9 datasets found
  1. l

    Food Deserts

    • data.lacounty.gov
    • geohub.lacity.org
    • +3more
    Updated May 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2022). Food Deserts [Dataset]. https://data.lacounty.gov/datasets/food-deserts
    Explore at:
    Dataset updated
    May 17, 2022
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Dataset is an overview of food access indicators for low-income and other census tracts using different measures of supermarket accessibility. This dataset provides food access data for populations within census tracts; and offers census-tract-level data on food access that can be used for community planning or research purposes.Data from USDA Economic Research Service (ERS) Food Access Research Atlas, 2019. Last updated 4/27/2021.See also USDA map service at https://gisportal.ers.usda.gov/server/rest/services/FARA/FARA_2019/MapServer.

  2. d

    Nearby Cook County Grocery Store Chains

    • datasets.ai
    • data.cityofchicago.org
    • +2more
    23, 40, 55, 8
    Updated Nov 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2020). Nearby Cook County Grocery Store Chains [Dataset]. https://datasets.ai/datasets/nearby-cook-county-grocery-store-chains
    Explore at:
    8, 23, 40, 55Available download formats
    Dataset updated
    Nov 10, 2020
    Dataset authored and provided by
    City of Chicago
    Area covered
    Cook County
    Description

    A list of grocery stores which are part of a multi-store chain and are located at or within 1 mile of Chicago's city limits. In addition, this dataset contains additional information about the size and type of food offered by the grocery store. This dataset was provided to the City of Chicago by Chicago State University.

  3. d

    Food Access Research Atlas

    • catalog.data.gov
    • datasetcatalog.nlm.nih.gov
    • +4more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Economic Research Service, Department of Agriculture (2025). Food Access Research Atlas [Dataset]. https://catalog.data.gov/dataset/food-access-research-atlas
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Economic Research Service, Department of Agriculture
    Description

    The Food Access Research Atlas presents a spatial overview of food access indicators for low-income and other census tracts using different measures of supermarket accessibility, provides food access data for populations within census tracts, and offers census-tract-level data on food access that can be downloaded for community planning or research purposes.

  4. C

    Nearby Independent Cook County Grocery Stores

    • data.cityofchicago.org
    • catalog.data.gov
    csv, xlsx, xml
    Updated Aug 26, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Danny Block, Chicago State University, and Frederick Blum Neighborhood Assistance Center (2013). Nearby Independent Cook County Grocery Stores [Dataset]. https://data.cityofchicago.org/w/ddxq-pdr6/3q3f-6823?cur=2KGLs80D1wo
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Aug 26, 2013
    Dataset authored and provided by
    Danny Block, Chicago State University, and Frederick Blum Neighborhood Assistance Center
    Area covered
    Cook County
    Description

    A list of independently owned- and operated grocery stores which are located at or within 1 mile of Chicago's city limits. In addition, this dataset contains additional information about the size and type of food offered by the grocery store. This dataset was provided to the City of Chicago by Chicago State University.

  5. f

    Descriptive statistics (N = 3,108).

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Apr 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oh, Jae In; Hipp, Aaron; Lee, KangJae Jerry (2024). Descriptive statistics (N = 3,108). [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001367661
    Explore at:
    Dataset updated
    Apr 18, 2024
    Authors
    Oh, Jae In; Hipp, Aaron; Lee, KangJae Jerry
    Description

    To prevent obesity and diabetes environmental interventions such as eliminating food deserts, restricting proliferation of food swamps, and improving park access are essential. In the United States, however, studies that examine the food and park access relationship with obesity and diabetes using both global and local regression are lacking. To guide county, state, and federal policy in combating obesity and diabetes, there is a need for cross-scale analyses to identify that relationship at national and local levels. This study applied spatial regression and geographically weighted regression to the 3,108 counties in the contiguous United States. Global regression show food deserts exposure and density of fast-food restaurants have non-significant association with obesity and diabetes while park access has a significant inverse association with both diseases. Geographically weighted regression that takes into account spatial heterogeneity shows that, among southern states that show high prevalence of obesity and diabetes, Alabama and Mississippi stand out as having opportunity to improve park access. Results suggest food deserts exposure are positively associated with obesity and diabetes in counties close to Alabama, Georgia, and Tennessee while density of fast-food restaurants show positive association with two diseases in counties of western New York and northwestern Pennsylvania. These findings will help policymakers and public health agencies in determining which geographic areas need to be prioritized when implementing public interventions such as promoting healthy food access, limiting unhealthy food options, and increasing park access.

