Facebook
TwitterThese data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer called the Sea Level Rise and Coastal Flooding Impacts Viewer. It depicts potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The Sea Level Rise and Coastal Flooding Impacts Viewer may be accessed at: https://coast.noaa.gov/slr. This metadata record describes the Florida, West 1 digital elevation model (DEM), which is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea Level Rise and Coastal Flooding Impacts Viewer described above. This DEM includes the best available lidar known to exist at the time of DEM creation that met project specifications. This DEM includes data for Charlotte, Desoto, Glades, Hernando, Hillsborough, Manatee, Pasco, Pinellas, and Sarasota Counties. The DEM was produced from the following lidar data sets: 1. 2018 Florida Peninsular FDEM - Charlotte 2. 2018 Florida Peninsular FDEM - Desoto 3. 2018 Southwest FL Lidar (A, B, B TL) 4. 2018 Florida Peninsular FDEM - Glades 5. 2019 Florida Peninsular - Hernando 6. 2017 Hillsborough County Florida Lidar 7. 2018 Florida Peninsular FDEM - Manatee 8. 2018 Pasco County Florida Lidar 9. 2018 Florida Peninsular - Pinellas 10. 2018 Florida Peninsular FDEM - Sarasota The DEM is referenced vertically to the North American Vertical Datum of 1988 (NAVD88) with vertical units of meters and horizontally to the North American Datum of 1983 (NAD83). The resolution of the DEM is approximately 3 meters.
Facebook
TwitterThis metadata document describes the LiDAR point data in LAS format produced by Kucera covering the project area of Lake County, FL. The data produced is satisfactory for the generation of both 1' and 2' contours. The average point spacing for all tiles is estimated to be 1 meter.
Original contact information: Contact Name: Kevin Willis Contact Org: Lake County Board of County Commissio...
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
To generate the land surface grid for this project, VIEWLOG was used to re-sample a 100-ft digital elevation model (DEM) of best-available data for the Lower West Coast planning region of the SFWMD. The original DEM was composited in 2013 from multiple sources. The 100 x 100 foot cell size of the DEM was resampled to a grid size of 2000 x 2000 feet (Liebermann and Bedell, 2013). The vertical datum is NGVD29. The contour interval is in feet.The objectives of this study were to create regional hydrogeologic maps including contour maps showing unit surfaces and thicknesses, and cross-sections representative of both the surficial aquifer system (SAS) and intermediate aquifer system (IAS). The maps, source data, and metadata used to generate these products will be archived in a manner suitable for model implementation and regulatory use in a publically accessible format. The results will be incorporated into the forthcoming Lower West Coast Surficial Aquifer System and Intermediate Aquifer System Model (LWCSIM), which will evaluate the potential impact of existing and projected groundwater withdrawals in all SAS and IAS aquifers within the region over the next several decades.For full documentation, please see Technical Publication WS-35, "Hydrogeologic Unit Mapping Update for the Lower West Coast Water Supply Planning Area," dated August 2015 by Elizabeth Geddes, Emily Richardson P.G., and Anne Dodd P.G. , Water Supply Bureau, Water Resources Division, South Florida Water Management District, West Palm Beach, Florida.https://www.sfwmd.gov/sites/default/files/documents/ws-35_lwc_hydrogeologic_mapping_083115.pdf
Facebook
TwitterThe High Accuracy Elevation Data Project collected elevation data (meters) on a 400 meter topographic grid with a vertical accuracy of +/- 15 centimeters to define the topography in South Florida. The data are referenced to the horizontal datum North American Datum 1983 (NAD 83) and the vertical datum North American Vertical Datum 1988 (NAVD 88). The High Accuracy Elevation Data Project began with a pilot study in FY 1995 to determine if the then state-of-the-art GPS technology could be used to perform a topographic survey that would meet the vertical accuracy requirements of the hydrologic modeling community. The initial testing platform was from a truck and met the accuracy requirements. Data were collected in areas near Homestead, Florida. The data are available for the areas shown on the USGS High Accuracy Elevation Data graphic at http://sofia.usgs.gov/exchange/desmond/desmondelev.html
These data are from topographic surveys to collect and provide elevation data to parameterize hydrologic and ecological numerical simulation models that were being developed for ecosystem restoration activities. Surveying services were also rendered to provide vertical reference points for numerous water level gauges. Modeling of sheet flow and water surface levels in the wetlands of South Florida is very sensitive to changes in elevation due to the expansive and extremely low relief terrain. Hydrologists have determined minimum vertical accuracy requirements for the elevation data for use as input to hydrologic models. As a result, elevation data with a vertical accuracy specification of +/-15 centimeters (cm) relative to the North American Vertical Datum of 1988 (NAVD88) were collected in critical areas using state-of-the-art differential global positioning system (GPS) technology and data processing techniques.
