This product depicts the statewide geologic map of Florida. The data provided are to be used as a resource for general mapping products. Much of Florida is covered by Pliocene to Holocene undifferentiated siliciclastics that range in thickness from less than one foot to greater than 100 feet. In an effort to make this map more useful, geologists identified the first recognizable lithostratigraphic unit occurring within 20 feet (6.1 meters) of the land surface. In areas where highly karstic limestone underlies the undifferentiated siliciclastics, paleosinkholes may be infilled with significantly thicker sequences of siliciclastics. If the shallowest occurrences of the karstic limestone is 20 feet (6.1 meters) or less below land surface, the limestone formation was mapped. If the limestone is more than 20 feet (6.1 meters) below land surface, an undifferentiated siliciclastic unit was mapped.
description: Groundwork for a new geologic map of Florida began in the 1980s with a county-level mapping effort as part of a statewide radon investigation. The county maps created for the radon project were merged and modified to produce a new State map.The geologists from the Florida Geological Survey (FGS) involved in the project included Jon Arthur, Richard Green, Guy Means, Jacqueline Lloyd, Ken Campbell, Joel Duncan, Frank Rupert, and Tom Scott. Tom Missimer, Missimer International, Ft. Myers, Florida was part of the mapping team for Charlotte and Lee Counties. Previous mapping provided a basis for this project. Geologists involved in the preliminary mapping included Paulette Bond, Richard Johnson, Ed Lane, Walt Schmidt and Bill Yon.; abstract: Groundwork for a new geologic map of Florida began in the 1980s with a county-level mapping effort as part of a statewide radon investigation. The county maps created for the radon project were merged and modified to produce a new State map.The geologists from the Florida Geological Survey (FGS) involved in the project included Jon Arthur, Richard Green, Guy Means, Jacqueline Lloyd, Ken Campbell, Joel Duncan, Frank Rupert, and Tom Scott. Tom Missimer, Missimer International, Ft. Myers, Florida was part of the mapping team for Charlotte and Lee Counties. Previous mapping provided a basis for this project. Geologists involved in the preliminary mapping included Paulette Bond, Richard Johnson, Ed Lane, Walt Schmidt and Bill Yon.
The Digital Geologic-GIS Map of Biscayne National Park and Vicinity, Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (bisc_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (bisc_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (bisc_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (bisc_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (bisc_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (bisc_geology_metadata_faq.pdf). Please read the bisc_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey and Florida Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (bisc_geology_metadata.txt or bisc_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:675,000 and United States National Map Accuracy Standards features are within (horizontally) 342.9 meters or 1125 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
A GIS database of geologic units and structural features in Florida, with lithology, age, data structure, and format written and arranged just like the other states.
The Unpublished Digital Geologic Map of Timucuan Ecological and Historic Preserve, and Fort Caroline National Memorial, Florida is composed of GIS data layers and GIS tables in a 10.0 file geodatabase (tifo_geology.gdb), a 10.0 ArcMap (.MXD) map document (tifo_geology.mxd), and individual 10.0 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (timu_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (timu_foca_gis_readme.pdf). Please read the timu_foca_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.0 shapefile format contact Stephanie O’Meara (stephanie_o’meara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Florida Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (tifo_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/timu/tifo_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 17N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Timucuan Ecological and Historic Preserve and Fort Caroline National Memorial.
This layer represents the surficial and near-surface geology for over 20 years of STATEMAP geologic mapping. Each polygon represents the lithostratigraphic unit that is at or near the surface. Polygons were mapped at the 1:24,000 scale using samples from the FGS cores and cuttings repository, new core samples taken during the course of the project, extensive field work and surface sample collection, and computer modelling. Please note that much of Florida is covered with undifferentiated sediments, and by convention the FGS maps the first recognizable lithostratigraphic unit occurring within 20 feet of the land surface. Areas with >20 ft of undifferentiated sediments are mapped as Qu or Qbd. The original, published maps and reports for the STATEMAP projects can be found in the Open File Map Series and Open File Reports published by the Florida Geological Survey (Tallahassee, Fl). For the original published maps and reports, please see the Library page at https://floridadep.gov/fgs/data-maps/content/fgs-publications or the STATEMAP ESRI Storymap at http://fdep.maps.arcgis.com/apps/MapJournal/index.html?appid=b4f5974ba6c44badabe574426f865908
The Digital Geologic-GIS Map of Everglades National Park and Vicinity, Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (ever_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (ever_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (ever_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (ever_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (ever_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ever_geology_metadata_faq.pdf). Please read the ever_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Florida Geological Survey and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ever_geology_metadata.txt or ever_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:675,000 and United States National Map Accuracy Standards features are within (horizontally) 342.9 meters or 1125 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
