Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Lower Frederick Township, Pennsylvania, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
https://i.neilsberg.com/ch/lower-frederick-township-pa-median-household-income-by-household-size.jpeg" alt="Lower Frederick Township, Pennsylvania median household income, by household size (in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lower Frederick township median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer shows census tracts that meet the following definitions: Census tracts with median household incomes at or below 80 percent of the statewide median income or with median household incomes at or below the threshold designated as low income by the Department of Housing and Community Development’s list of state income limits adopted under Healthy and Safety Code section 50093 and/or Census tracts receiving the highest 25 percent of overall scores in CalEnviroScreen 4.0 or Census tracts lacking overall scores in CalEnviroScreen 4.0 due to data gaps, but receiving the highest 5 percent of CalEnviroScreen 4.0 cumulative population burden scores or Census tracts identified in the 2017 DAC designation as disadvantaged, regardless of their scores in CalEnviroScreen 4.0 or Lands under the control of federally recognized Tribes.
The U.S. Department of Housing and Urban Development (HUD) periodically receives "custom tabulations" of Census data from the U.S. Census Bureau that are largely not available through standard Census products. These datasets, known as "CHAS" (Comprehensive Housing Affordability Strategy) data, demonstrate the extent of housing problems and housing needs, particularly for low income households. The primary purpose of CHAS data is to demonstrate the number of households in need of housing assistance. This is estimated by the number of households that have certain housing problems and have income low enough to qualify for HUD’s programs (primarily 30, 50, and 80 percent of median income). CHAS data provides counts of the numbers of households that fit these HUD-specified characteristics in a variety of geographic areas. In addition to estimating low-income housing needs, CHAS data contributes to a more comprehensive market analysis by documenting issues like lead paint risks, "affordability mismatch," and the interaction of affordability with variables like age of homes, number of bedrooms, and type of building. This dataset is a special tabulation of the 2016-2020 American Community Survey (ACS) and reflects conditions over that time period. The dataset uses custom HUD Area Median Family Income (HAMFI) figures calculated by HUD PDR staff based on 2016-2020 ACS income data. CHAS datasets are used by Federal, State, and Local governments to plan how to spend, and distribute HUD program funds. To learn more about the Comprehensive Housing Affordability Strategy (CHAS), visit: https://www.huduser.gov/portal/datasets/cp.html, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. To learn more about the American Community Survey (ACS), and associated datasets visit: https://www.census.gov/programs-surveys/acs Data Dictionary: DD_ACS 5-Year CHAS Estimate Data by Tract Date of Coverage: 2016-2020
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents a breakdown of households across various income brackets in Low Moor, IA, as reported by the U.S. Census Bureau. The Census Bureau classifies households into different categories, including total households, family households, and non-family households. Our analysis of U.S. Census Bureau American Community Survey data for Low Moor, IA reveals how household income distribution varies among these categories. The dataset highlights the variation in number of households with income, offering valuable insights into the distribution of Low Moor households based on income levels.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Low Moor median household income. You can refer the same here
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table is part of a series of tables that present a portrait of Canada based on the various census topics. The tables range in complexity and levels of geography. Content varies from a simple overview of the country to complex cross-tabulations; the tables may also cover several censuses.
