IMPORTANT IN THE OPEN DATA PORTAL THERE IS ONE FEATURE CLASS FOR ALL POTENTIOMETRIC SURFACE MAPS. IF YOU WANT JUST ONE TIME PERIOD CLICK ON THE TABLE TAB, THEN CLICK ON THE DATE FIELD. IN THE FILTER BOX ON THE RIGHT ENTER THE MAP YOU WANT (MAY 2000, SEPTEMBER 2015, ETC.). WHEN YOU CLICK THE DOWNLOAD DATASET BUTTON SELECT SPREADSHEET OR KML OR SHAPEFILE UNDER THE FILTERED DATASET OPTION. YOU WILL ONLY GET THE FILTERED DATA FROM THIS DOWNLOAD.Contour lines are created for the potentiometric surface of the upper Floridan aquifer from water level data submitted by the water management districts. The points associated with the water level data are added to Geostatistical Analyst and ordinary kriging is used to interpolate water level elevation values between the points. The Geostatistical Analyst layer is then converted to a grid (using GA Layer to grid tool) and then contour lines (using the Contour tool). Post editing is done to smooth the lines and fix areas that are hydrologically incorrect. The rules established for post editing are: 1) rivers intersecting the UFA follow the rule of V’s; 2) potentiometric surface contour line values don’t exceed the topographic digital elevation model (DEM) in unconfined areas; and 3) potentiometric surface contour lines don’t violate valid measured water level data. Errors are usually located where potentiometric highs are adjacent to potentiometric lows (areas where the gradient is high). Expert knowledge or additional information is used to correct the contour lines in these areas. Some additional data may be river stage values in rivers that intersect the Floridan aquifer or land elevation in unconfined areas. Contour lines created prior to May 2012 may be calculated using a different method. The potentiometric surface is only meant to describe water level elevation based on existing data for the time period measured. The contour interval for the statewide map is 10 feet and is not meant to supersede regional (water management district) or local (city) scale potentiometric surface maps.
This dataset was created to represent the land surface elevation at 1:24,000 scale for Florida. The elevation contour lines representing the land surface elevation were digitized from United States Geological survey 1:24,000 (7.5 minute) quadrangles and were compiled by South Florida, South West Florida, St. Johns River and Suwannee River Water Management Districts and FDEP. QA and corrections to the data were supplied by the Florida Department of Environmental Protection's Florida Geological Survey and the Division of Water Resource Management. This data, representing over 1,000 USGS topographic maps, spans a variety of contour intervals including 1 and 2 meter and 5 and 10 foot. The elevation values have been normalized to feet in the final data layer. Attributes for closed topographic depressions were also captured where closed (hautchered) features were identified and the lowest elevation determined using the closest contour line minus one-half the contour interval. This data was derived from the USGS 1:24,000 topographic map series. The data is more than 20 years old and is likely out-of-date in areas of high human activity.
The United States has an average elevation of roughly 2,500 feet (763m) above sea level, however there is a stark contrast in elevations across the country. Highest states Colorado is the highest state in the United States, with an average elevation of 6,800 feet (2,074m) above sea level. The 10 states with the highest average elevation are all in the western region of the country, as this is, by far, the most mountainous region in the country. The largest mountain ranges in the contiguous western states are the Rocky Mountains, Sierra Nevada, and Cascade Range, while the Appalachian Mountains is the longest range in the east - however, the highest point in the U.S. is Denali (Mount McKinley), found in Alaska. Lowest states At just 60 feet above sea level, Delaware is the state with the lowest elevation. Delaware is the second smallest state, behind Rhode Island, and is located on the east coast. Larger states with relatively low elevations are found in the southern region of the country - both Florida and Louisiana have an average elevation of just 100 feet (31m) above sea level, and large sections of these states are extremely vulnerable to flooding and rising sea levels, as well as intermittent tropical storms.