  6. n

    The Relationship Between Food and Poverty in California

    • national4hgeospatialteam.us
    Updated May 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National 4-H GIS Leadership Team (2023). The Relationship Between Food and Poverty in California [Dataset]. https://www.national4hgeospatialteam.us/datasets/the-relationship-between-food-and-poverty-in-california
    Explore at:
    Dataset updated
    May 26, 2023
    Dataset authored and provided by
    National 4-H GIS Leadership Team
    Description

    This map shows where food stores are located across California with gray dots. Along with that, the red indicates the income of the area. The dark red indicates areas with higher poverty rates and, and the lighter area indicates the places with lower poverty rates. When you first look at the graph it looks like California has a lot of food sources in most of the areas people live in. However, there is more to California's food sources when you take a closer look. The blue indicates poverty rates. (The darker blue means higher poverty rates, and the lighter blue mean lower poverty rates). And the blue and green dots indicate whether the food source is a grocery store or not. The red means it is not a food source and is a convenience store, and the green means it is a food source. As you can see there are way more red dots than green, meaning there are more convenience stores compared to regular grocery stores. A lot of the areas that only have red dots mean that that area is a food desert. That means they have no good quality fresh produce near them. Now let's take a closer look at some towns.

  7. Results of Lagrange Multiplier test.

    • plos.figshare.com
    xls
    Updated Apr 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jae In Oh; KangJae Jerry Lee; Aaron Hipp (2024). Results of Lagrange Multiplier test. [Dataset]. http://doi.org/10.1371/journal.pone.0301121.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Apr 18, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Jae In Oh; KangJae Jerry Lee; Aaron Hipp
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To prevent obesity and diabetes environmental interventions such as eliminating food deserts, restricting proliferation of food swamps, and improving park access are essential. In the United States, however, studies that examine the food and park access relationship with obesity and diabetes using both global and local regression are lacking. To guide county, state, and federal policy in combating obesity and diabetes, there is a need for cross-scale analyses to identify that relationship at national and local levels. This study applied spatial regression and geographically weighted regression to the 3,108 counties in the contiguous United States. Global regression show food deserts exposure and density of fast-food restaurants have non-significant association with obesity and diabetes while park access has a significant inverse association with both diseases. Geographically weighted regression that takes into account spatial heterogeneity shows that, among southern states that show high prevalence of obesity and diabetes, Alabama and Mississippi stand out as having opportunity to improve park access. Results suggest food deserts exposure are positively associated with obesity and diabetes in counties close to Alabama, Georgia, and Tennessee while density of fast-food restaurants show positive association with two diseases in counties of western New York and northwestern Pennsylvania. These findings will help policymakers and public health agencies in determining which geographic areas need to be prioritized when implementing public interventions such as promoting healthy food access, limiting unhealthy food options, and increasing park access.