The 2020-2021 School Neighborhood Poverty Estimates are based on school locations from the 2020-2021 Common Core of Data (CCD) school file and income data from families with children ages 5 to 17 in the U.S. Census Bureau’s 2017-2021 American Community Survey (ACS) 5-year collection. The ACS is a continuous household survey that collects social, demographic, economic, and housing information from the population in the United States each month. The Census Bureau calculates the income-to-poverty ratio (IPR) based on money income reported for families relative to the poverty thresholds, which are determined based on the family size and structure. Noncash benefits (such as food stamps and housing subsidies) are excluded, as are capital gains and losses. The IPR is the percentage of family income that is above or below the federal poverty level. The IPR indicator ranges from 0 to a top-coded value of 999. A family with income at the poverty threshold has an IPR value of 100. The estimates in this file reflect the IPR for the neighborhoods around schools which may be different from the neighborhood conditions of students enrolled in schools.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table is part of a series of tables that present a portrait of Canada based on the various census topics. The tables range in complexity and levels of geography. Content varies from a simple overview of the country to complex cross-tabulations; the tables may also cover several censuses.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Lower Kalskag, AK, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
https://i.neilsberg.com/ch/lower-kalskag-ak-median-household-income-by-household-size.jpeg" alt="Lower Kalskag, AK median household income, by household size (in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lower Kalskag median household income. You can refer the same here
This layer contains American Community Survey (ACS) 2016-2020 5-year estimates in order to determine if a Census tract is considered an opportunity zone/low income community. According to Tax Code Section 45D(e), low income Census Tracts are based on the following criteria:The poverty rate is at least 20 percent, ORThe median family income does not exceed 80 percent of statewide median family income or, if in a metropolitan area, the greater of 80 percent statewide median family income or 80 percent of metropolitan area median family incomeThe layer is visualized to show if a tract meets these criteria, and the pop-up provides poverty figures as well as tract, metropolitan area, and state level figures for median family income. When a tract meets the above criteria, it may also qualify for grants or findings such Opportunity Zones. These zones are designed to encourage economic development and job creation in communities throughout the country by providing tax benefits to investors who invest eligible capital into these communities. Another way this layer can be used is to gain funding through the Inflation Reduction Act of 2022. The data was downloaded on October 5, 2022 from the US Census Bureau via data.census.gov:Table B17020: Poverty Status in the Past 12 Months - TractsTable B19113: Median Family Income in the Past 12 Months (in 2020 inflation-adjusted dollars) - Tracts, Metropolitan area, StateVintage of the data: 2016-2020 American Community SurveyBoundaries used for analysis: TIGER 2020 Tract, Metro, and State Boundaries with large hydrography removed from tractsData was processed within ArcGIS Pro 3.0.2 using ModelBuilder to spatially join the metropolitan and state geographies to tracts.To see the same qualification on 2010-based Census tracts, there is also an older 2012-2016 version of the layer.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Low income census tract designation as per criteria for identifying a census tract as low income from the Department of Treasury’s New Markets Tax Credit (NMTC) program. Guidelines defined as census tract exceeding 20% population under Federal Poverty Level or median family income below 80% of state or metro area median. Derived from U.S. Census American Community Survey 5 YR 2011-2015 tables; B17001 and B19113. Metadata information provided at: https://www.ers.usda.gov/data-products/food-access-research-atlas/documentation/
This metric tracks the number of children and families receiving early childhood and school aged services per month. School vacations influence monthly enrollment, for example, CPS is closed in July. DFSS funds programs providing education and early childhood development activities for children up to 12 years old from low income families. Early childhood services for children age 0 to 5 include free medical, dental and mental health services, and nutritious meals, as well as parent education and training. These programs promote school readiness and child development. For children 6-12, DFSS provides low-income families access to affordable, quality childcare that allows parents to continue to work or participate in approved training programs.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Lower Heidelberg Township, Pennsylvania, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
https://i.neilsberg.com/ch/lower-heidelberg-township-pa-median-household-income-by-household-size.jpeg" alt="Lower Heidelberg Township, Pennsylvania median household income, by household size (in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lower Heidelberg township median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Performance Metrics - Family & Support Services - Childen Services Program Monthly Utilization’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/f9546bb0-4ce2-447d-9d29-c34b271caba5 on 26 January 2022.
--- Dataset description provided by original source is as follows ---
This metric tracks the number of children and families receiving early childhood and school aged services per month. School vacations influence monthly enrollment, for example, CPS is closed in July. DFSS funds programs providing education and early childhood development activities for children up to 12 years old from low income families. Early childhood services for children age 0 to 5 include free medical, dental and mental health services, and nutritious meals, as well as parent education and training. These programs promote school readiness and child development. For children 6-12, DFSS provides low-income families access to affordable, quality childcare that allows parents to continue to work or participate in approved training programs.