Points spaced 50 feet apart representing ground surface were derived from classified LiDAR flown by Digital Aerial Surveys LLC between May 7, 2018 and March 1, 2019. The Lee County portion was flown May 8 to October 29, 2018.Compressed LAS files (Albers meters) were downloaded from USGS' ftp site. LAZ were decompressed using rapidlasso's LASzip. GeoCue's LP360 for ArcMap tools were utilized to extract point coordinates from the LAS surface using points classes Ground (2), Water (9) and Bridge Deck (17). The points generated from these coordinates were projected to Florida State Plane West, feet using ArcGIS' Project tool and the elevation converted from meters to feet (m * 3.28084). The X and Y coordinates in this dataset are in State Plane feet. Elevation is in feet NAVD 88 vertical datum.The horizontal accuracy is +/-0.783 meters or +/-2.57 feet (at the 95% confidence level) and the vertical accuracy is +/-0.175 meters (+/-0.57 feet) for nonvegetated and +/-0.190 meters (+/- 0.62 feet) for vegetated areas. See the report, LiDAR Project Report 140G0218F0179, FL SOUTHWEST 2018 D18, prepared by Digital Aerial Solutions, LLC for United States Geological Survey, for full accuracy details.Additional information can be found here: https://coast.noaa.gov/htdata/raster2/elevation/USGS_FL_Southwest_2018_9049/2018_swfl_m9049_met_forHumans.html.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
To generate the land surface grid for this project, VIEWLOG was used to re-sample a 100-ft digital elevation model (DEM) of best-available data for the Lower West Coast planning region of the SFWMD. The original DEM was composited in 2013 from multiple sources. The 100 x 100 foot cell size of the DEM was resampled to a grid size of 2000 x 2000 feet (Liebermann and Bedell, 2013). The vertical datum is NGVD29. The contour interval is in feet.The objectives of this study were to create regional hydrogeologic maps including contour maps showing unit surfaces and thicknesses, and cross-sections representative of both the surficial aquifer system (SAS) and intermediate aquifer system (IAS). The maps, source data, and metadata used to generate these products will be archived in a manner suitable for model implementation and regulatory use in a publically accessible format. The results will be incorporated into the forthcoming Lower West Coast Surficial Aquifer System and Intermediate Aquifer System Model (LWCSIM), which will evaluate the potential impact of existing and projected groundwater withdrawals in all SAS and IAS aquifers within the region over the next several decades.For full documentation, please see Technical Publication WS-35, "Hydrogeologic Unit Mapping Update for the Lower West Coast Water Supply Planning Area," dated August 2015 by Elizabeth Geddes, Emily Richardson P.G., and Anne Dodd P.G. , Water Supply Bureau, Water Resources Division, South Florida Water Management District, West Palm Beach, Florida.https://www.sfwmd.gov/sites/default/files/documents/ws-35_lwc_hydrogeologic_mapping_083115.pdf
This topographic contour layer was derived from LiDAR collected in spring of 2020 by Dewberry Engineers in coordination with Tallahassee - Leon County GIS. The contours were extracted at a 2 foot interval with index contours every 10 feet. This tile layer was generated as a Map Tile Package (.mtpkx) in ArcGIS Pro and published to ArcGIS online as a hosted tile layer. For web mapping compatibility, this layer has been re-projected from its original coordinate system to the web standard used by ESRI, Google, and Bing (Web Mercator Auxiliary Sphere).The feature layer used to generate this tile layer can be downloaded as a zipped geodatabase from TLCGIS' geodatahub. Download LinkLidar Acquisition Executive SummaryThe primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy Light Detection and Ranging (lidar) technology for the Tallahassee Leon County Project Area. The lidar data were processed and classified according to project specifications. Detailed breaklines and bare-earth Digital Elevation Models (DEMs) were produced for the project area. Data was formatted according to tiles with each tile covering an area of 5000 ft by 5000 ft. A total of 876 tiles were produced for the project encompassing an area of approximately 785.55 sq. miles.The Project TeamDewberry served as the prime contractor for the project. In addition to project management, Dewberry was responsible for LAS classification, all lidar products, breakline production, Digital Elevation Model (DEM) production, and quality assurance. Dewberry’s Frederick C. Rankin completed ground surveying for the project and delivered surveyed checkpoints. His task was to acquire surveyed checkpoints for the project to use in independent testing of the vertical accuracy of the lidar-derived surface model. He also verified the GPS base station coordinates used during lidar data acquisition to ensure that the base station coordinates were accurate. Please see Appendix A to view the separate Survey Report that was created for this portion of the project. Digital Aerial Solutions, LLC completed lidar data acquisition and data calibration for the project area.SURVEY AREAThe project area addressed by this report falls within the Florida county of Leon.DATE OF SURVEYThe lidar aerial acquisition was conducted from TBDORIGINAL COORDINATE REFERENCE SYSTEMData produced for the project were delivered in the following reference system.Horizontal Datum: The horizontal datum for the project is North American Datum of 1983 with the 2011 Adjustment (NAD 83 (2011))Vertical Datum: The Vertical datum for the project is North American Vertical Datum of 1988 (NAVD88)Coordinate System: NAD83 (2011) State Plane Florida North (US survey feet)Units: Horizontal units are in U.S. Survey Feet, Vertical units are in U.S. Survey Feet.Geiod Model: Geoid12B (Geoid 12B) was used to convert ellipsoid heights to orthometric heights).