description: The Digital Geologic Map of Canaveral National Seashore and vicinity, Florida is composed of GIS data layers complete with ArcMap 9.2 layer (.LYR) files, two ancillary GIS tables, a Windows Help File with ancillary map text, figures and tables, a FGDC metadata record and a 9.2 ArcMap (.MXD) Document that displays the digital map in 9.2 ArcGIS. The data were completed as a component of the Geologic Resource Evaluation (GRE) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRE digital dataset were provided by the following: NASA and NPS, plus source digital data generators and other prodivders (see table 1 in the source digital data report, included in the GRE deliverable product, for additional information). Detailed information concerning the sources used and their contribution the GRE product are listed in the Source Citation sections(s) of this metadata record (cana_metadata.txt; available at http://nrdata.nps.gov/cana/nrdata/geology/gis/cana_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRE Geology-GIS Geodatabase Data Model v. 2.0. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.2 personal geodatabase (cana_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone AD_1983_StatePlane_Florida_East_FIPS_0901N. That data is within the area of interest of Canaveral National Seashore and vicinity.; abstract: The Digital Geologic Map of Canaveral National Seashore and vicinity, Florida is composed of GIS data layers complete with ArcMap 9.2 layer (.LYR) files, two ancillary GIS tables, a Windows Help File with ancillary map text, figures and tables, a FGDC metadata record and a 9.2 ArcMap (.MXD) Document that displays the digital map in 9.2 ArcGIS. The data were completed as a component of the Geologic Resource Evaluation (GRE) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRE digital dataset were provided by the following: NASA and NPS, plus source digital data generators and other prodivders (see table 1 in the source digital data report, included in the GRE deliverable product, for additional information). Detailed information concerning the sources used and their contribution the GRE product are listed in the Source Citation sections(s) of this metadata record (cana_metadata.txt; available at http://nrdata.nps.gov/cana/nrdata/geology/gis/cana_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRE Geology-GIS Geodatabase Data Model v. 2.0. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.2 personal geodatabase (cana_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone AD_1983_StatePlane_Florida_East_FIPS_0901N. That data is within the area of interest of Canaveral National Seashore and vicinity.
The Digital Geologic-GIS Map of Big Cypress National Preserve and Vicinity, Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (bicy_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (bicy_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (bicy_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (bicy_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (bicy_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (bicy_geology_metadata_faq.pdf). Please read the bicy_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Florida Geological Survey, U.S. Geological Survey and Earthfx Incorporated/BEM Systems Inc.. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (bicy_geology_metadata.txt or bicy_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:675,000 and United States National Map Accuracy Standards features are within (horizontally) 342.9 meters or 1125 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
description: The Digital Geologic Map of Everglades National Park and vicinity, Florida is composed of GIS data layers, two ancillary GIS tables, a Windows Help File with ancillary map text, figures and tables, GIS data layer and table FGDC metadata and ArcView 3.X legend (.AVL) files. The data were completed as a component of the Geologic Resource Evaluation (GRE) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). All GIS and ancillary tables were produced as per the NPS GIS-Geology Coverage/Shapefile Data Model (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as coverage and table export (.E00) files, and as a shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 17N. That data is within the area of interest of Everglades National Park.; abstract: The Digital Geologic Map of Everglades National Park and vicinity, Florida is composed of GIS data layers, two ancillary GIS tables, a Windows Help File with ancillary map text, figures and tables, GIS data layer and table FGDC metadata and ArcView 3.X legend (.AVL) files. The data were completed as a component of the Geologic Resource Evaluation (GRE) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). All GIS and ancillary tables were produced as per the NPS GIS-Geology Coverage/Shapefile Data Model (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as coverage and table export (.E00) files, and as a shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 17N. That data is within the area of interest of Everglades National Park.
This data set represents swallets (Stream to sink features) discovered, researched and mapped by the Florida Department of Environmental Protection (FDEP), Florida Geological Survey (FGS), Florida Swallet Survey. The Florida Swallet Survey was a mapping program funded by the Florida Department of Environmental Protection's Florida Springs Initiative. A swallet is a stream to sink feature, meaning there is a contribution area that concentrates runoff into identifiable streams that disappear underground at a specific point through a sinkhole. The streams may be either intermittent or continuously flowing. Data collected includes: GPS points from a Trimble ProXR and TSC-1 Data Logger; length and width of pools and basins using a range finder; pool depths, if possible, using a hand-held sonar depth finder; color, clarity and visibility of the water in the pool using a secchi disk; photos were taken and written assessments were made of the geology, topography, vegetation, and notations of anything within a 150-meter radius.