--- Original source retains full ownership of the source dataset ---
Public Housing was established to provide decent and safe rental housing for eligible low-income families, the elderly, and persons with disabilities. Public housing comes in all sizes and types, from scattered single family houses to high-rise apartments for elderly families. There are approximately 1.2 million households living in public housing units, managed by over 3,300 housing agencies (HAs). HUD administers Federal aid to local housing agencies (HAs) that manage the housing for low-income residents at rents they can afford. HUD furnishes technical and professional assistance in planning, developing and managing these developments. Location data for HUD-related properties and facilities are derived from HUD's enterprise geocoding service. While not all addresses are able to be geocoded and mapped to 100% accuracy, we are continuously working to improve address data quality and enhance coverage. Please consider this issue when using any datasets provided by HUD. When using this data, take note of the field titled “LVL2KX” which indicates the overall accuracy of the geocoded address using the following return codes: ‘R’ - Interpolated rooftop (high degree of accuracy, symbolized as green) ‘4’ - ZIP+4 centroid (high degree of accuracy, symbolized as green) ‘B’ - Block group centroid (medium degree of accuracy, symbolized as yellow) ‘T’ - Census tract centroid (low degree of accuracy, symbolized as red) ‘2’ - ZIP+2 centroid (low degree of accuracy, symbolized as red) ‘Z’ - ZIP5 centroid (low degree of accuracy, symbolized as red) ‘5’ - ZIP5 centroid (same as above, low degree of accuracy, symbolized as red) Null - Could not be geocoded (does not appear on the map) For the purposes of displaying the location of an address on a map only use addresses and their associated lat/long coordinates where the LVL2KX field is coded ‘R’ or ‘4’. These codes ensure that the address is displayed on the correct street segment and in the correct census block. The remaining LVL2KX codes provide a cascading indication of the most granular level geography for which an address can be confirmed. For example, if an address cannot be accurately interpolated to a rooftop (‘R’), or ZIP+4 centroid (‘4’), then the address will be mapped to the centroid of the next nearest confirmed geography: block group, tract, and so on. When performing any point-in polygon analysis it is important to note that points mapped to the centroids of larger geographies will be less likely to map accurately to the smaller geographies of the same area. For instance, a point coded as ‘5’ in the correct ZIP Code will be less likely to map to the correct block group or census tract for that address. To learn more about Public Housing visit: https://www.hud.gov/program_offices/public_indian_housing/programs/ph/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_Public Housing Authorities Date Updated: Q1 2025
https://www.icpsr.umich.edu/web/ICPSR/studies/38908/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38908/terms
The Child Care and Development Fund (CCDF) provides federal money to states and territories to provide assistance to low-income families, to obtain quality child care so they can work, attend training, or receive education. Within the broad federal parameters, States and Territories set the detailed policies. Those details determine whether a particular family will or will not be eligible for subsidies, how much the family will have to pay for the care, how families apply for and retain subsidies, the maximum amounts that child care providers will be reimbursed, and the administrative procedures that providers must follow. Thus, while CCDF is a single program from the perspective of federal law, it is in practice a different program in every state and territory. The CCDF Policies Database project is a comprehensive, up-to-date database of CCDF policy information that supports the needs of a variety of audiences through (1) analytic data files, (2) a project website and search tool, and (3) an annual report (Book of Tables). These resources are made available to researchers, administrators, and policymakers with the goal of addressing important questions concerning the effects of child care subsidy policies and practices on the children and families served. A description of the data files, project website and search tool, and Book of Tables is provided below: 1. Detailed, longitudinal analytic data files provide CCDF policy information for all 50 states, the District of Columbia, and the United States territories and outlying areas that capture the policies actually in effect at a point in time, rather than proposals or legislation. They capture changes throughout each year, allowing users to access the policies in place at any point in time between October 2009 and the most recent data