12 datasets found
  1. m

    Viral respiratory illness reporting

    • mass.gov
    Updated Oct 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Executive Office of Health and Human Services (2022). Viral respiratory illness reporting [Dataset]. https://www.mass.gov/info-details/viral-respiratory-illness-reporting
    Explore at:
    Dataset updated
    Oct 21, 2022
    Dataset provided by
    Executive Office of Health and Human Services
    Department of Public Health
    Area covered
    Massachusetts
    Description

    The following dashboards provide data on contagious respiratory viruses, including acute respiratory diseases, COVID-19, influenza (flu), and respiratory syncytial virus (RSV) in Massachusetts. The data presented here can help track trends in respiratory disease and vaccination activity across Massachusetts.

  2. m

    COVID-19 and Flu vaccination reports for healthcare personnel

    • mass.gov
    Updated Aug 29, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Health Care Safety and Quality (2018). COVID-19 and Flu vaccination reports for healthcare personnel [Dataset]. https://www.mass.gov/info-details/covid-19-and-flu-vaccination-reports-for-healthcare-personnel
    Explore at:
    Dataset updated
    Aug 29, 2018
    Dataset provided by
    Department of Public Health
    Division of Health Care Facility Licensure and Certification
    Bureau of Infectious Disease and Laboratory Sciences
    Bureau of Health Care Safety and Quality
    Area covered
    Massachusetts
    Description

    Access available resources below such as data reports, and Public Health Council presentations.

  3. COVID-19, pneumonia, and influenza deaths reported in the U.S. August 21,...

    • statista.com
    Updated Aug 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). COVID-19, pneumonia, and influenza deaths reported in the U.S. August 21, 2023 [Dataset]. https://www.statista.com/statistics/1113051/number-reported-deaths-from-covid-pneumonia-and-flu-us/
    Explore at:
    Dataset updated
    Aug 22, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Over 12 million people in the United States died from all causes between the beginning of January 2020 and August 21, 2023. Over 1.1 million of those deaths were with confirmed or presumed COVID-19.

    Vaccine rollout in the United States Finding a safe and effective COVID-19 vaccine was an urgent health priority since the very start of the pandemic. In the United States, the first two vaccines were authorized and recommended for use in December 2020. One has been developed by Massachusetts-based biotech company Moderna, and the number of Moderna COVID-19 vaccines administered in the U.S. was over 250 million. Moderna has also said that its vaccine is effective against the coronavirus variants first identified in the UK and South Africa.

  4. Weekly United States Hospitalization Metrics by Jurisdiction, During...

    • data.cdc.gov
    • healthdata.gov
    • +1more
    application/rdfxml +5
    Updated Nov 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC Division of Healthcare Quality Promotion (DHQP) Surveillance Branch, National Healthcare Safety Network (NHSN) (2024). Weekly United States Hospitalization Metrics by Jurisdiction, During Mandatory Reporting Period from August 1, 2020 to April 30, 2024, and for Data Reported Voluntarily Beginning May 1, 2024, National Healthcare Safety Network (NHSN) (Historical)-ARCHIVED [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Weekly-United-States-Hospitalization-Metrics-by-Ju/ype6-idgy
    Explore at:
    csv, xml, tsv, application/rssxml, json, application/rdfxmlAvailable download formats
    Dataset updated
    Nov 1, 2024
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC Division of Healthcare Quality Promotion (DHQP) Surveillance Branch, National Healthcare Safety Network (NHSN)
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Note: After November 1, 2024, this dataset will no longer be updated due to a transition in NHSN Hospital Respiratory Data reporting that occurred on Friday, November 1, 2024. For more information on NHSN Hospital Respiratory Data reporting, please visit https://www.cdc.gov/nhsn/psc/hospital-respiratory-reporting.html.