Facebook
TwitterThis dataset is the lidar data for Volusia County, Florida, approximately 1,432 square miles, acquired in early March of 2006. A total of 143 flight lines of Lidar data were acquired in eleven sessions between 2-8 March 2006. This dataset is comprised of 1,591 LiDAR files, based on the Volusia County 5,000' by 5,000' sheet index system, in the LAS file format. The raw data was collected at an a...
Facebook
TwitterThe High Accuracy Elevation Data Project collected elevation data (meters) on a 400 meter topographic grid with a vertical accuracy of +/- 15 centimeters to define the topography in South Florida. The data are referenced to the horizontal datum North American Datum 1983 (NAD 83) and the vertical datum North American Vertical Datum 1988 (NAVD 88). In some areas, the surveying was accomplished using airboats. Because access was a logistical problem with airboats, the USGS developed a helicopter-based instrument known as the Airborne Height Finder (AHF). All subsequent data collection used the AHF. Data were collected from the Loxahatchee National Wildlife Refuge, south through the Water Conservation Areas (1A, 2A, 2B, 3A, and 3B), Big Cypress National Park, the Everglades National Park, to the Florida Bay. The data are available for the areas shown on the USGS High Accuracy Elevation Data graphic at http://sofia.usgs.gov/exchange/desmond/desmondelev.html. The work was performed for Everglades ecosystem restoration purposes.
Facebook
TwitterIf you want to check if a property has an EC for a permit, insurance, or other reason, you can now do so by searching the property on FDEM’s public website. If you are not able to locate an EC in our system or have questions, please check out our Knowledge Base, or contact us using the Get Help form.Disclaimer: The Florida Division of Emergency Management makes no warranties or representations to the accuracy of Elevation Certificates available through this website.
Facebook
TwitterThe U.S. Geological Survey (USGS) coordinated the acquisition of high accuracy elevation data (meters) for the Lake Okeechobee Littoral Zone collected on a 400 meter topographic grid with a vertical accuracy of +/- 15 centimeters. The elevations are referenced to the horizontal North American Datum of 1983 (NAD83) and vertical North American Vertical Datum of 1988 (NAVD88). The topographic surveys were performed using differential GPS technology and a USGS developed helicopter-based instrument known as the Airborne Height Finder (AHF).
The data are available for the areas shown on the USGS High Accuracy Elevation Data graphic at http://sofia.usgs.gov/exchange/desmond/desmondelev.html.
