4 datasets found
  1. a

    02.2 Transforming Data Using Extract, Transform, and Load Processes

    • training-iowadot.opendata.arcgis.com
    • hub.arcgis.com
    Updated Feb 17, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 02.2 Transforming Data Using Extract, Transform, and Load Processes [Dataset]. https://training-iowadot.opendata.arcgis.com/documents/bcf59a09380b4731923769d3ce6ae3a3
    Explore at:
    Dataset updated
    Feb 17, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To achieve true data interoperability is to eliminate format and data model barriers, allowing you to seamlessly access, convert, and model any data, independent of format. The ArcGIS Data Interoperability extension is based on the powerful data transformation capabilities of the Feature Manipulation Engine (FME), giving you the data you want, when and where you want it.In this course, you will learn how to leverage the ArcGIS Data Interoperability extension within ArcCatalog and ArcMap, enabling you to directly read, translate, and transform spatial data according to your independent needs. In addition to components that allow you to work openly with a multitude of formats, the extension also provides a complex data model solution with a level of control that would otherwise require custom software.After completing this course, you will be able to:Recognize when you need to use the Data Interoperability tool to view or edit your data.Choose and apply the correct method of reading data with the Data Interoperability tool in ArcCatalog and ArcMap.Choose the correct Data Interoperability tool and be able to use it to convert your data between formats.Edit a data model, or schema, using the Spatial ETL tool.Perform any desired transformations on your data's attributes and geometry using the Spatial ETL tool.Verify your data transformations before, after, and during a translation by inspecting your data.Apply best practices when creating a workflow using the Data Interoperability extension.

  2. GNAF

    • hub.arcgis.com
    Updated Sep 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Product Management Team (2016). GNAF [Dataset]. https://hub.arcgis.com/content/5bdf6c128c344b3ca7aea24e68fa32e1
    Explore at:
    Dataset updated
    Sep 19, 2016
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Product Management Team
    Area covered
    Description

    Updated July 2nd 2020 to adopt Pro 2.6 release and create Pro locators.This sample contains an ArcGIS Pro 2.6 Toolbox file containing five Spatial ETL Tools:ImportPSV2 - imports pipe separated source text files into a new (or existing, optionally to be overwritten) File Geodatabase.ImportStatePSV2 - the same as ImportPSV2 except includes a filter for a target state.MakeAllLocalityAliases - makes a city or locality alias table used in locator creation.MakeAddress2 - makes a point feature class ADDRESS with the schema similar to the ADDRESS_VIEW example in the PSMA documentation.MakeReferenceAddress - creates a point feature class REFERENCEADDRESS from the ADDRESS features, having expanded house number ranges and house number and subaddress details in suitable fields. This is the primary role data for the locator.The download also includes FME workbench FMW files (2020) for use in that product and ArcGIS Pro.You must re-source the Spatial ETL tools in the download toolbox to point to the FMW files in the download and you must re-path the data sources in each Spatial ETL tool to suit your project workspace.A model CreateGNAFLocator is in the download toolbox, use this to create your locator. A sample locator for the ACT is included.The sample locator and ones you create will support subaddress inputs, like flats and units.ImportPSV2 takes 19 hours to process 104M features on my machine. You might like to process a state at a time.If you add intermediate data to a map or leave an output geodatabase expanded in the Catalog pane you may get an error when writing output because of file locking. It is recommended you do not open an output workspace in Pro until app processing is complete.MakeAddress2 and MakeReferenceAddress take 4 hours to run for all Australia.The schema expected is as per February 2021, it may change each release, read the source documentation for change notices, this sample may not be maintained. The primary and foreign key fields according to PSMA's data model are indexed.G-NAF download site is: https://data.gov.au/dataset/geocoded-national-address-file-g-naf

  3. g

    Spatial Morphology Lab 01. International laboratory for comparative research...

    • gimi9.com
    • snd.se
    Updated Nov 18, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Spatial Morphology Lab 01. International laboratory for comparative research in urban form. Street networks, Sweden - Motorised network of Eskilstuna [Dataset]. https://gimi9.com/dataset/eu_https-doi-org-10-5878-m5h3-be44
    Explore at:
    Dataset updated
    Nov 18, 2020
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Eskilstuna, Sweden
    Description

