. 2015 NOAA NGS Topobathy Lidar: Dry Tortugas 3. 2018 - 2019 NOAA NGS Topobathy Lidar Hurricane Irma: Miami to Marquesas Key, FL The DEM is referenced vertically to the North American Vertical Datum of 1988 (NAVD88) with vertical units of meters and horizontally to the North American Datum of 1983 (NAD83). The resolution of the DEM is approximately 3 meters.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A raster dataset of the county flood criteria boundaries within Miami-Dade County. The purpose of the Miami-Dade County Flood Criteria Map is to determine the minimum ground surface elevation of developed properties, crown/grade of roads, and secondary canal banks based on a 10-year, 24-hour storm event, 2060 scenario with SLR, and the minimum top elevation of seawalls, unless higher elevations are required by other regulatory applicable standards. Available for review and comment October 22, 2021 through December 22, 2021.Download County Flood Criteria Raster
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A polygon feature class of the county flood criteria boundaries within Miami-Dade County. The purpose of the Miami-Dade County Flood Criteria Map is to determine the minimum ground surface elevation of developed properties, crown/grade of roads, and secondary canal banks based on a 10-year, 24-hour storm event, 2060 scenario with SLR, and the minimum top elevation of seawalls, unless higher elevations are required by other regulatory applicable standards.Available for review and comment October 22, 2021 through December 22, 2021.Updated: Every 10 yrs The data was created using: Projected Coordinate System: WGS_1984_Web_Mercator_Auxiliary_SphereProjection: Mercator_Auxiliary_Sphere
Flooding extent polygons based on wave-driven total water levels for the coral reef-lined coasts of Florida and Puerto Rico. The wave and sea-level conditions were propagated using the XBeach open-source model (available at https://oss.deltares.nl/web/xbeach) over 100-m spaced shore-normal transects modified to account for base and post-storm scenarios. In situ observations following Hurricanes Irma and Maria by Viehman and others (2018, 2020a, and 2020b) were used to create maps of damage to reefs Transect depth profiles were modified to reflect post-storm conditions. Higher coral cover results in higher rugosity and thus hydrodynamic roughness via friction and was parameterized per van Dongeren and others (2013) and Quataert and others (2015). Where the locations along each transect were coincident with damage, a reduction in roughness and/or an increase in profile depth were applied according to the level of recorded damage. The changes to bathymetry and roughness were then carried on to each XBeach model run to ascertain the change in flooding during large storm events due to the damage of the reefs. These flood extents can be combined with economic, ecological, and engineering tools to provide a rigorous financial valuation of the coastal protection benefits lost by Florida’s and Puerto Rico’s coral reefs due to damage during the 2017 hurricanes.
These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer called the Sea Level Rise and Coastal Flooding Impacts Viewer. It depicts potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The Sea Level Rise and Coastal Flooding Impacts Viewer may be accessed at: https://coast.noaa.gov/slr. This metadata record describes the Florida, SE digital elevation model (DEM), which is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea Level Rise and Coastal Flooding Impacts Viewer described above. This DEM includes the best available lidar known to exist at the time of DEM creation that met project specifications. This DEM includes data for Broward, Collier, Hendry, Martin, Monroe, Miami-Dade, and Palm Beach Counties. The DEM was produced from the following lidar data sets: 1. 2018 Florida Peninsular - Collier 2. 2017 Everglades FL Lidar 3. 2018 West Everglades Topobathy NP FL Lidar 4. 2018 Southeast FL Lidar (B1, B2, TL) 5. 2018 Florida Peninsular FDEM - Hendry 6. 2018 Florida Peninsular FDEM - Martin 7. 2018 Miami-Dade County, Florida Lidar 8. 2015 Miami-Dade County, Florida Lidar 9. 2018 - 2019 NOAA NGS Topobathy Lidar Hurricane Irma: Miami to Marquesas Keys, FL 10. 2019 Florida Peninsular FDEM - Palm Beach 11. 2017 Palm Beach County, Florida Lidar 12. 2014 Seminole Tribe Big Cypress Reservation Lidar The DEM is referenced vertically to the North American Vertical Datum of 1988 (NAVD88) with vertical units of meters and horizontally to the North American Datum of 1983 (NAD83). The resolution of the DEM is approximately 3 meters.