Facebook
TwitterThis downloadable zip file contains an ESRI File Geodatabase (FGDB) that is compatible with most versions of ArcGIS Pro, ArcMap, and AutoCAD Map 3D or Civil 3D. To view the geodatabase’s contents, please download the zip file to a local directory and extract its contents. This zipped geodatabase will require approximately 2.85 GB of disc space (3.09 GB extracted). Due to its size, the zip file may take some time to download.Once extracted, this file geodatabase contains a topographic contour layer that was derived from LiDAR collected in spring of 2020 by Dewberry Engineers in coordination with Tallahassee - Leon County GIS. The contours were extracted at a 2 foot interval with index contours every 10 feet.Lidar Acquisition Executive SummaryThe primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy Light Detection and Ranging (lidar) technology for the Tallahassee Leon County Project Area. The lidar data were processed and classified according to project specifications. Detailed breaklines and bare-earth Digital Elevation Models (DEMs) were produced for the project area. Data was formatted according to tiles with each tile covering an area of 5000 ft by 5000 ft. A total of 876 tiles were produced for the project encompassing an area of approximately 785.55 sq. miles.The Project TeamDewberry served as the prime contractor for the project. In addition to project management, Dewberry was responsible for LAS classification, all lidar products, breakline production, Digital Elevation Model (DEM) production, and quality assurance. Dewberry’s Frederick C. Rankin completed ground surveying for the project and delivered surveyed checkpoints. His task was to acquire surveyed checkpoints for the project to use in independent testing of the vertical accuracy of the lidar-derived surface model. He also verified the GPS base station coordinates used during lidar data acquisition to ensure that the base station coordinates were accurate. Please see Appendix A to view the separate Survey Report that was created for this portion of the project. Digital Aerial Solutions, LLC completed lidar data acquisition and data calibration for the project area.SURVEY AREAThe project area addressed by this report falls within the Florida county of Leon.DATE OF SURVEYThe lidar aerial acquisition was conducted from TBDORIGINAL COORDINATE REFERENCE SYSTEMData produced for the project were delivered in the following reference system.Horizontal Datum: The horizontal datum for the project is North American Datum of 1983 with the 2011 Adjustment (NAD 83 (2011))Vertical Datum: The Vertical datum for the project is North American Vertical Datum of 1988 (NAVD88)Coordinate System: NAD83 (2011) State Plane Florida North (US survey feet)Units: Horizontal units are in U.S. Survey Feet, Vertical units are in U.S. Survey Feet.Geiod Model: Geoid12B (Geoid 12B) was used to convert ellipsoid heights to orthometric heights).
Facebook
TwitterThe flooding extent polygons are based on wave-driven total water levels for the coral reef-lined coast of Florida. The wave and sea level conditions were propagated using the XBeach open-source model (available at https://oss.deltares.nl/web/xbeach) over 100-m spaced shore-normal transects modified to account for base, mean elevation, and mean erosion scenarios. The impact of future coral reef degradation on coastal protection was examined for two different seafloor elevation-change scenarios based on DEM projections of the study area out 100 years from 2001 using either 1) historical rates of mean elevation-change as a conservative change model, or 2) historical rates of mean erosion. Methods describing the generation of the 'mean elevation' and 'mean erosion' scenarios are described in detail in Yates and others (2018, 2019a, and 2019b). The greater colonization results in higher rugosity and thus hydrodynamic roughness via friction and was parameterized per van Dongeren and others (2013) and Quataert and others (2015). Where the locations along each transect were coincident with one of the damage-assessment locations, a reduction in roughness, and/or an increase in profile depth were applied. The changes to bathymetry and roughness were then carried on to each XBeach model run to ascertain the change in flooding during large storm events due to the projected reef degradation. These flood extents can be combined with economic, ecological, and engineering tools to provide a rigorous financial valuation of the projected future coastal protection benefits of Florida’s coral reefs.
Facebook
TwitterDigital elevation models for each county have been developed using the LAS bare earth points. Where available, breaklines have been utilized. County level DEMs were created at a resolution ranging from 1.2 to 2 meters. This dataset is a mosaic of the best available data. Please contact GIS.Librarian@floridadep.gov for more information.
Facebook
TwitterThis digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea Level Rise and Coastal Flooding Impacts Viewer. The DEMs created for this project were developed using the NOAA National Weather Service's Weather Forecast Office (WFO) boundaries. Because the WFO boundaries can cover large areas, the WFO DEM was divided into smaller DEMs to ensure more manageable file sizes. The Miami (FL) WFO DEM was split into two smaller DEMs. They are divided along county lines and are: 1. Miami (FL) WFO - Collier and Monroe (Mainland) Counties 2. Miami (FL) WFO - Palm Beach, Broward, Miami-Dade, and Monroe (Keys) Counties This metadata record describes the DEM for Miami (FL) WFO - Palm Beach, Broward, Miami-Dade, and Monroe (Keys) Counties. The DEM includes the best available lidar data known to exist at the time of DEM creation for the coastal areas of Palm Beach, Broward, Miami-Dade, and Monroe (Keys) counties, that met project specifications. The DEM is derived from LiDAR datasets collected for the Florida Department of Emergency Management (FDEM). LiDAR data for Monroe, Miami-Dade, Broward and Palm Beach counties was collected in 2007 and 2008. Hydrographic breaklines used in the creation of the DEM were obtained from FDEM and the South Florida Water Management District. The DEMs are hydro flattened such that water elevations are less than or equal to 0 meters. The DEM is referenced vertically to the North American Vertical Datum of 1988 (NAVD88) with vertical units of meters and horizontally to the North American Datum of 1983 (NAD83). The resolution of the DEM is approximately 5 meters.