    GIS-datasets for the Street networks of Stockholm, Gothenburg and Eskilstuna produced as part of the Spatial Morphology Lab (SMoL). The goal of the SMoL project is to develop a strong theory and methodology for urban planning & design research with an analytical approach. Three frequently recurring variables of spatial urban form are studied that together quite well capture and describe the central characteristics and qualities of the built environment: density, diversity and proximity. The first measure describes how intensive a place can be used depending on how much built up area is found there. The second measure captures how differentiated the use of a place can be depending on the division in smaller units such as plots. The third measure describes how accessible a place is depending on how it relates with other places. Empirical studies have shown strong links between these metrics and people's use of cities such as pedestrian movement patterns. To support this goal, a central objective of the project is the establishment of an international platform of GIS data models for comparative studies in spatial urban form comprising three European capitals: London in the UK, Amsterdam in the Netherlands and Stockholm in Sweden, as well as two additional Swedish cities of smaller size than Stockholm: Gothenburg and Eskilstuna. The result of the project is a GIS database for the five cities covering the three basic layers of urban form: street network (motorised and non-motorised), buildings and plots systems. The data is shared via SND to create a research infrastructure that is open to new study initiatives. The datasets for Amsterdam will also be uploaded to SND. The datasets of London cannot be uploaded because of licensing restrictions. The street network GIS-maps include motorised and non-motorised networks. The motorised networks exclude all streets that are pedestrian-only and were cars are excluded. The network layers are based on the Swedish national road database, NVDB (Nationell Vägdatabas), downloaded from Trafikverket (https://lastkajen.trafikverket.se, date of download 15-5-2016, last update 8-11-2015). The original road-centre-line maps of all cities were edited based on the same basic representational principles and were converted into line-segment maps, using the following software: FME, Mapinfo professional and PST (Place Syntax Tool). The coordinate system is SWEREF99TM. In the final line-segment maps (GIS-layers) all roads are represented with one line irrespectively of the number of lanes, except from Motorways and Highways which are represented with two lines, one for each direction, again irrespectively of the number of lanes. We followed the same editing and generalizing procedure for all maps aiming to remove errors and to increase comparability between networks. This process included removing duplicate and isolated lines, snapping and generalizing. The snapping threshold used was 2m (end points closer than 2m were snapped together). The generalizing threshold used was 1m (successive line segments with angular deviation less than 1m were merged into one). In the final editing step, all road polylines were segmented to their constituting line-segments. The aim was to create appropriate line-segment maps to be analysed using Angular Segment Analysis, a network centrality analysis method introduced in Space Syntax. All network layers are complemented with an “Unlink points” layer; a GIS point layer with the locations of all non-level intersections, such as overpasses and underpasses, bridges, tunnels, flyovers and the like. The Unlink point layer is necessary to conduct network analysis that takes into account the non-planarity of the street network, using such software as PST (Place Syntax Tool).

  4. e

    Spatial Morphology Lab 01. International laboratory for comparative research...

    • data.europa.eu
    unknown
    Updated Aug 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chalmers tekniska högskola (2024). Spatial Morphology Lab 01. International laboratory for comparative research in urban form. Street networks, Sweden - Icke-motoriserade gatunätverk, Stockholm [Dataset]. https://data.europa.eu/data/datasets/https-doi-org-10-5878-hfww-5y22~~1?locale=da
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Aug 22, 2024
    Dataset authored and provided by
    Chalmers tekniska högskola
    Area covered
    Sverige, Stockholm
    Description

    GIS-databas för gatunätverk i Stockholm, Göteborg och Eskilstuna producerade som en del av Spatial Morphology Lab (SMoL).

    Syftet med SMoL-projektet är att utveckla en stark teori och metod inom den arkitekturbaserade stadsbyggnadsforskningen med ett analytiskt tillvägagångssätt. Detta möjliggör kvantitativa studier av grundläggande egenskaper hos den byggda miljön där relationer i rummet är centrala.

    Det finns tre ofta återkommande begrepp med tillhörande mått som tillsammans ganska väl fångar och beskriver centrala egenskaper och kvaliteter hos stadens form: täthet, diversitet och närhet.

    Förenklat kan man säga att det första måttet beskriver hur intensivt en plats är möjlig att använda beroende på hur mycket bebyggd yta som återfinns där. Det andra måttet fångar hur differentierad användningen av en plats kan vara beroende på hur indelad den är i flera rum. Det tredje måttet beskriver hur tillgänglig en plats är beroende på hur dess samband med andra platser är utformat. Empiriska studier har visat starka samband mellan dessa mått och människors användning av stadens rum i mycket grundläggande avseenden.

    För att stödja detta syfte var projektets konkreta mål att upprätta en internationell plattform med GIS datamodeller för jämförande studier i rumslig stadsform som består av tre europeiska huvudstäder: London in England, Amsterdam i Nederländerna och Stockholm i Sverige, och två mindre svenska städer: Göteborg och Eskilstuna.

    Resultat av projektet är en GIS-databas för de fem städerna som täcker de tre grundläggande lagren i stadsform: gatunätverk (motoriserade och icke-motoriserade), byggnader och fastigheter.

    Denna data delas via SND för att skapa en forskningsinfrastruktur som är öppen för nya initiativ till studier. Data för Amsterdam kommer också att laddas upp till SND. Data för London kan inte delas på grund av licensbegränsningar.

