Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
Deaths counts for influenza, pneumonia, and COVID-19 reported to NCHS by week ending date, by state and HHS region, and age group.
Facebook
TwitterThis dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.
Used positive, death and totalTestResults from the API for, respectively, Infected, Deaths and Tested in this dataset.
Please read the documentation of the API for more context on those columns
Density is people per meter squared https://worldpopulationreview.com/states/
https://worldpopulationreview.com/states/gdp-by-state/
https://worldpopulationreview.com/states/per-capita-income-by-state/
https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient
Rates from Feb 2020 and are percentage of labor force
https://www.bls.gov/web/laus/laumstrk.htm
Ratio is Male / Female
https://www.kff.org/other/state-indicator/distribution-by-gender/
https://worldpopulationreview.com/states/smoking-rates-by-state/
Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm
Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm
https://www.kff.org/other/state-indicator/total-active-physicians/
https://www.kff.org/other/state-indicator/total-hospitals
Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/
Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL
For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States
Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
https://worldpopulationreview.com/states/average-temperatures-by-state/
District of Columbia temperature computed as the average of Maryland and Virginia
Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states
https://www.kff.org/other/state-indicator/distribution-by-age/
Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html
Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.
Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.
References
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Why did I create this dataset? This is my first time creating a notebook in Kaggle and I am interested in learning more about COVID-19 and how different countries are affected by it and why. It might be useful to compare different metrics between different countries. And I also wanted to participate in a challenge, and I've decided to join the COVID-19 datasets challenge. While looking through the projects, I noticed https://www.kaggle.com/koryto/countryinfo and it inspired me to start this project.
My approach is to scour the Internet and Kaggle looking for country data that can potentially have an impact on how the COVID-19 pandemic spreads. In the end, I ended up with the following for each country:
See covid19_data - data_sources.csv for data source details.
Notebook: https://www.kaggle.com/bitsnpieces/covid19-data
Since I did not personally collect each datapoint, and because each datasource is different with different objectives, collected at different times, measured in different ways, any inferences from this dataset will need further investigation.
I want to acknowledge the authors of the datasets that made their data publicly available which has made this project possible. Banner image is by Brian.
I hope that the community finds this dataset useful. Feel free to recommend other datasets that you think will be useful / relevant! Thanks for looking.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All-cause, COVID-19, and non-COVID-19 ASDR for ages 25+ by state and time period.
Facebook
TwitterObjectivesThe aim of this study is to describe, visualize, and compare the trends and epidemiological features of the mortality rates of 10 notifiable respiratory infectious diseases in China from 2004 to 2020.SettingData were obtained from the database of the National Infectious Disease Surveillance System (NIDSS) and reports released by the National and local Health Commissions from 2004 to 2020. Spearman correlations and Joinpoint regression models were used to quantify the temporal trends of RIDs by calculating annual percentage changes (APCs) in the rates of mortality.ResultsThe overall mortality rate of RIDs was stable across China from 2004 to 2020 (R = −0.38, P = 0.13), with an APC per year of −2.2% (95% CI: −4.6 to 0.3; P = 0.1000). However, the overall mortality rate of 10 RIDs in 2020 decreased by 31.80% (P = 0.006) compared to the previous 5 years before the COVID-19 pandemic. The highest mortality occurred in northwestern, western, and northern China. Tuberculosis was the leading cause of RID mortality, and mortality from tuberculosis was relatively stable throughout the 17 years (R = −0.36, P = 0.16), with an APC of −1.9% (95% CI −4.1 to 0.4, P = 0.1000). Seasonal influenza was the only disease for which mortality significantly increased (R = 0.73, P = 0.00089), with an APC of 29.70% (95% CI 16.60–44.40%; P = 0.0000). The highest yearly case fatality ratios (CFR) belong to avian influenza A H5N1 [687.5 per 1,000 (33/48)] and epidemic cerebrospinal meningitis [90.5748 per 1,000 (1,010/11,151)]. The age-specific CFR of 10 RIDs was highest among people over 85 years old [13.6551 per 1,000 (2,353/172,316)] and was lowest among children younger than 10 years, particularly in 5-year-old children [0.0552 per 1,000 (58/1,051,178)].ConclusionsThe mortality rates of 10 RIDs were relatively stable from 2004 to 2020 with significant differences among Chinese provinces and age groups. There was an increased mortality trend for seasonal influenza and concerted efforts are needed to reduce the mortality rate of seasonal influenza in the future.