Facebook
TwitterOriginal Data Collection: Dewberry collected 822 square miles of lidar data in Pasco County, Florida. The nominal pulse spacing for this project was 1 point every 0.25 meters or a nominal pulse density of 8 points per square meter. Dewberry used proprietary procedures to classify the LAS according to project specifications: 1-Unclassified, 2-Ground, 6-Building Rooftops, 7-Low Noise, 9-Water...
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea Level Rise and Coastal Flooding Impacts Viewer. The DEMs created for this project were developed using the NOAA National Weather Service's Weather Forecast Office (WFO) boundaries. Because the WFO boundaries can cover large areas, the WFO DEM was divided into smaller DEMs to ensure more manageable file sizes. The Tampa (FL) WFO DEM was split into two smaller DEMs. They are divided along county lines and are: 1. Tampa (FL) WFO - Citrus, Hernando, Pasco, Pinellas, and Hillsborough Counties 2. Tampa (FL) WFO - Manatee, Sarasota, Charlotte, and Lee Counties This metadata record describes the DEM for Tampa (FL) WFO - Citrus, Hernando, Pasco, Pinellas, and Hillsborough Counties. The DEM includes the best available lidar data known to exist at the time of DEM creation for the coastal areas of Citrus, Hernando, Pasco, Pinellas, and Hillsborough counties, that met project specifications. The DEM is derived from LiDAR datasets collected for the Florida Department of Emergency Management (FDEM) and the Southwest Florida Water Management District (SWFWMD). LiDAR data for Citrus County was collected in 2007. Hernando County LiDAR was also collected in 2007. LiDAR collection for Pasco County occured in 2004 and 2008. The FDEM LiDAR data for Pinellas and Hillsborough counties were collected in 2007 and 2008. Hydrographic breaklines used in the creation of the DEM were obtained from FDEM and SWFWMD. In some cases, the National Wetlands Inventory and National Hydrography Dataset were used to supplement breaklines from FDEM and SWFWMD. The DEMs are hydro flattened such that water elevations are less than or equal to 0 meters. The DEM is referenced vertically to the North American Vertical Datum of 1988 (NAVD88) with vertical units of meters and horizontally to the North American Datum of 1983 (NAD83). The resolution of the DEM is approximately 5 meters.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
These are Digital Elevation Model (DEM) data for Sarasota county,as part of the required deliverables for the FL Peninsular FDEM 2018 D19 DRRA Lidar project.Class 2 (ground) lidar points in conjunction with the hydro breaklines were used to create a 2.5 foot hydro-flattened Raster DEM.Dataset Description: FL Peninsular FDEM 2018 D19 DRRA Lidar project called for the Planning, Acquisition, processing and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.35 meter. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base Lidar Specification, Version 1.3. The data was developed based on a horizontal projection/datum of NAD83 (2011), State Plane, U.S Survey Feet and vertical datum of NAVD88 (GEOID12B), U.S Survey Feet. Sarasota County GIS has subsequently re-projected the data to NAD83 State Plane HARN, U.S. Survey Feet.Raster Cell Size: 2.5 footRequired Vertical Accuracy: The required NVA is: 19.6 cm (0.64 ft)at a 95% confidence level
Facebook
TwitterThis digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea Level Rise and Coastal Flooding Impacts Viewer. The DEMs created for this project were developed using the NOAA National Weather Service's Weather Forecast Office (WFO) boundaries. Because the WFO boundaries can cover large areas, the WFO DEM was divided into smaller DEMs to ensure more manageable file sizes. The Melbourne (FL) WFO DEM was split into two smaller DEMs. They are divided along county lines and are: 1. Melbourne (FL) WFO - Brevard and Volusia Counties 2. Melbourne (FL) WFO - Indian River, St. Lucie, and Martin Counties This metadata record describes the DEM for Miami (FL) WFO - Indian River, St. Lucie, and Martin Counties. The DEM includes the best available lidar data known to exist at the time of DEM creation for the coastal areas of Indian River, St. Lucie, and Martin counties, that met project specifications. The DEM is derived from LiDAR datasets collected for the Florida Department of Emergency Management (FDEM). LiDAR data for Indian River, St. Lucie and Martin counties was collected in 2007. Hydrographic breaklines used in the creation of the DEM were obtained from FDEM. The DEMs are hydro flattened such that water elevations are less than or equal to 0 meters. The DEM is referenced vertically to the North American Vertical Datum of 1988 (NAVD88) with vertical units of meters and horizontally to the North American Datum of 1983 (NAD83). The resolution of the DEM is approximately 5 meters.