    Due to a recent update in voluntary NHSN Hospital Respiratory Data reporting that occurred on Wednesday, October 9, 2024, reporting levels and other data displayed on this page may fluctuate week-over-week beginning Friday, October 18, 2024. For more information on NHSN Hospital Respiratory Data reporting, please visit https://www.cdc.gov/nhsn/psc/hospital-respiratory-reporting.html. Find more information about the updated CMS requirements: https://www.federalregister.gov/documents/2024/08/28/2024-17021/medicare-and-medicaid-programs-and-the-childrens-health-insurance-program-hospital-inpatient. 
    . This dataset represents weekly respiratory virus-related hospitalization data and metrics aggregated to national and state/territory levels reported during two periods: 1) data for collection dates from August 1, 2020 to April 30, 2024, represent data reported by hospitals during a mandated reporting period as specified by the HHS Secretary; and 2) data for collection dates beginning May 1, 2024, represent data reported voluntarily by hospitals to CDC’s National Healthcare Safety Network (NHSN). NHSN monitors national and local trends in healthcare system stress and capacity for up to approximately 6,000 hospitals in the United States. Data reported represent aggregated counts and include metrics capturing information specific to COVID-19- and influenza-related hospitalizations, hospital occupancy, and hospital capacity. Find more information about reporting to NHSN at: https://www.cdc.gov/nhsn/covid19/hospital-reporting.html

    Source: COVID-19 hospitalization data reported to CDC’s National Healthcare Safety Network (NHSN).

    • Data source description(updated October 18, 2024): As of October 9, 2024, Hospital Respiratory Data (HRD; formerly Respiratory Pathogen, Hospital Capacity, and Supply data or ‘COVID-19 hospital data’) are reported to HHS through CDC’s National Healthcare Safety Network based on updated requirements from the Centers for Medicare and Medicaid Services (CMS). These data are voluntarily reported to NHSN as of May 1, 2024 until November 1, 2024, at which time CMS will require acute care and critical access hospitals to electronically report information via NHSN about COVID-19, Influenza, and RSV, hospital bed census and capacity, and limited patient demographic information, including age. Data for collection dates prior to May 1, 2024, represent data reported during a previously mandated reporting period as specified by the HHS Secretary. Data for collection dates May 1, 2024, and onwards represent data reported voluntarily to NHSN; as such, data included represents reporting hospitals only for a given week and might not be complete or representative of all hospitals. NHSN monitors national and local trends in healthcare system stress and capacity for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Find more information about reporting to NHSN: https://www.cdc.gov/nhsn/psc/hospital-respiratory-reporting.html. Find more information about the updated CMS requirements: https://www.federalregister.gov/documents/2024/08/28/2024-17021/medicare-and-medicaid-programs-and-the-childrens-health-insurance-program-hospital-inpatient.
    • Data quality: While CDC reviews reported data for completeness and errors and corrects those found, some reporting errors might still exist within the data. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks. Data since December 1, 2020, have had error correction methodology applied; data prior to this date may have anomalies that are not yet resolved. Data prior to August 1, 2020, are unavailable.
    • Metrics and inclusion criteria: Many hospital subtypes, including acute care and critical access hospitals, are included in the metric calculations included in this dataset. Psychiatric, rehabilitation, and religious non-medical hospital types, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are excluded from calculations. For a given metric calculation, hospitals that reported those data at least one day during a given week are included.
    • Find full details on NHSN hospital data reporting guidance at https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf

    Notes: May 10, 2024: Due to missing hospital data for the April 28, 2024 through May 4, 2024 reporting period, data for Commonwealth of the Northern Mariana Islands (CNMI) are not available for this period in the Weekly NHSN Hospitalization Metrics report released on May 10, 2024.

    May 17, 2024: Data for Commonwealth of the Northern Mariana Islands (CNMI), Massachusetts (MA), Minnesota (MN), and Guam (GU) for the May 5,2024 through May 11, 2024 reporting period are not available for the Weekly NHSN Hospitalization Metrics report released on May 1, 2024.