    Modellen för gatunätverket innehåller en modell som baseras på den motoriserade och en på den icke-motoriserade gatunätverk. De icke-motoriserade nätverken inkluderar alla gator och stigar som är tillgängliga för personer som går eller cyklar, inklusive de som delas med fordon. Alla gator där det är förbjudet att gå eller cykla, till exempel motorvägar, motorvägar eller höghastighetstunnlar, ingår inte i nätverket.

    De icke-motoriserade nätverkslagren för Stockholm och Eskilstuna är baserade på den svenska nationella vägdatabasen, NVDB (Nationell Vägdatabas), nedladdad från Trafikverket (https://lastkajen.trafikverket.se, nedladdningsdatum 15-5-2016, senaste uppdatering 8-11-2015). För Göteborg är det baserat på Open Street Maps (openstreetmap.org, http://download.geofabrik.de, nedladdningsdatum 29-4-2016), eftersom NVDB inte tillhandahöll tillräckligt med detaljer för det icke-motoriserade nätverket som i de andra städerna. De ursprungliga kartorna redigerades baserat på samma grundläggande representations-principer och omvandlades till linjesegmentskartor med användning av följande programvara: FME, Mapinfo professional och PST (Place Syntax Tool). Koordinatsystemet är SWEREF99TM.

    I de slutliga linjesegmentkartorna är alla gator eller stigar representerade med en linje oberoende av antalet körfält. Detta innebär att parallella linjer som representerar en gata, trottoar och cykelväg reduceras till en linje. Anledningen är att dessa parallella linjer inte är fysiskt eller perceptuellt åtskilda, och därför representeras som en "rörelselinje" i modellen. Om det finns hinder eller stort avstånd mellan parallella gator och stigar, kvarstår flera linjer. Målet är att skapa ett skelettnätverk som är tillgängligt för fotgängare att röra sig. Detta representativa val följer Space Syntax-metodiken.

    Vi följde samma redigerings- och generaliseringsmetodik för alla kartor som syftar till att öka jämförbarheten. Metodiken inkluderar att ta bort duplicerade och isolerade linjer, att koppla linjer där dem är felaktigt separerade och att generalisera modellen (dvs. använda samma detaljnivå). Vi använder tröskeln var 2 m (slutpunkterna närmare än 2 m knäpptes ihop). För generaliseringen används ett tröskelvärde av 1 m (successiva linjesegment med vinkelavvikelse mindre än 1 m slogs samman till ett). Sista steget är att segmentera alla linjer till deras konstituerande linjesegment. Analysen som används är ”Angular Segment Analys”, en metod som introducerats i Space Syntax.

    Alla nätverks lager kompletteras med ett "Unlink points" -lager; ett lager som inkluderar alla icke-plankorsningar, t.ex. gångbroar och tunnlar. Unlinks är nödvändiga för att utföra nätverksanalys som tar hänsyn till gatunätets tredimensionella karaktär. Vi använder programvara PST (Place Syntax Tool) för redigeringen och analysen. För mer detaljerad dokumentation, ladda ner dokumentationsfilen.

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Iowa Department of Transportation (2017). 02.2 Transforming Data Using Extract, Transform, and Load Processes [Dataset]. https://training-iowadot.opendata.arcgis.com/documents/bcf59a09380b4731923769d3ce6ae3a3

02.2 Transforming Data Using Extract, Transform, and Load Processes

Explore at:
Dataset updated
Feb 17, 2017
Dataset authored and provided by
Iowa Department of Transportation
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

To achieve true data interoperability is to eliminate format and data model barriers, allowing you to seamlessly access, convert, and model any data, independent of format. The ArcGIS Data Interoperability extension is based on the powerful data transformation capabilities of the Feature Manipulation Engine (FME), giving you the data you want, when and where you want it.In this course, you will learn how to leverage the ArcGIS Data Interoperability extension within ArcCatalog and ArcMap, enabling you to directly read, translate, and transform spatial data according to your independent needs. In addition to components that allow you to work openly with a multitude of formats, the extension also provides a complex data model solution with a level of control that would otherwise require custom software.After completing this course, you will be able to:Recognize when you need to use the Data Interoperability tool to view or edit your data.Choose and apply the correct method of reading data with the Data Interoperability tool in ArcCatalog and ArcMap.Choose the correct Data Interoperability tool and be able to use it to convert your data between formats.Edit a data model, or schema, using the Spatial ETL tool.Perform any desired transformations on your data's attributes and geometry using the Spatial ETL tool.Verify your data transformations before, after, and during a translation by inspecting your data.Apply best practices when creating a workflow using the Data Interoperability extension.

Search
Clear search
Close search
Google apps
Main menu