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 ...
The raster is created from the finalized contour lines for May 2017, An estimated zero contour line is placed along the coast from Bay County to Pinellas County and along Volusia County. This contour aids in making a more reasonable surface along the coast, since water level vaues are less than the 10 foot contour interval shown on the contour map (see potentiometric contour map). Using the Topo to Raster tool, a 500 X 500 meter grid is created by using the May 2017 contour lines, the estimated zero contour line, estimated water value points along the suwannee river and the May 2017 water level data. The interpolated elevation value in each cell is in feet mean sea level, datum NGVD29.See Metadata for Contact info.
These vector contour lines are derived from the 3D Elevation Program using automated and semi-automated processes. They were created to support 1:24,000-scale topographic map products, but are also published in this GIS vector format. Contour intervals are assigned by 7.5-minute quadrangle, so this vector dataset is not visually seamless across quadrangle boundaries. The vector lines have elevation attributes (in feet above mean sea level on NAVD88), but this dataset does not carry line symbols or annotation.
ESCAMBIA: The Light Detection and Ranging (LiDAR) LAS dataset is a survey of select areas within Escambia County, Florida. These data were produced for Dewberry and Davis LLC. The Escambia County LiDAR Survey project area consists of approximately 803 square miles. The LiDAR point cloud was flown at a density sufficient to support a maximum final post spacing of 6 feet for unobscured areas. Lan...
These vector contour lines are derived from the 3D Elevation Program using automated and semi-automated processes. They were created to support 1:24,000-scale topographic map products, but are also published in this GIS vector format. Contour intervals are assigned by 7.5-minute quadrangle, so this vector dataset is not visually seamless across quadrangle boundaries. The vector lines have elevation attributes (in feet above mean sea level on NAVD88), but this dataset does not carry line symbols or annotation.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
To generate the land surface grid for this project, VIEWLOG was used to re-sample a 100-ft digital elevation model (DEM) of best-available data for the Lower West Coast planning region of the SFWMD. The original DEM was composited in 2013 from multiple sources. The 100 x 100 foot cell size of the DEM was resampled to a grid size of 2000 x 2000 feet (Liebermann and Bedell, 2013). The vertical datum is NGVD29. The contour interval is in feet.The objectives of this study were to create regional hydrogeologic maps including contour maps showing unit surfaces and thicknesses, and cross-sections representative of both the surficial aquifer system (SAS) and intermediate aquifer system (IAS). The maps, source data, and metadata used to generate these products will be archived in a manner suitable for model implementation and regulatory use in a publically accessible format. The results will be incorporated into the forthcoming Lower West Coast Surficial Aquifer System and Intermediate Aquifer System Model (LWCSIM), which will evaluate the potential impact of existing and projected groundwater withdrawals in all SAS and IAS aquifers within the region over the next several decades.For full documentation, please see Technical Publication WS-35, "Hydrogeologic Unit Mapping Update for the Lower West Coast Water Supply Planning Area," dated August 2015 by Elizabeth Geddes, Emily Richardson P.G., and Anne Dodd P.G. , Water Supply Bureau, Water Resources Division, South Florida Water Management District, West Palm Beach, Florida.https://www.sfwmd.gov/sites/default/files/documents/ws-35_lwc_hydrogeologic_mapping_083115.pdf
These vector contour lines are derived from the 3D Elevation Program using automated and semi-automated processes. They were created to support 1:24,000-scale topographic map products, but are also published in this GIS vector format. Contour intervals are assigned by 7.5-minute quadrangle, so this vector dataset is not visually seamless across quadrangle boundaries. The vector lines have elevation attributes (in feet above mean sea level on NAVD88), but this dataset does not carry line symbols or annotation.