release. The data are organized into 32 categories with each category of variables separated into its own dataset. The categories span five general areas of policy including: Eligibility Requirements for Families and Children (Datasets 1-5) Family Application, Terms of Authorization, and Redetermination (Datasets 6-13) Family Payments (Datasets 14-18) Policies for Providers, Including Maximum Reimbursement Rates (Datasets 19-27) Overall Administrative and Quality Information Plans (Datasets 28-32) The information in the data files is based primarily on the documents that caseworkers use as they work with families and providers (often termed "caseworker manuals"). The caseworker manuals generally provide much more detailed information on eligibility, family payments, and provider-related policies than the CCDF Plans submitted by states and territories to the federal government. The caseworker manuals also provide ongoing detail for periods in between CCDF Plan dates. Each dataset contains a series of variables designed to capture the intricacies of the rules covered in the category. The variables include a mix of categorical, numeric, and text variables. Most variables have a corresponding notes field to capture additional details related to that particular variable. In addition, each category has an additional notes field to capture any information regarding the rules that is not already outlined in the category's variables. Beginning with the 2020 files, the analytic data files are supplemented by four additional data files containing select policy information featured in the annual reports (prior to 2020, the full detail of the annual reports was reproduced as data files). The supplemental data files are available as 4 datasets (Datasets 33-36) and present key aspects of the differences in CCDF-funded programs across all states and territories as of October 1 of each year (2009-2022). The files include variables that are calculated using several variables from the analytic data files (Datasets 1-32) (such as copayment amounts for example family situations) and information that is part of the annual project reports (the annual Book of Tables) but not stored in the full database (such as summary market rate survey information from the CCDF plans). 2. The project website and search tool provide access to a point-and-click user interface. Users can select from the full set of public data to create custom tables. The website also provides access to the full range of reports and products released under the CCDF Policies Data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents a breakdown of households across various income brackets in Lower Makefield Township, Pennsylvania, as reported by the U.S. Census Bureau. The Census Bureau classifies households into different categories, including total households, family households, and non-family households. Our analysis of U.S. Census Bureau American Community Survey data for Lower Makefield Township, Pennsylvania reveals how household income distribution varies among these categories. The dataset highlights the variation in number of households with income, offering valuable insights into the distribution of Lower Makefield township households based on income levels.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lower Makefield township median household income. You can refer the same here
Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, annual.
For detailed information, visit the Tucson Equity Priority Index StoryMap.Download the layer's data dictionaryNote: This layer is symbolized to display the percentile distribution of the Limited Resources Sub-Index. However, it includes all data for each indicator and sub-index within the citywide census tracts TEPI.What is the Tucson Equity Priority Index (TEPI)?The Tucson Equity Priority Index (TEPI) is a tool that describes the distribution of socially vulnerable demographics. It categorizes the dataset into 5 classes that represent the differing prioritization needs based on the presence of social vulnerability: Low (0-20), Low-Moderate (20-40), Moderate (40-60), Moderate-High (60-80) High (80-100). Each class represents 20% of the dataset’s features in order of their values. The features within the Low (0-20) classification represent the areas that, when compared to all other locations in the study area, have the lowest need for prioritization, as they tend to have less socially vulnerable demographics. The features that fall into the High (80-100) classification represent the 20% of locations in the dataset that have the greatest need for prioritization, as they tend to have the highest proportions of socially vulnerable demographics. How is social vulnerability measured?The Tucson Equity Priority Index (TEPI) examines the proportion of vulnerability per feature using 11 demographic indicators:Income Below Poverty: Households