The Unpublished Digital Geomorphic Map of Timucuan Ecological and Historic Preserve, and Fort Caroline National Memorial, Florida is composed of GIS data layers and GIS tables in a 10.0 file geodatabase (tifg_geology.gdb), a 10.0 ArcMap (.MXD) map document (tifg_geology.mxd), and individual 10.0 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (tifo_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (timu_foca_gis_readme.pdf). Please read the timu_foca_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.0 shapefile format contact Stephanie O’Meara (stephanie.o’meara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Florida Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (tifg_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/timu/tifg_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 17N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Timucuan Ecological and Historic Preserve and Fort Caroline National Memorial.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The Florida Springs Protection Areas map was created by the Florida Geological Survey (FGS), Florida Department of Environmental Protection (FDEP) at the request of the Florida Department of Community Affairs. The purpose of the map is to identify areas that contribute flow to Florida springs and to provide a published resource for land use decision-makers as they work to protect and restore both the quantity and quality of water discharging from Florida's springs. A springshed is defined as "those areas of surface water and ground-water basins that contribute to the discharge of the spring." (Copeland, 2003). To delineate a springshed or a spring protection area one must have an understanding of the hydrogeology of the study area, potentiometric surface maps, knowledge of internally drained areas and conduit connections. Consideration should be given to aquifer recharge, aquifer vulnerability and the uncertainty in the data. Expert knowledge should be used to refine the delineated protection area boundaries where appropriate. Current and future research will improve our understanding of springsheds/protection areas and their boundaries; as a result the Florida Springs Protection Areas map will be periodically updated. Please reference metadata for contact information.
The Digital Geohazards-GIS Map of Everglades National Park and Vicinity (2005 Mapping), Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (ever_geohazard.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (ever_geohazard.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (ever_geohazard.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (ever_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (ever_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ever_geohazard_metadata_faq.pdf). Please read the ever_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Florida Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ever_geohazard_metadata.txt or ever_geohazard_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Location of FGS Geophysical log from the Florida Geologic Survey. Most Geophysical log locations have been taken from paper documents ranging from the early part of the 20th century through 2010. Location information can be simpley a local, Section, Township, Range, distance from section lines, or GPS. To date, approximately 30% of Geophysical logs have been verified for location accuracy. It is important to check the verified field for a determination on the accuracy of a Geophysical log location.
The U.S. Geological Survey (USGS), in cooperation with the National Oceanographic and Atmospheric Administration’s (NOAA) National Marine Fisheries Service (NMFS), and Florida State University (FSU), collected the data presented here as part of a larger study of seafloor habitats on the shelf edge of the northeastern Gulf of Mexico. It is a pilot study, carried out to demonstrate the utility of geologic mapping to fisheries management issues. This report contains sidescan-sonar mosaics, seismic-reflection profiles, texture and calcium carbonate content of sediment samples and interpretative maps of the seafloor morphology, sediments, and benthic habitats of the study area. The study area is an approximately 150-km2 area along the shelf edge in the northeastern Gulf of Mexico. The site is on the eastern side of the DeSoto Canyon and 75 km due south of Cape San Blas on the Florida panhandle. Water depth ranges from about 50 meters (m) to 120 m. It was chosen because reports from fishermen suggested that high-relief rocky outcrops, which are preferred by gag grouper as spawning aggregation sites, would be abundant. The geologic maps help the fisheries biologists select station locations for ongoing monitoring studies and provide a basis for siting of future reserves.
The data for this dataset is updated daily. The date(s) displayed in the details section on our Open Data Portal is based on the last date the metadata was updated and not the refresh date of the data itself. Location of FGS wells from the Florida Geologic Survey core and cuttings repository. Most well locations have been taken from paper documents ranging from the early part of the 20th century through 2020. Location information can be Section, Township, Range, distance from section lines, or GPS. It is important to check the verified field for a determination on the accuracy of a well location. The formation picks table comes from the old lithologic database. There can be more then one formation pick for each well. Sometimes more than one person provided formation picks. The information on who provided what formation pick is currently unavailable. To view or download more information on boreholes, picks, or descriptions visit https://geodes.kyrasolutions.com
The Digital Geologic-GIS Map of Canaveral National Seashore, Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (cana_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (cana_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (cana_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (cana_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (cana_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (cana_geology_metadata_faq.pdf). Please read the cana_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: RW Parkinson Inc. and Dynamic Corp., National Park Service and National Aeronautics and Space Administration. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (cana_geology_metadata.txt or cana_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
*The data for this dataset is updated daily. The date(s) displayed in the details section on our Open Data Portal is based on the last date the metadata was updated and not the refresh date of the data itself.*Database of hand samples, stored in FGS Wells database. Samples are located at 3000 Commonwealth Blvd or the FGS Repository
Geology, Bedrock dataset current as of 1998. Geomorphology. White, Puri and Vernon Physiographic Map of Florida.
This product depicts the statewide geologic map of Florida. The data provided are to be used as a resource for general mapping products. Much of Florida is covered by Pliocene to Holocene undifferentiated siliciclastics that range in thickness from less than one foot to greater than 100 feet. In an effort to make this map more useful, geologists identified the first recognizable lithostratigraphic unit occurring within 20 feet (6.1 meters) of the land surface. In areas where highly karstic limestone underlies the undifferentiated siliciclastics, paleosinkholes may be infilled with significantly thicker sequences of siliciclastics. If the shallowest occurrences of the karstic limestone is 20 feet (6.1 meters) or less below land surface, the limestone formation was mapped. If the limestone is more than 20 feet (6.1 meters) below land surface, an undifferentiated siliciclastic unit was mapped.