The raster is created from the finalized contour lines for May 2016, An estimated zero contour line is placed along the coast from Bay County to Pinellas County and along Volusia County. This contour aids in making a more reasonable surface along the coast, since water level vaues are less than the 10 foot contour interval shown on the contour map (see potentiometric contour map). Using the Topo to Raster tool, a 500 X 500 meter grid is created by using the May 2016 contour lines, the estimated zero contour line, estimated water value points along the suwannee river and the May 2015 water level data. The interpolated elevation value in each cell is in feet mean sea level, datum NGVD29. Please reference the metadata for contact information.
The raster is created from the finalized contour lines for September 2014, An estimated zero contour line is placed along the coast from Bay County to Pinellas County and along Volusia County. This contour aids in making a more reasonable surface along the coast, since water level vaues are less than the 10 foot contour interval shown on the contour map (see potentiometric contour map). Using the Topo to Raster tool, a 500 X 500 meter grid is created by using the September 2014 contour lines, the estimated zero contour line, estimated water value points along the suwannee river and the September 2014 water level data. The interpolated elevation value in each cell is in feet mean sea level. Please reference the metadata for contact information.
One-foot and two-foot contours derived from LiDAR terrain model. The DTM was developed to support the Florida Division of Emergency Management (FDEM) development and maintenance of Regional Evacuation Studies (Study), which include vulnerability assessments and assist disaster response personnel in understanding threats to Florida's citizens and visitors. Breaklines improve the digital elevation model in areas where the point density is insufficient.This data set is one component of a digital terrain model (DTM) for the Florida Division of Emergency Management's (FDEM) Project Management and Technical Services for Mapping within Coastal Florida (Contract 07-HS-34-14-00-22-469), encompassing the entire coastline of Florida. The dataset is comprised of mass points, 2-D and 3-D breakline features, 1-foot and 2-foot contours, ground control, vertical test points, and a footprint of the data set, in the ESRI ArcGIS File Geodatabase format. In accordance with the Baseline Specifications 1.2, the following breakline features are contained within the database: closed water bodies (lakes, reservoirs, etc) as 2-D or 3-D polygons; linear hydrographic features (streams, shorelines, canals, swales, embankments, etc) as 3-D breaklines; coastal shorelines as 2-D or 3-D linear features; edge of pavement road features as 3-D breaklines; soft features (ridges, valleys, etc.) as 3-D breaklines; low confidence areas as 2-D polygons; island features as 2-D or 3-D polygons; overpasses and bridges as 3-D breaklines. Contours were generated from a gridded DEM: 2-foot contours meet National Map Accuracy Standards, with 1-foot contours for visualization purposes. The LiDAR masspoints are delivered in the LAS file format based on the FDEM's 5,000' by 5,000' grid. Breakline features were captured to develop a hydrologically correct DTM. Bare earth LiDAR masspoint data display a vertical accuracy of at least 0.3-feet root mean square error (RMSE) in open unobscured areas.