with income at or below the federal poverty level (FPL), which in 2023 was $14,500 for an individual and $30,000 for a family of fourUnemployment: Measured as the percentage of unemployed persons in the civilian labor forceHousing Cost Burdened: Homeowners who spend more than 30% of their income on housing expenses, including mortgage, maintenance, and taxesRenter Cost Burdened: Renters who spend more than 30% of their income on rentNo Health Insurance: Those without private health insurance, Medicare, Medicaid, or any other plan or programNo Vehicle Access: Households without automobile, van, or truck accessHigh School Education or Less: Those highest level of educational attainment is a High School diploma, equivalency, or lessLimited English Ability: Those whose ability to speak English is "Less Than Well."People of Color: Those who identify as anything other than Non-Hispanic White Disability: Households with one or more physical or cognitive disabilities Age: Groups that tend to have higher levels of vulnerability, including children (those below 18), and seniors (those 65 and older)An overall percentile value is calculated for each feature based on the total proportion of the above indicators in each area. How are the variables combined?These indicators are divided into two main categories that we call Thematic Indices: Economic and Personal Characteristics. The two thematic indices are further divided into five sub-indices called Tier-2 Sub-Indices. Each Tier-2 Sub-Index contains 2-3 indicators. Indicators are the datasets used to measure vulnerability within each sub-index. The variables for each feature are re-scaled using the percentile normalization method, which converts them to the same scale using values between 0 to 100. The variables are then combined first into each of the five Tier-2 Sub-Indices, then the Thematic Indices, then the overall TEPI using the mean aggregation method and equal weighting. The resulting dataset is then divided into the five classes, where:High Vulnerability (80-100%): Representing the top classification, this category includes the highest 20% of regions that are the most socially vulnerable. These areas require the most focused attention. Moderate-High Vulnerability (60-80%): This upper-middle classification includes areas with higher levels of vulnerability compared to the median. While not the highest, these areas are more vulnerable than a majority of the dataset and should be considered for targeted interventions. Moderate Vulnerability (40-60%): Representing the middle or median quintile, this category includes areas of average vulnerability. These areas may show a balanced mix of high and low vulnerability. Detailed examination of specific indicators is recommended to understand the nuanced needs of these areas. Low-Moderate Vulnerability (20-40%): Falling into the lower-middle classification, this range includes areas that are less vulnerable than most but may still exhibit certain vulnerable characteristics. These areas typically have a mix of lower and higher indicators, with the lower values predominating. Low Vulnerability (0-20%): This category represents the bottom classification, encompassing the lowest 20% of data points. Areas in this range are the least vulnerable, making them the most resilient compared to all other features in the dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Lower Mount Bethel Township, Pennsylvania, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
https://i.neilsberg.com/ch/lower-mount-bethel-township-pa-median-household-income-by-household-size.jpeg" alt="Lower Mount Bethel Township, Pennsylvania median household income, by household size (in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lower Mount Bethel township median household income. You can refer the same here
Attribution-ShareAlike 2.0 (CC BY-SA 2.0)https://creativecommons.org/licenses/by-sa/2.0/
License information was derived automatically
The CLARISSA Cash Plus intervention represented an innovative social protection scheme for tackling social ills, including the worst forms of child labour (WFCL). A universal and unconditional ‘cash plus’ programme, it combined community mobilisation, case work, and cash transfers (CTs). It was implemented in a high-density, low-income neighbourhood in Dhaka to build individual, family, and group capacities to meet needs. This, in turn, was expected to lead to a corresponding decrease in deprivation and community-identified social issues that negatively affect wellbeing, including WFCL. Four principles underpinned the intervention: Unconditionality, Universality, Needs-centred and people-led, and Emergent and open-ended.The intervention took place in Dhaka – North Gojmohol – over a 27-month period, between October 2021 and December 2023, to test and study the impact of providing unconditional and people‑led support to everyone