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset represents preliminary estimates of cumulative U.S. RSV –associated disease burden estimates for the 2024-2025 season, including outpatient visits, hospitalizations, and deaths. Real-time estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed respiratory syncytial virus (RSV) infections. The data come from the Respiratory Syncytial Virus Hospitalization Surveillance Network (RSV-NET), a surveillance platform that captures data from hospitals that serve about 8% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of RSV-associated disease burden estimates that have occurred since October 1, 2024.
Note: Data are preliminary and subject to change as more data become available. Rates for recent RSV-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.
Note: Preliminary burden estimates are not inclusive of data from all RSV-NET sites. Due to model limitations, sites with small sample sizes can impact estimates in unpredictable ways and are excluded for the benefit of model stability. CDC is working to address model limitations and include data from all sites in final burden estimates.
References
Facebook
TwitterRank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
Facebook
TwitterLatin America became an epicenter of the coronavirus pandemic in May, driven by Brazil’s ballooning caseload. Ten months after its first known case, Brazil has had more than 7.9 million cases and over 200,000 deaths.
In early June, Brazil began averaging about 1,000 deaths per day from Covid-19, joining the United States — and later India — as the countries with the world’s largest death tolls.
This dataset contains information about COVID-19 in Brazil extracted on the date 16/06/2021. It is the most updated dataset available about Covid in Brazil
🔍 date: date that the data was collected. format YYYY-MM-DD.
🔍 state: Abbreviation for States. Example: SP
🔍 city: Name of the city (if the value is NaN, they are referring to the State, not the city)
🔍 place_type: Can be City or State
🔍 order_for_place: Number that identifies the registering order for this location. The line that refers to the first log is going to be shown as 1, and the following information will start the count as an index.
🔍 is_last: Show if the line was the last update from that place, can be True or False
🔍 city_ibge_code: IBGE Code from the location
🔍confirmed: Number of confirmed cases.
🔍deaths: Number of deaths.
🔍estimated_population: Estimated population for this city/state in 2020. Data from IBGE
🔍estimated_population_2019: Estimated population for this city/state in 2019. Data from IBGE.
🔍confirmed_per_100k_inhabitants: Number of confirmed cases per 100.000 habitants (based on estimated_population).
🔍death_rate: Death rate (deaths / confirmed cases).
This dataset was downloaded from the URL bello. Thanks, Brasil.IO! Their main goal is to make all Brazilian data available to the public DATASET URL: https://brasil.io/dataset/covid19/files/ Cities map file https://geoftp.ibge.gov.br/organizacao_do_territorio/malhas_territoriais/malhas_municipais/municipio_2020/Brasil/BR/
COVID-19 - https://www.kaggle.com/rafaelherrero/covid19-brazil-full-cases-17062021 COVID-19 - https://www.kaggle.com/imdevskp/corona-virus-report MERS - https://www.kaggle.com/imdevskp/mers-outbreak-dataset-20122019 Ebola Western Africa 2014 Outbreak - https://www.kaggle.com/imdevskp/ebola-outbreak-20142016-complete-dataset H1N1 | Swine Flu 2009 Pandemic Dataset - https://www.kaggle.com/imdevskp/h1n1-swine-flu-2009-pandemic-dataset SARS 2003 Pandemic - https://www.kaggle.com/imdevskp/sars-outbreak-2003-complete-dataset HIV AIDS - https://www.kaggle.com/imdevskp/hiv-aids-dataset
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Data by medical encounter for the following conditions by age, race/ethnicity, and gender:
Influenza (Flu) Flu/Pneumonia Pneumonia Urinary Tract Infections
Rates per 100,000 population. Age-adjusted rates per 100,000 2000 US standard population.