    May 24, 2024: Data for Commonwealth of the Northern Mariana Islands (CNMI), Massachusetts (MA), and Minnesota (MN) for the May 12, 2024 through May 18, 2024 reporting period are not available for the Weekly NHSN Hospitalization Metrics report released on May 24, 2024.

    May 31, 2024: Data for Commonwealth of the Northern Mariana Islands (CNMI), Virgin Islands (VI), Massachusetts (MA), and Minnesota (MN) for the May 19, 2024 through May 25, 2024 reporting period are not available for the Weekly NHSN Hospitalization Metrics report released on May 31, 2024.

    June 7, 2024: Data for Commonwealth of the Northern Mariana Islands (CNMI), Virgin Islands (VI), Massachusetts (MA), Guam (GU), and Minnesota (MN) for the May 26, 2024 through June 1, 2024 reporting period are not available for the Weekly NHSN Hospitalization Metrics report released on June 7, 2024.

    June 14, 2024: Data for Commonwealth of the Northern Mariana Islands (CNMI), Massachusetts (MA), American Samoa (AS), and Minnesota (MN) for the June 2, 2024 through June 8, 2024 reporting period are not available for the Weekly NHSN Hospitalization Metrics report released on June 14, 2024.

    June 21, 2024: Data for Commonwealth of the Northern Mariana Islands (CNMI), West Virginia (WV), Massachusetts (MA), American Samoa (AS), Guam (GU), Virgin Islands (VI), and Minnesota (MN) for the June 9, 2024 through June 15, 2024 reporting period are not available for the Weekly NHSN Hospitalization Metrics report released on June 21, 2024.

    June 28, 2024: Data for Commonwealth of the Northern Mariana Islands (CNMI), Massachusetts (MA), American Samoa (AS), Virgin Islands (VI), and Minnesota (MN) for the June 16, 2024 through June 22, 2024 reporting period are not available for the Weekly NHSN Hospitalization Metrics report released on June 28, 2024.

    July 5, 2024: Data for Commonwealth of the Northern Mariana Islands (CNMI), West Virginia (WV), Massachusetts (MA), American Samoa (AS), Virgin Islands (VI), and Minnesota (MN) for the June 23, 2024 through June 29, 2024 reporting period are not available for the Weekly NHSN Hospitalization Metrics report released on July 5, 2024.

    July 12, 2024: Data for Commonwealth of the Northern Mariana Islands (CNMI), West Virginia (WV), Massachusetts (MA), American Samoa (AS), Virgin Islands (VI), and Minnesota (MN) for the June 30, 2024 through July 6 , 2024 reporting period are not available for the Weekly NHSN Hospitalization Metrics report released on July 12, 2024.

    July 19, 2024: Data for Commonwealth of the Northern Mariana Islands (CNMI), Massachusetts (MA), American Samoa (AS), Virgin Islands (VI), and Minnesota (MN) for the July 7, 2024 through July 13, 2024 reporting period are not available for the Weekly NHSN Hospitalization Metrics report released on July 19, 2024.

    July 26, 2024: Data for Commonwealth of the Northern Mariana Islands (CNMI), Massachusetts (MA), American Samoa (AS), Virgin Islands (VI), and Minnesota (MN) for the July 13, 2024 through July 20, 2024 reporting period are not available for the Weekly NHSN Hospitalization Metrics report released on July 26, 2024.

    August 2, 2024: Data for Commonwealth of the Northern Mariana Islands (CNMI), Massachusetts (MA), American Samoa (AS), Virgin Islands (VI), West Virginia (WV), and Minnesota (MN) for the July 21, 2024 through July 27, 2024 reporting period are not available for the Weekly NHSN Hospitalization Metrics report released on August 2, 2024.