  8. SafeGraph Grocery Stores

    • nv-thrive-data-hub-csustanislaus.hub.arcgis.com
    Updated May 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2021). SafeGraph Grocery Stores [Dataset]. https://nv-thrive-data-hub-csustanislaus.hub.arcgis.com/datasets/UrbanObservatory::safegraph-grocery-stores/about
    Explore at:
    Dataset updated
    May 4, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This layer shows which parts of the United States and Puerto Rico fall within ten minutes" walk of one or more grocery stores. It is estimated that 20% of U.S. population live within a 10 minute walk of a grocery store, and 92% of the population live within a 10 minute drive of a grocery store. The layer is suitable for looking at access at a neighborhood scale. When you add this layer to your web map, along with the drivable access layer and the SafeGraph grocery store layer, it becomes easier to spot grocery stores that sit within a highly populated area, and grocery stores that sit in a shopping center far away from populated areas. Add the Census block points layer to show a popup with the count of stores within 10 minutes" walk and drive. This view of a city begins to hint at the question: how many people have each type of access to grocery stores? And, what if they are unable to walk a mile regularly, or don"t own a car? How to Use This Layer in a Web MapUse this layer in a web map to introduce the concepts of access to grocery stores in your city or town. This is the kind of map where people will want to look up their home or work address to validate what the map is saying. See this example web map which you can use in your projects, storymaps, apps and dashboards. The layer was built with that use in mind. Many maps of access use straight-line, as-the-crow-flies distance, which ignores real-world barriers to walkability like rivers, lakes, interstates and other characteristics of the built environment. Block analysis using a network data set and Origin-Destination analysis factors these barriers in, resulting in a more realistic depiction of access. Lastly, this layer can serve as backdrop to other community resources, like food banks, farmers markets (example), and transit (example). Add a transit layer to immediately gauge its impact on the population"s grocery access. You can also use this map to see how it relates to communities of concern. Add a layer of any block group or tract demographics, such as Percent Senior Population (examples), or Percent of Households with Access to 0 Vehicles (examples). The layer is a useful visual resource for helping community leaders, business and government leaders see their town from the perspective of its residents, and begin asking questions about how their community could be improved. Data sourcesPopulation data is from the 2010 U.S. Census blocks. Each census block has a count of stores within a 10 minute walk, and a count of stores within a ten minute drive. Census blocks known to be unpopulated are given a score of 0. The layer is available as a hosted feature layer. Grocery store locations are from SafeGraph, reflecting what was in the data as of October 2020. Access to the layer was obtained from the SafeGraph offering in ArcGIS Marketplace. For this project, ArcGIS StreetMap Premium was used for the street network in the origin-destination analysis work, because it already has the necessary attributes on each street segment to identify which streets are considered walkable, and supports a wide variety of driving parameters. The walkable access layer and drivable access layers are rasters, whose colors were chosen to allow the drivable access layer to serve as backdrop to the walkable access layer. Data PreparationArcGIS Network Analyst was used to set up a network street layer for analysis. ArcGIS StreetMap Premium was installed to a local hard drive and selected in the Origin-Destination workflow as the network data source. This allows the origins (Census block centroids) and destinations (SafeGraph grocery stores) to be connected to that network, to allow origin-destination analysis. The Census blocks layer contains the centroid of each Census block. The data allows a simple popup to be created. This layer"s block figures can be summarized further, to tract, county and state levels. The SafeGraph grocery store locations were created by querying the SafeGraph source layer based on primary NAICS code. After connecting to the layer in ArcGIS Pro, a definition query was set to only show records with NAICS code 445110 as an initial screening. The layer was exported to a local disk drive for further definition query refinement, to eliminate any records that were obviously not grocery stores. The final layer used in the analysis had approximately 53,600 records. In this map, this layer is included as a vector tile layer. Methodology Every census block in the U.S. was assigned two access scores, whose numbers are simply how many grocery stores are within a 10 minute walk and a 10 minute drive of that census block. Every census block has a score of 0 (no stores), 1, 2 or more stores. The count of accessible stores was determined using Origin-Destination Analysis in ArcGIS Network Analyst, in ArcGIS Pro. A set of Tools in this ArcGIS Pro package allow a similar analysis to be conducted for any city or other area. The Tools step through the data prep and analysis steps. Download the Pro package, open it and substitute your own layers for Origins and Destinations. Parcel centroids are a suggested option for Origins, for example. Origin-Destination analysis was configured, using ArcGIS StreetMap Premium as the network data source. Census block centroids with population greater than zero were used as the Origins, and grocery store locations were used as the Destinations. A cutoff of 10 minutes was used with the Walk Time option. Only one restriction was applied to the street network: Walkable, which means Interstates and other non-walkable street segments were treated appropriately. You see the results in the map: wherever freeway overpasses and underpasses are present near a grocery store, the walkable area extends across/through that pass, but not along the freeway. A cutoff of 10 minutes was used with the Drive Time option. The default restrictions were applied to the street network, which means a typical vehicle"s access to all types of roads was factored in. The results for each analysis were captured in the Lines layer, which shows which origins are within the cutoff of each destination over the street network, given the assumptions about that network (walking, or driving a vehicle). The Lines layer was then summarized by census block ID to capture the Maximum value of the Destination_Rank field. A census block within 10 minutes of 3 stores would have 3 records in the Lines layer, but only one value in the summarized table, with a MAX_Destination_Rank field value of 3. This is the number of stores accessible to that census block in the 10 minutes measured, for walking and driving. These data were joined to the block centroids layer and given unique names. At this point, all blocks with zero population or null values in the MAX_Destination_Rank fields were given a store count of 0, to help the next step. Walkable and Drivable areas are calculated into a raster layer, using Nearest Neighbor geoprocessing tool on the count of stores within a 10 minute walk, and a count of stores within a ten minute drive, respectively. This tool uses a 200 meter grid and interpolates the values between each census block. A census tracts layer containing all water polygons "erased" from the census tract boundaries was used as an environment setting, to help constrain interpolation into/across bodies of water. The same layer use used to "shoreline" the Nearest Neighbor results, to eliminate any interpolation into the ocean or Great Lakes. This helped but was not perfect. Notes and LimitationsThe map provides a baseline for discussing access to grocery stores in a city. It does not presume local population has the desire or means to walk or drive to obtain groceries. It does not take elevation gain or loss into account. It does not factor time of day nor weather, seasons, or other variables that affect a person"s commute choices. Walking and driving are just two ways people get to a grocery store. Some people ride a bike, others take public transit, have groceries delivered, or rely on a friend with a vehicle. Thank you to Melinda Morang on the Network Analyst team for guidance and suggestions at key moments along the way; to Emily Meriam for reviewing the previous version of this map and creating new color palettes and marker symbols specific to this project. Additional ReadingThe methods by which access to food is measured and reported have improved in the past decade or so, as has the uses of such measurements. Some relevant papers and articles are provided below as a starting point. Measuring Food Insecurity Using the Food Abundance Index: Implications for Economic, Health and Social Well-BeingHow to Identify Food Deserts: Measuring Physical and Economic Access to Supermarkets in King County, WashingtonAccess to Affordable and Nutritious Food: Measuring and Understanding Food Deserts and Their ConsequencesDifferent Measures of Food Access Inform Different SolutionsThe time cost of access to food – Distance to the grocery store as measured in minutes