The flooding extent polygons are based on wave-driven total water levels for the coral reef-lined coast of Florida. The wave and sea level conditions were propagated using the XBeach open-source model (available at https://oss.deltares.nl/web/xbeach) over 100-m spaced shore-normal transects modified to account for base, mean elevation, and mean erosion scenarios. The impact of future coral reef degradation on coastal protection was examined for two different seafloor elevation-change scenarios based on DEM projections of the study area out 100 years from 2001 using either 1) historical rates of mean elevation-change as a conservative change model, or 2) historical rates of mean erosion. Methods describing the generation of the 'mean elevation' and 'mean erosion' scenarios are described in detail in Yates and others (2018, 2019a, and 2019b). The greater colonization results in higher rugosity and thus hydrodynamic roughness via friction and was parameterized per van Dongeren and others (2013) and Quataert and others (2015). Where the locations along each transect were coincident with one of the damage-assessment locations, a reduction in roughness, and/or an increase in profile depth were applied. The changes to bathymetry and roughness were then carried on to each XBeach model run to ascertain the change in flooding during large storm events due to the projected reef degradation. These flood extents can be combined with economic, ecological, and engineering tools to provide a rigorous financial valuation of the projected future coastal protection benefits of Florida’s coral reefs.
These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer called the Sea Level Rise and Coastal Flooding Impacts Viewer. It depicts potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The Sea Level Rise and Coastal Flooding Impacts Viewer may be accessed at: https://coast.noaa.gov/slr. This metadata record describes the Florida, SW digital elevation model (DEM), which is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea Level Rise and Coastal Flooding Impacts Viewer described above. This DEM includes the best available lidar known to exist at the time of DEM creation that met project specifications. This DEM includes data for Charlotte, Collier, Glades, Hendry, Miami-Dade, Monroe, and Palm Beach Counties. The DEM was produced from the following lidar data sets: 1. 2018 Florida Peninsular FDEM - Charlotte 2. 2018 Florida Peninsular - Collier 3. 2017 Everglades FL Lidar 4. 2018 West Everglades Topobathy NP FL Lidar 5. 2018 Southeast FL Lidar (B1, B2, TL) 6. 2018 Southwest FL Lidar (A, B, B TL) 7. 2018 Florida Peninsular FDEM - Glades 8. 2018 Florida Peninsular FDEM - Hendry 9. 2015 Miami-Dade County, Florida Lidar 10. 2017 Palm Beach County, Florida Lidar 11. 2014 Seminole Tribe Big Cypress Reservation Lidar The DEM is referenced vertically to the North American Vertical Datum of 1988 (NAVD88) with vertical units of meters and horizontally to the North American Datum of 1983 (NAD83). The resolution of the DEM is approximately 3 meters.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The Miami-Dade County storm surge planning zones are drawn using Sea, Lake and Overland Surge from Hurricanes (SLOSH) model grids that incorporate local physical features such as geographic coastal area, bay and river shapes, water depths, bridges, etc. Areas in Miami-Dade along canals, rivers and further inland have been identified as being at risk for storm surge based on this data. The Miami-Dade County storm surge planning zones are drawn using Sea, Lake and Overland Surge from Hurricanes (SLOSH) model grids that incorporate local physical features such as geographic coastal area, bay and river shapes, water depths, bridges, etc. Areas in Miami-Dade along canals, rivers and further inland have been identified as being at risk for storm surge based on this data. Each zone or portions will be evacuated depending on the hurricane’s track and projected storm surge, independent of the hurricane’s category. Upon identification of a threat the EOC or County Mayor will use local media to relay pertinent information, such as evacuations and shelter openings. It is important that you monitor the news for this information. Remember that these planning deal strictly with storm surge; you still need to determine if your home is safe to remain in during a hurricane.
A polygon feature class that depicts the inundation limits representing flood risk information and supporting data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The FIRM Database is derived from Flood Insurance Studies (FISs), previously published FIRMs, flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by FEMA. The FIRM is the basis for floodplain management, mitigation, and insurance activities for the National Flood Insurance Program (NFIP). Insurance applications include enforcement of the mandatory purchase requirement of the Flood Disaster Protection Act, which "... requires the purchase of flood insurance by property owners who are being assisted by Federal programs or by Federally supervised, regulated or insured agencies or institutions in the acquisition or improvement of land facilities located or to be located in identified areas having special flood hazards, " Section 2 (b) (4) of the Flood Disaster Protection Act of 1973. In addition to the identification of Special Flood Hazard Areas (SFHAs), the risk zones shown on the FIRMs are the basis for the establishment of premium rates for flood coverage offered through the NFIP. The FIRM Database presents the flood risk information depicted on the FIRM in a digital format suitable for use in electronic mapping applications. The FIRM Database serves to archive the information collected during the Flood Risk Project.