    August 9, 2024: Data for Commonwealth of the Northern Mariana Islands (CNMI), Massachusetts (MA), Guam (GU), American Samoa (AS), Virgin Islands (VI), and Minnesota (MN) for the July 28, 2024 through August 3, 2024 reporting period are not available for the Weekly NHSN Hospitalization Metrics report released on August 9, 2024.

    August 16, 2024: Data for Commonwealth of the Northern Mariana Islands (CNMI), Massachusetts (MA), American Samoa (AS), Virgin Islands (VI), and Minnesota (MN) for the August 4, 2024 through August 10, 2024 reporting period are not available for the Weekly NHSN Hospitalization Metrics report released on August 16, 2024.

    August 23, 2024: Data for Commonwealth of the Northern Mariana Islands (CNMI), Massachusetts (MA), American Samoa (AS), Virgin Islands (VI), and Minnesota (MN) for the August 11, 2024 through August 17, 2024 reporting period are not available for the Weekly NHSN Hospitalization Metrics

  5. Table of NDC products with influenza a virus a/massachusetts/18/2022 (h3n2)...

    • ndclist.com
    Updated Mar 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Food & Drug Administration (2025). Table of NDC products with influenza a virus a/massachusetts/18/2022 (h3n2) recombinant hemagglutinin antigen [Dataset]. https://ndclist.com/active-ingredients/influenza-a-virus-amassachusetts182022-h3n2-recombinant-hemagglutinin-antigen
    Explore at:
    Dataset updated
    Mar 21, 2025
    Dataset provided by
    Food and Drug Administrationhttp://www.fda.gov/
    Authors
    U.S. Food & Drug Administration
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    The table includes 1 products with the active ingredient Influenza A Virus A/massachusetts/18/2022 (h3n2) Recombinant Hemagglutinin Antigen.

  6. f

    Multigenic DNA vaccine induces protective cross-reactive T cell responses...

    • plos.figshare.com
    pdf
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Merika T. Koday; Jolie A. Leonard; Paul Munson; Adriana Forero; Michael Koday; Debra L. Bratt; James T. Fuller; Robert Murnane; Shulin Qin; Todd A. Reinhart; Karen Duus; Ilhem Messaoudi; Amy L. Hartman; Kelly Stefano-Cole; Juliet Morrison; Michael G. Katze; Deborah Heydenburg Fuller (2023). Multigenic DNA vaccine induces protective cross-reactive T cell responses against heterologous influenza virus in nonhuman primates [Dataset]. http://doi.org/10.1371/journal.pone.0189780
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Merika T. Koday; Jolie A. Leonard; Paul Munson; Adriana Forero; Michael Koday; Debra L. Bratt; James T. Fuller; Robert Murnane; Shulin Qin; Todd A. Reinhart; Karen Duus; Ilhem Messaoudi; Amy L. Hartman; Kelly Stefano-Cole; Juliet Morrison; Michael G. Katze; Deborah Heydenburg Fuller
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Recent avian and swine-origin influenza virus outbreaks illustrate the ongoing threat of influenza pandemics. We investigated immunogenicity and protective efficacy of a multi-antigen (MA) universal influenza DNA vaccine consisting of HA, M2, and NP antigens in cynomolgus macaques. Following challenge with a heterologous pandemic H1N1 strain, vaccinated animals exhibited significantly lower viral loads and more rapid viral clearance when compared to unvaccinated controls. The MA DNA vaccine induced robust serum and mucosal antibody responses but these high antibody titers were not broadly neutralizing. In contrast, the vaccine induced broadly-reactive NP specific T cell responses that cross-reacted with the challenge virus and inversely correlated with lower viral loads and inflammation. These results demonstrate that a MA DNA vaccine that induces strong cross-reactive T cell responses can, independent of neutralizing antibody, mediate significant cross-protection in a nonhuman primate model and further supports development as an effective approach to induce broad protection against circulating and emerging influenza strains.