  9. Populated Census Blocks

    • hub.arcgis.com
    Updated May 4, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2021). Populated Census Blocks [Dataset]. https://hub.arcgis.com/maps/UrbanObservatory::populated-census-blocks-1/about
    Explore at:
    Dataset updated
    May 4, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This layer shows which parts of the United States and Puerto Rico fall within ten minutes' walk of one or more grocery stores. It is estimated that 20% of U.S. population live within a 10 minute walk of a grocery store, and 92% of the population live within a 10 minute drive of a grocery store. The layer is suitable for looking at access at a neighborhood scale. When you add this layer to your web map, along with the drivable access layer and the SafeGraph grocery store layer, it becomes easier to spot grocery stores that sit within a highly populated area, and grocery stores that sit in a shopping center far away from populated areas. Add the Census block points layer to show a popup with the count of stores within 10 minutes' walk and drive. This view of a city begins to hint at the question: how many people have each type of access to grocery stores? And, what if they are unable to walk a mile regularly, or do not own a car? How to Use This Layer in a Web MapUse this layer in a web map to introduce the concepts of access to grocery stores in your city or town. This is the kind of map where people will want to look up their home or work address to validate what the map is saying. See this example web map which you can use in your projects, storymaps, apps and dashboards. The layer was built with that use in mind. Many maps of access use straight-line, as-the-crow-flies distance, which ignores real-world barriers to walkability like rivers, lakes, interstates and other characteristics of the built environment. Block analysis using a network data set and Origin-Destination analysis factors these barriers in, resulting in a more realistic depiction of access. Lastly, this layer can serve as backdrop to other community resources, like food banks, farmers markets (example), and transit (example). Add a transit layer to immediately gauge its impact on the population's grocery access. You can also use this map to see how it relates to communities of concern. Add a layer of any block group or tract demographics, such as Percent Senior Population (examples), or Percent of Households with Access to 0 Vehicles (examples). The layer is a useful visual resource for helping community leaders, business and government leaders see their town from the perspective of its residents, and begin asking questions about how their community could be improved. Data sourcesPopulation data is from the 2010 U.S. Census blocks. Each census block has a count of stores within a 10 minute walk, and a count of stores within a ten minute drive. Census blocks known to be unpopulated are given a score of 0. The layer is available as a hosted feature layer. Grocery store locations are from SafeGraph, reflecting what was in the data as of October 2020. Access to the layer was obtained from the SafeGraph offering in ArcGIS Marketplace. For this project, ArcGIS StreetMap Premium was used for the street network in the origin-destination analysis work, because it already has the necessary attributes on each street segment to identify which streets are considered walkable, and supports a wide variety of driving parameters. The walkable access layer and drivable access layers are rasters, whose colors were chosen to allow the drivable access layer to serve as backdrop to the walkable access layer. Data PreparationArcGIS Network Analyst was used to set up a network street layer for analysis. ArcGIS StreetMap Premium was installed to a local hard drive and selected in the Origin-Destination workflow as the network data source. This allows the origins (Census block centroids) and destinations (SafeGraph grocery stores) to be connected to that network, to allow origin-destination analysis. The Census blocks layer contains the centroid of each Census block. The data allows a simple popup to be created. This layer's block figures can be summarized further, to tract, county and state levels. The SafeGraph grocery store locations were created by querying the SafeGraph source layer based on primary NAICS code. After connecting to the layer in ArcGIS Pro, a definition query was set to only show records with NAICS code 445110 as an initial screening. The layer was exported to a local disk drive for further definition query refinement, to eliminate any records that were obviously not grocery stores. The final layer used in the analysis had approximately 53,600 records. In this map, this layer is included as a vector tile layer. Methodology Every census block in the U.S. was assigned two access scores, whose numbers are simply how many grocery stores are within a 10 minute walk and a 10 minute drive of that census block. Every census block has a score of 0 (no stores), 1, 2 or more stores. The count of accessible stores was determined using Origin-Destination Analysis in