(See USGS Digital Data Series DDS-69-E) A geographic information system focusing on the Cretaceous Travis Peak and Hosston Formations was developed for the U.S. Geological Survey's (USGS) 2002 assessment of undiscovered, technically recoverable oil and natural gas resources of the Gulf Coast Region. The USGS Energy Resources Science Center has developed map and metadata services to deliver the 2002 assessment results GIS data and services online. The Gulf Coast assessment is based on geologic elements of a total petroleum system (TPS) as described in Dyman and Condon (2005). The estimates of undiscovered oil and gas resources are within assessment units (AUs). The hydrocarbon assessment units include the assessment results as attributes within the AU polygon feature class (in geodatabase and shapefile format). Quarter-mile cells of the land surface that include single or multiple wells were created by the USGS to illustrate the degree of exploration and the type and distribution of production for each assessment unit. Other data that are available in the map documents and services include the TPS and USGS province boundaries. To easily distribute the Gulf Coast maps and GIS data, a web mapping application has been developed by the USGS, and customized ArcMap (by ESRI) projects are available for download at the Energy Resources Science Center Gulf Coast website. ArcGIS Publisher (by ESRI) was used to create a published map file (pmf) from each ArcMap document (.mxd). The basemap services being used in the GC map applications are from ArcGIS Online Services (by ESRI), and include the following layers: -- Satellite imagery -- Shaded relief -- Transportation -- States -- Counties -- Cities -- National Forests With the ESRI_StreetMap_World_2D service, detailed data, such as railroads and airports, appear as the user zooms in at larger scales. This map service shows the structural configuration of the top of the Travis Peak or Hosston Formations in feet below sea level. The map was produced by calculating the difference between a datum at the land surface (either the Kelly bushing elevation or the ground surface elevation) and the reported depth of the Travis Peak or Hosston. This map service also shows the thickness of the interval from the top of the Travis Peak or Hosston Formations to the top of the Cotton Valley Group.
IMPORTANT IN THE OPEN DATA PORTAL THERE IS ONE FEATURE CLASS FOR ALL POTENTIOMETRIC SURFACE MAPS. IF YOU WANT JUST ONE TIME PERIOD CLICK ON THE TABLE TAB, THEN CLICK ON THE DATE FIELD. IN THE FILTER BOX ON THE RIGHT ENTER THE MAP YOU WANT (MAY 2000, SEPTEMBER 2015, ETC.). WHEN YOU CLICK THE DOWNLOAD DATASET BUTTON SELECT SPREADSHEET OR KML OR SHAPEFILE UNDER THE FILTERED DATASET OPTION. YOU WILL ONLY GET THE FILTERED DATA FROM THIS DOWNLOAD.Contour lines are created for the potentiometric surface of the upper Floridan aquifer from water level data submitted by the water management districts. The points associated with the water level data are added to Geostatistical Analyst and ordinary kriging is used to interpolate water level elevation values between the points. The Geostatistical Analyst layer is then converted to a grid (using GA Layer to grid tool) and then contour lines (using the Contour tool). Post editing is done to smooth the lines and fix areas that are hydrologically incorrect. The rules established for post editing are: 1) rivers intersecting the UFA follow the rule of V’s; 2) potentiometric surface contour line values don’t exceed the topographic digital elevation model (DEM) in unconfined areas; and 3) potentiometric surface contour lines don’t violate valid measured water level data. Errors are usually located where potentiometric highs are adjacent to potentiometric lows (areas where the gradient is high). Expert knowledge or additional information is used to correct the contour lines in these areas. Some additional data may be river stage values in rivers that intersect the Floridan aquifer or land elevation in unconfined areas. Contour lines created prior to May 2012 may be calculated using a different method. The potentiometric surface is only meant to describe water level elevation based on existing data for the time period measured. The contour interval for the statewide map is 10 feet and is not meant to supersede regional (water management district) or local (city) scale potentiometric surface maps.