  7. Preliminary 2024-2025 U.S. COVID-19 Burden Estimates

    • data.cdc.gov
    • data.virginia.gov
    application/rdfxml +5
    Updated Mar 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Preliminary 2024-2025 U.S. COVID-19 Burden Estimates [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Preliminary-2024-2025-U-S-COVID-19-Burden-Estimate/ahrf-yqdt
    Explore at:
    csv, application/rdfxml, json, application/rssxml, xml, tsvAvailable download formats
    Dataset updated
    Mar 21, 2025
    Dataset provided by
    National Center for Immunization and Respiratory Diseases
    Authors
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD).
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.

    Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.

    References

    1. Reed C, Chaves SS, Daily Kirley P, et al. Estimating influenza disease burden from population-based surveillance data in the United States. PLoS One. 2015;10(3):e0118369. https://doi.org/10.1371/journal.pone.0118369 
    2. Rolfes, MA, Foppa, IM, Garg, S, et al. Annual estimates of the burden of seasonal influenza in the United States: A tool for strengthening influenza surveillance and preparedness. Influenza Other Respi Viruses. 2018; 12: 132– 137. https://doi.org/10.1111/irv.12486
    3. Tokars JI, Rolfes MA, Foppa IM, Reed C. An evaluation and update of methods for estimating the number of influenza cases averted by vaccination in the United States. Vaccine. 2018;36(48):7331-7337. doi:10.1016/j.vaccine.2018.10.026 
    4. Collier SA, Deng L, Adam EA, Benedict KM, Beshearse EM, Blackstock AJ, Bruce BB, Derado G, Edens C, Fullerton KE, Gargano JW, Geissler AL, Hall AJ, Havelaar AH, Hill VR, Hoekstra RM, Reddy SC, Scallan E, Stokes EK, Yoder JS, Beach MJ. Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States. Emerg Infect Dis. 2021 Jan;27(1):140-149. doi: 10.3201/eid2701.190676. PMID: 33350905; PMCID: PMC7774540.
    5. Reed C, Kim IK, Singleton JA,  et al. Estimated influenza illnesses and hospitalizations averted by vaccination–United States, 2013-14 influenza season. MMWR Morb Mortal Wkly Rep. 2014 Dec 12;63(49):1151-4. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6349a2.htm 
    6. Reed C, Angulo FJ, Swerdlow DL, et al. Estimates of the Prevalence of Pandemic (H1N1) 2009, United States, April–July 2009. Emerg Infect Dis. 2009;15(12):2004-2007. https://dx.doi.org/10.3201/eid1512.091413
    7. Devine O, Pham H, Gunnels B, et al. Extrapolating Sentinel Surveillance Information to Estimate National COVID-19 Hospital Admission Rates: A Bayesian Modeling Approach. Influenza and Other Respiratory Viruses. https://onlinelibrary.wiley.com/doi/10.1111/irv.70026. Volume18, Issue10. October 2024.
    8. https://www.cdc.gov/covid/php/covid-net/index.html">COVID-NET | COVID-19 | CDC 
    9. https://www.cdc.gov/covid/hcp/clinical-care/systematic-review-process.html 
    10. https://academic.oup.com/pnasnexus/article/1/3/pgac079/6604394?login=false">Excess natural-cause deaths in California by cause and setting: March 2020 through February 2021 | PNAS Nexus | Oxford Academic (oup.com)
    11. Kruschke, J. K. 2011. Doing Bayesian data analysis: a tutorial with R and BUGS. Elsevier, Amsterdam, Section 3.3.5.