Facebook
TwitterNOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico. These integrated bathymetric-topographic DEMs were developed for NOAA Coast Survey Development Laboratory (CSDL) through the American Recovery and Reinvestment Act (ARRA) of 2009 to evaluate the utility of the Vertical Datum Transformation tool (VDatum), developed jointly by NOAA's Office of Coast Survey (OCS), National Geodetic Survey (NGS), and Center for Operational Oceanographic Products and Services (CO-OPS). Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. Coastal Services Center (CSC), the U.S. Office of Coast Survey (OCS), the U.S. Army Corps of Engineers (USACE), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of North American Vertical Datum of 1988 (NAVD 88) or Mean High Water (MHW) and horizontal datum of North American Datum of 1983 (NAD 83). Grid spacings for both DEMs are 1/3 arc-second (~10 meters).
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea Level Rise and Coastal Flooding Impacts Viewer. The DEMs created for this project were developed using the NOAA National Weather Service's Weather Forecast Office (WFO) boundaries. Because the WFO boundaries can cover large areas, the WFO DEM was divided into smaller DEMs to ensure more manageable file sizes. The Jacksonville (FL) WFO DEM was split into two smaller DEMs. They are divided along county lines and are: 1. Jacksonville (FL) WFO - Duval, Clay, and Nassau Counties 2. Jacksonville (FL) WFO - St. Johns, Flagler and Putnam Counties This metadata record describes the DEM for Jacksonville (FL) WFO - Duval, Clay, and Nassau Counties. The DEM includes the best available lidar data known to exist at the time of DEM creation for the coastal areas of Duval, Clay, and Nassau counties, that met project specifications. The DEM is derived from LiDAR datasets collected for the Florida Department of Emergency Management (FDEM). LiDAR data for Nassau, Duval, and Clay counties were collected between 2004 and 2008. Hydrographic breaklines used in the creation of the DEM were obtained from FDEM. The DEMs are hydro flattened such that water elevations are less than or equal to 0 meters. The DEM is referenced vertically to the North American Vertical Datum of 1988 (NAVD88) with vertical units of meters and horizontally to the North American Datum of 1983 (NAD83). The resolution of the DEM is approximately 5 meters.
Facebook
TwitterESCAMBIA: The Light Detection and Ranging (LiDAR) LAS dataset is a survey of select areas within Escambia County, Florida. These data were produced for Dewberry and Davis LLC. The Escambia County LiDAR Survey project area consists of approximately 803 square miles. The LiDAR point cloud was flown at a density sufficient to support a maximum final post spacing of 6 feet for unobscured areas. Lan...