ArcGIS Network Analyst, in ArcGIS Pro. A set of Tools in this ArcGIS Pro package allow a similar analysis to be conducted for any city or other area. The Tools step through the data prep and analysis steps. Download the Pro package, open it and substitute your own layers for Origins and Destinations. Parcel centroids are a suggested option for Origins, for example. Origin-Destination analysis was configured, using ArcGIS StreetMap Premium as the network data source. Census block centroids with population greater than zero were used as the Origins, and grocery store locations were used as the Destinations. A cutoff of 10 minutes was used with the Walk Time option. Only one restriction was applied to the street network: Walkable, which means Interstates and other non-walkable street segments were treated appropriately. You see the results in the map: wherever freeway overpasses and underpasses are present near a grocery store, the walkable area extends across/through that pass, but not along the freeway. A cutoff of 10 minutes was used with the Drive Time option. The default restrictions were applied to the street network, which means a typical vehicle's access to all types of roads was factored in. The results for each analysis were captured in the Lines layer, which shows which origins are within the cutoff of each destination over the street network, given the assumptions about that network (walking, or driving a vehicle). The Lines layer was then summarized by census block ID to capture the Maximum value of the Destination_Rank field. A census block within 10 minutes of 3 stores would have 3 records in the Lines layer, but only one value in the summarized table, with a MAX_Destination_Rank field value of 3. This is the number of stores accessible to that census block in the 10 minutes measured, for walking and driving. These data were joined to the block centroids layer and given unique names. At this point, all blocks with zero population or null values in the MAX_Destination_Rank fields were given a store count of 0, to help the next step. Walkable and Drivable areas are calculated into a raster layer, using Nearest Neighbor geoprocessing tool on the count of stores within a 10 minute walk, and a count of stores within a ten minute drive, respectively. This tool uses a 200 meter grid and interpolates the values between each census block. A census tracts layer containing all water polygons "erased" from the census tract boundaries was used as an environment setting, to help constrain interpolation into/across bodies of water. The same layer use used to "shoreline" the Nearest Neighbor results, to eliminate any interpolation into the ocean or Great Lakes. This helped but was not perfect. Notes and LimitationsThe map provides a baseline for discussing access to grocery stores in a city. It does not presume local population has the desire or means to walk or drive to obtain groceries. It does not take elevation gain or loss into account. It does not factor time of day nor weather, seasons, or other variables that affect a person's commute choices. Walking and driving are just two ways people get to a grocery store. Some people ride a bike, others take public transit, have groceries delivered, or rely on a friend with a vehicle. Thank you to Melinda Morang on the Network Analyst team for guidance and suggestions at key moments along the way; to Emily Meriam for reviewing the previous version of this map and creating new color palettes and marker symbols specific to this project. Additional ReadingThe methods by which access to food is measured and reported have improved in the past decade or so, as has the uses of such measurements. Some relevant papers and articles are provided below as a starting point. Measuring Food Insecurity Using the Food Abundance Index: Implications for Economic, Health and Social Well-BeingHow to Identify Food Deserts: Measuring Physical and Economic Access to Supermarkets in King County, WashingtonAccess to Affordable and Nutritious Food: Measuring and Understanding Food Deserts and Their ConsequencesDifferent Measures of Food Access Inform Different SolutionsThe time cost of access to food – Distance to the grocery store as measured in minutes

  10. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
County of Los Angeles (2022). Food Deserts [Dataset]. https://data.lacounty.gov/datasets/food-deserts

Food Deserts

Explore at:
Dataset updated
May 17, 2022
Dataset authored and provided by
County of Los Angeles
Area covered
Description

Dataset is an overview of food access indicators for low-income and other census tracts using different measures of supermarket accessibility. This dataset provides food access data for populations within census tracts; and offers census-tract-level data on food access that can be used for community planning or research purposes.Data from USDA Economic Research Service (ERS) Food Access Research Atlas, 2019. Last updated 4/27/2021.See also USDA map service at https://gisportal.ers.usda.gov/server/rest/services/FARA/FARA_2019/MapServer.

Search
Clear search
Close search
Google apps
Main menu