  8. Preliminary 2024-2025 U.S. RSV Burden Estimates

    • data.cdc.gov
    • data.virginia.gov
    application/rdfxml +5
    Updated Mar 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Preliminary 2024-2025 U.S. RSV Burden Estimates [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Preliminary-2024-2025-U-S-RSV-Burden-Estimates/sumd-iwm8
    Explore at:
    csv, tsv, application/rdfxml, json, application/rssxml, xmlAvailable download formats
    Dataset updated
    Mar 21, 2025
    Dataset provided by
    National Center for Immunization and Respiratory Diseases
    Authors
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD).
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This dataset represents preliminary estimates of cumulative U.S. RSV –associated disease burden estimates for the 2024-2025 season, including outpatient visits, hospitalizations, and deaths. Real-time estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed respiratory syncytial virus (RSV) infections. The data come from the Respiratory Syncytial Virus Hospitalization Surveillance Network (RSV-NET), a surveillance platform that captures data from hospitals that serve about 8% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of RSV-associated disease burden estimates that have occurred since October 1, 2024.

    Note: Data are preliminary and subject to change as more data become available. Rates for recent RSV-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.

    Note: Preliminary burden estimates are not inclusive of data from all RSV-NET sites. Due to model limitations, sites with small sample sizes can impact estimates in unpredictable ways and are excluded for the benefit of model stability. CDC is working to address model limitations and include data from all sites in final burden estimates.

    References

    1. Reed C, Chaves SS, Daily Kirley P, et al. Estimating influenza disease burden from population-based surveillance data in the United States. PLoS One. 2015;10(3):e0118369. https://doi.org/10.1371/journal.pone.0118369 
    2. Rolfes, MA, Foppa, IM, Garg, S, et al. Annual estimates of the burden of seasonal influenza in the United States: A tool for strengthening influenza surveillance and preparedness. Influenza Other Respi Viruses. 2018; 12: 132– 137. https://doi.org/10.1111/irv.12486
    3. Tokars JI, Rolfes MA, Foppa IM, Reed C. An evaluation and update of methods for estimating the number of influenza cases averted by vaccination in the United States. Vaccine. 2018;36(48):7331-7337. doi:10.1016/j.vaccine.2018.10.026 
    4. Collier SA, Deng L, Adam EA, Benedict KM, Beshearse EM, Blackstock AJ, Bruce BB, Derado G, Edens C, Fullerton KE, Gargano JW, Geissler AL, Hall AJ, Havelaar AH, Hill VR, Hoekstra RM, Reddy SC, Scallan E, Stokes EK, Yoder JS, Beach MJ. Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States. Emerg Infect Dis. 2021 Jan;27(1):140-149. doi: 10.3201/eid2701.190676. PMID: 33350905; PMCID: PMC7774540.
    5. Reed C, Kim IK, Singleton JA,  et al. Estimated influenza illnesses and hospitalizations averted by vaccination–United States, 2013-14 influenza season. MMWR Morb Mortal Wkly Rep. 2014 Dec 12;63(49):1151-4. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6349a2.htm 
    6. Reed C, Angulo FJ, Swerdlow DL, et al. Estimates of the Prevalence of Pandemic (H1N1) 2009, United States, April–July 2009. Emerg Infect Dis. 2009;15(12):2004-2007. https://dx.doi.org/10.3201/eid1512.091413
    7. Devine O, Pham H, Gunnels B, et al. Extrapolating Sentinel Surveillance Information to Estimate National COVID-19 Hospital Admission Rates: A Bayesian Modeling Approach. Influenza and Other Respiratory Viruses. https://onlinelibrary.wiley.com/doi/10.1111/irv.70026. Volume18, Issue10. October 2024.
    8. https://www.cdc.gov/covid/php/covid-net/index.html">COVID-NET | COVID-19 | CDC 
    9. https://www.cdc.gov/covid/hcp/clinical-care/systematic-review-process.html 
    10. https://academic.oup.com/pnasnexus/article/1/3/pgac079/6604394?login=false">Excess natural-cause deaths in California by cause and setting: March 2020 through February 2021 | PNAS Nexus | Oxford Academic (oup.com)
    11. Kruschke, J. K. 2011. Doing Bayesian data analysis: a tutorial with R and BUGS. Elsevier, Amsterdam, Section 3.3.5.