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset is the bathymetry Digital Elevation Model for the northern Gulf of Mexico coast including most or portions of the southeastern parishes of Louisiana, the coastal counties of Mississippi and Alabama, and the western counties of the Florida panhandle. The dataset includes offshore data extending, in some places, to a distance of ~200 km from the coast.NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico. These integrated bathymetric-topographic DEMs were developed for NOAA Coastal Survey Development Laboratory (CSDL) through the American Recovery and Reinvestment Act (ARRA) of 2009 to evaluate the utility of the Vertical Datum Transformation tool (VDatum), developed jointly by NOAA's Office of Coast Survey (OCS), National Geodetic Survey (NGS), and Center for Operational Oceanographic Products and Services (CO-OPS).Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. Coastal Services Center (CSC), the U.S. Office of Coast Survey (OCS), the U.S. Army Corps of Engineers (USACE), and other federal, state, and local government agencies, academic institutions, and private companies.DEMs are referenced to the vertical tidal datum of North American Vertical Datum of 1988 (MHW), Mean High Water (MHW) or Mean Lower Low Water (MLLW) and horizontal datum of North American Datum of 1983 (NAD 83). Cell size ranges from 1/3 arc-second (~10 meters) to 1 arc-second (~30 meters). The NOAA VDatum DEM Project was funded by the American Recovery and Reinvestment Act (ARRA) of 2009 (http://www.recovery.gov/).The horizontal accuracy of bathymetric and topographic features in the DEM is dependent upon the accuracy of the input datasets used to determine corresponding cell values. Topography: 10 meters due to cell size. Lidar: less than 5 meters. DEM cell-value relative-contribution factors: Louisiana Lidar, Mississippi Lidar, CSC Lidar: 100, Mississippi Merged Lidar: 80, Digitzed features: 1, Bathymetry: 5 to several tens of meters. Positional accuracy of input bathymetric datasets limits accuracy of corresponding cell values in DEM. CSC Lidar: 0.75 meters. Early 20th-century NOS hydrographic soundings are limited by sparseness of deep-water soundings, and potentially large position accuracy of pre-satellite (i.e., GPS) navigation: tens to several tens of meters. Morphologic change in inland rivers and along the coast also degrades the positional accuracy of DEM features. DEM cell-value relative-contribution factors: CSC Coastal Lidar: 100, USACE hydrographic survey data: 5, NOS hydrographic soundings: 5, Digitized features: 1.The vertical accuracy of bathymetric and topographic features in the DEM is dependent upon the accuracy of the input datasets used to determine corresponding cell values. Topography: 1 to 16 meters. Vertical accuracy of input topographic datasets limits accuracy of corresponding cells in DEM. Lidar: less than 1 meter. DEM cell relative-contribution factors: Louisiana Lidar, Mississippi Lidar, CSC Lidar: 100, Digitized features: 10. Bathymetry: 0.1 meters to 5% of water depth. Vertical accuracy of input bathymetric datasets limits accuracy of corresponding cells in DEM. Early 20th-century NOS hydrographic soundings are limited by sparseness of deep-water soundings, and potentially large position accuracy of pre-satellite (i.e., GPS) navigation: several meters. DEM cell relative-contribution factors: CSC Coastal Lidar: 100, USACE hydrographic survey data: 5, NOS hydrographic soundings: 5, Digitized features: 1. Gridding interpolation to determine cell values between sparse NOS hydrographic soundings in deep water degrades the vertical accuracy of deep-water elevations.
Facebook
TwitterThese data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer called the Sea Level Rise and Coastal Flooding Impacts Viewer. It depicts potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The Sea Level Rise and Coastal Flooding Impacts Viewer may be accessed at: https://coast.noaa.gov/slr. This metadata record describes the Florida, West 1 digital elevation model (DEM), which is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea Level Rise and Coastal Flooding Impacts Viewer described above. This DEM includes the best available lidar known to exist at the time of DEM creation that met project specifications. This DEM includes data for Charlotte, Desoto, Glades, Hernando, Hillsborough, Manatee, Pasco, Pinellas, and Sarasota Counties. The DEM was produced from the following lidar data sets: 1. 2018 Florida Peninsular FDEM - Charlotte 2. 2018 Florida Peninsular FDEM - Desoto 3. 2018 Southwest FL Lidar (A, B, B TL) 4. 2018 Florida Peninsular FDEM - Glades 5. 2019 Florida Peninsular - Hernando 6. 2017 Hillsborough County Florida Lidar 7. 2018 Florida Peninsular FDEM - Manatee 8. 2018 Pasco County Florida Lidar 9. 2018 Florida Peninsular - Pinellas 10. 2018 Florida Peninsular FDEM - Sarasota The DEM is referenced vertically to the North American Vertical Datum of 1988 (NAVD88) with vertical units of meters and horizontally to the North American Datum of 1983 (NAD83). The resolution of the DEM is approximately 3 meters.