Blank Cells: Rates not calculated for fewer than 11 events. Rates not calculated in cases where zip code is unknown. Geography not reported where there are no cases reported in a given year. SES: Is the median household income by SRA community. Data for SRAs only.
*The COVID-19 pandemic was associated with increases in all-cause mortality. COVID-19 deaths have affected the patterns of mortality including those of Communicable conditions.
Data sources: California Department of Public Health, Center for Health Statistics, Office of Health Information and Research, Vital Records Business Intelligence System (VRBIS). California Department of Health Care Access and Information (HCAI), Emergency Department Database and Patient Discharge Database, 2020. SANDAG Population Estimates, 2020 (vintage: 09/2022). Population estimates were derived using the 2010 Census and data should be considered preliminary. Prepared by: County of San Diego, Health and Human Services Agency, Public Health Services, Community Health Statistics Unit, February 2023.
2020 Community Profile Data Guide and Data Dictionary Dashboard: https://public.tableau.com/app/profile/chsu/viz/2020CommunityProfilesDataGuideandDataDictionaryDashboard_16763944288860/HomePage
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background The United States has experienced high surge in COVID-19 cases since the dawn of 2020. Identifying the types of diagnoses that pose a risk in leading COVID-19 death casualties will enable our community to obtain a better perspective in identifying the most vulnerable populations and enable these populations to implement better precautionary measures. Objective To identify demographic factors and health diagnosis codes that pose a high or a low risk to COVID-19 death from individual health record data sourced from the United States. Methods We used logistic regression models to analyze the top 500 health diagnosis codes and demographics that have been identified as being associated with COVID-19 death. Results Among 223,286 patients tested positive at least once, 218,831 (98%) patients were alive and 4,455 (2%) patients died during the duration of the study period. Through our logistic regression analysis, four demographic characteristics of patients; age, gender, race and region, were deemed to be associated with COVID-19 mortality. Patients from the West region of the United States: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming had the highest odds ratio of COVID-19 mortality across the United States. In terms of diagnoses, Complications mainly related to pregnancy (Adjusted Odds Ratio, OR:2.95; 95% Confidence Interval, CI:1.4 - 6.23) hold the highest odds ratio in influencing COVID-19 death followed by Other diseases of the respiratory system (OR:2.0; CI:1.84 – 2.18), Renal failure (OR:1.76; CI:1.61 – 1.93), Influenza and pneumonia (OR:1.53; CI:1.41 – 1.67), Other bacterial diseases (OR:1.45; CI:1.31 – 1.61), Coagulation defects, purpura and other hemorrhagic conditions(OR:1.37; CI:1.22 – 1.54), Injuries to the head (OR:1.27; CI:1.1 - 1.46), Mood [affective] disorders (OR:1.24; CI:1.12 – 1.36), Aplastic and other anemias (OR:1.22; CI:1.12 – 1.34), Chronic obstructive pulmonary disease and allied conditions (OR:1.18; CI:1.06 – 1.32), Other forms of heart disease (OR:1.18; CI:1.09 – 1.28), Infections of the skin and subcutaneous tissue (OR: 1.15; CI:1.04 – 1.27), Diabetes mellitus (OR:1.14; CI:1.03 – 1.26), and Other diseases of the urinary system (OR:1.12; CI:1.03 – 1.21). Conclusion We found demographic factors and medical conditions, including some novel ones which are associated with COVID-19 death. These findings can be used for clinical and public awareness and for future research purposes.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
Deaths counts for influenza, pneumonia, and COVID-19 reported to NCHS by week ending date, by state and HHS region, and age group.