  9. Parental perceptions and knowledge toward influenza and IV.

    • figshare.com
    • plos.figshare.com
    xls
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joseph T. F. Lau; Catalina S. M. Ng; Anise M. S. Wu; Yee Ling Ma; Mason M. C. Lau (2023). Parental perceptions and knowledge toward influenza and IV. [Dataset]. http://doi.org/10.1371/journal.pone.0205561.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Joseph T. F. Lau; Catalina S. M. Ng; Anise M. S. Wu; Yee Ling Ma; Mason M. C. Lau
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Parental perceptions and knowledge toward influenza and IV.

  10. f

    Antigenic relationships between B/Yamagata isolates and B/Wisconsin/01/2010,...

    • plos.figshare.com
    xls
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Naranzul Tsedenbal; Altansukh Tsend-Ayush; Darmaa Badarch; Sarantuya Jav; Nymadawa Pagbajab (2023). Antigenic relationships between B/Yamagata isolates and B/Wisconsin/01/2010, B/Massachusetts/02/2012 and B/Phuket/3073/2013 and amino acid substitutions on HA1 gene, refer to B/Wisconsin/01/2010 strain. [Dataset]. http://doi.org/10.1371/journal.pone.0206987.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Naranzul Tsedenbal; Altansukh Tsend-Ayush; Darmaa Badarch; Sarantuya Jav; Nymadawa Pagbajab
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Wisconsin, Massachusetts
    Description

    Antigenic relationships between B/Yamagata isolates and B/Wisconsin/01/2010, B/Massachusetts/02/2012 and B/Phuket/3073/2013 and amino acid substitutions on HA1 gene, refer to B/Wisconsin/01/2010 strain.

  11. f

    Estimated number of medically-attended (MA) influenza cases averted by...

    • plos.figshare.com
    • figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deliana Kostova; Carrie Reed; Lyn Finelli; Po-Yung Cheng; Paul M. Gargiullo; David K. Shay; James A. Singleton; Martin I. Meltzer; Peng-jun Lu; Joseph S. Bresee (2023). Estimated number of medically-attended (MA) influenza cases averted by vaccination, 2005/06–2010/11 influenza seasons (95% confidence interval in parentheses). [Dataset]. http://doi.org/10.1371/journal.pone.0066312.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Deliana Kostova; Carrie Reed; Lyn Finelli; Po-Yung Cheng; Paul M. Gargiullo; David K. Shay; James A. Singleton; Martin I. Meltzer; Peng-jun Lu; Joseph S. Bresee
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Estimated number of medically-attended (MA) influenza cases averted by vaccination, 2005/06–2010/11 influenza seasons (95% confidence interval in parentheses).

  12. f

    EXPERIMENT_DETAILS_Bertrams.xlsx

    • figshare.com
    xlsx
    Updated Mar 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wilhelm Bertrams (2025). EXPERIMENT_DETAILS_Bertrams.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.28009130.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 11, 2025
    Dataset provided by
    figshare
    Authors
    Wilhelm Bertrams
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Plasma samples from patients with acute COVID-19 (n=100) and Influenza (n=17) were probed for vesicle surface marker decoration on a EV antibody microarray. The protein microarrays were produced in Multitarget plates (MTP, Microfluor 2, 96 wells, polystyrene, Thermo Fisher Scientific, MA, USA) and the printing was performed using a sciFLEXARRAYER S12 microarray printer installed with a Piezo Dispense Capillary (PDC) size 60 with coating type 3 (Scienion AG, DE). The printing procedure was performed under strict humidity and temperature control, as described by Jørgensen et al.(Jørgensen et al. 2021).As positive controls 50, 10 and 5 µg/mL of biotinylated goat anti-mouse IgG (Novus Biologicals, CO, USA) was printed and PBS with 5% trehalose was used as negative control. After the print procedure, the MTP were left to dry at room temperature overnight prior to further analysis. Anti-human antibodies used for capturing: CD146 (P1H12), Hsp90 (IGF1), Flotillin-1, CD147, Neuropilin 1, ACE2 (EPR4435(2)), TMPRSS2 (EPR3861) (Abcam, UK); CD9 (SN4/C3-3A2), CD81 (1.3.3.22) (Ancell corporation, MN, USA); Alix (3A9), CD41 (HIP8), HLA ABC (W6/32; Biolegend, CA USA); CD63 (Bio-Rad, CA, USA); ICAM-1 (R6.5, eBioscience, CA, USA); CTLA4 (ANC152.2/8H5; LSbio, WA, USA); tissue factor / CD142 (323,514), VCAM-1 / CD106 (HAE-2Z), thrombomodulin / CD141 (501733), CD31 (AF806, R&D Systems), Annexin V, CD4 (34930), CD151 (210127), CD45 (2D1), tPA, Thrombospondin-1, CD14 (50040), CD166, CD162 (R&D Systems); EpCAM (0.N.277; Santa Cruz Biotechnology, TX, US); CD3 (Hit3a), CD16 (3G8; BD Biosciences, US); HLA DR/DP/DQ (HB-145/IVA12; Caprico Biotechnologies, GA, US); CD62E (Thermo Fisher Scientific, MA, US). All antibodies were diluted in PBS with 5% trehalose and printed in triplicates at 200 µg / mL. The EV Array was prepared as described by Jørgensen et al.(Jørgensen et al. 2013)and Jørgensen et al.(Jørgensen et al. 2021)with modifications.In short, the MTP was initially blocked and the blocking buffer (50 mM ethanolamine, 100 mM Tris, 0.1% SDS, pH 9.0) was applied using a hand-held spray gun in a closed box for gentle application of the buffer. After 30 minutes of incubation the wells were emptied and additional 100 µL Liquid Plate Sealer® (Candor Bioscience GmbH, DE) was gently added each well followed by another 1-hour incubation. Subsequently, the wells were emptied and left to dry for 5 hours prior to sealing and storage until use.The EV Array analysis was initiated by washing the MTPs in Buffer A (0.2% Tween20® in PBS) using a HydroFlex™ microplate washer (TecanTrading AG, CH). Then, 75 µL sample and 25 µL Buffer B (½x Casein Blocking Buffer (10x concentrate, Sigma-Aldrich, MO, USA, catalog B6429) was applied to each well and incubated for 2 hours RT at an orbital shaker (450 rpm) followed by an overnight incubation at 4°C. After a wash procedure in Buffer A, each well of the MTPs were incubated with 100 µL detection antibody cocktail (biotinylated anti-human-CD9, -CD63, and -CD81 (Ancell, MN, USA) diluted 1:1,500 in Buffer B for 2 hours RT with shaking. Following a wash in Buffer A, 100 µL streptavidin-Cy3 ((Life Technologies, MA, USA) diluted 1:3,000 in Buffer B) was added to each well and incubated for 30 min RT on the shaker. The analysis was finalized by washing with Buffer A and subsequently with MilliQ water.The MTPs were dried and scanned using a sciREADER FL2 microarray scanner (Scienion AG, DE) at 535 nm and an exposure time at 2,000 millisec.

  13. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Executive Office of Health and Human Services (2022). Viral respiratory illness reporting [Dataset]. https://www.mass.gov/info-details/viral-respiratory-illness-reporting

Viral respiratory illness reporting

Explore at:
Dataset updated
Oct 21, 2022
Dataset provided by
Executive Office of Health and Human Services
Department of Public Health
Area covered
Massachusetts
Description

The following dashboards provide data on contagious respiratory viruses, including acute respiratory diseases, COVID-19, influenza (flu), and respiratory syncytial virus (RSV) in Massachusetts. The data presented here can help track trends in respiratory disease and vaccination activity across Massachusetts.

Search
Clear search
Close search
Google apps
Main menu