in a community. Cash transfers were provided between January and June 2023 in monthly instalments, plus one investment transfer in September 2023. A total of 1,573 households received cash, through the Upay mobile financial service. Cash was complemented by a ‘plus’ component, implemented between October 2021 and December 2023. Referred to as relational needs-based community organising (NBCO), a team of 20 community mobilisers (CMs) delivered case work at the individual and family level and community mobilisation at the group level. The intervention was part of the wider CLARISSA programme, led by the Institute of Development Studies (IDS) and funded by UK’s Foreign, Commonwealth & Development Office (FCDO). The intervention was implemented by Terre des hommes (Tdh) in Bangladesh and evaluated in collaboration with the BRAC Institute of Governance and Development (BIGD) and researchers from the University of Bath and the Open University, UK.The evaluation of the CLARISSA Social Protection pilot was rooted in contribution analysis that combined multiple methods over more than three years in line with emerging best practice guidelines for mixed methods research on children, work, and wellbeing. Quantitative research included bi-monthly monitoring surveys administered by the project’s community mobilisers (CMs), including basic questions about wellbeing, perceived economic resilience, school attendance, etc. This was complimented by baseline, midline, and endline surveys, which collected information about key outcome indicators within the sphere of influence of the intervention, such as children’s engagement with different forms of work and working conditions, with schooling and other activities, household living conditions and sources of income, and respondents’ perceptions of change. Qualitative tools were used to probe topics and results of interest, as well as impact pathways. These included reflective diaries written by the community mobilisers; three rounds of focus group discussions (FGDs) with community members; three rounds of key informant interviews (KIIs) with members of case study households; and long-term ethnographic observation.Quantitative DataThe quantitative evaluation of the CLARISSA Cash Plus intervention involved several data collection methods to gather information about household living standards, children’s education and work, and social dynamics. The data collection included a pre-intervention census, four periodic surveys, and 13 rounds of bi-monthly monitoring surveys, all conducted between late 2020 and late 2023. Details of each instrument are as follows:Census: Conducted in October/November 2020 in the target neighbourhood of North Gojmohol (n=1,832) and the comparison neighbourhood of Balurmath (n=2,365)Periodic surveys: Baseline (February 2021, n=752 in North Gojmohol), Midline 1 (before cash) (October 2022, n=771 in North Gojmohol), Midline 2 (after 6 rounds of cash) (July 2023, n=769 in North Gojmohol), and Endline (December 2023, n=750 in North Gojmohol and n=773 in Balumath)Bi-monthly monitoring data (13 rounds): Conducted between December 2021 and December 2023 in North Gojmohol (average of 1,400 households per round)The present repository summarizes this information, organized as follows:1.1 Bimonthly survey (household): Panel dataset comprising 13 rounds of bi-monthly monitoring data at the household level (average of 1,400 households per round, total of 18,379 observations)1.2 Bimonthly survey (child): Panel dataset comprising 13 rounds of bi-monthly monitoring data at the child level (aged 5 to 16 at census) (average of 940 children per round, total of 12,213 observations)2.1 Periodic survey (household): Panel dataset comprising 5 periodic surveys (census, baseline, midline 1, midline 2, endline) at the household level (average of 750 households per period, total of 3,762 observations)2.2 Periodic survey (child): Panel dataset comprising 4 periodic surveys (baseline, midline 1, midline 2, endline) at the child level (average of 3,100 children per period, total of 12,417 observations)3.0 Balurmat - North Gojmohol panel: Balanced panel dataset comprising 558 households in North Gojmohol and 773 households in Balurmath, observed both at 2020 census and 2023 endline (total of 2,662 observations)4.0 Questionnaires: Original questionnaires for all datasetsAll datasets are provided in Stata format (.dta) and Excel format (.xlsx) and are accompanied by their respective dictionary in Excel format (.xlsx).Qualitative DataThe qualitative study was conducted in three rounds: the first round of IDIs and FGDs took place between December 2022 and January 2023; the second round took place from April to May 2023; and the third round took place from November to December 2023. KIIs were taken during the 2nd round of study in May 2023.The sample size by round and instrument type is shown below:RoundsIDIs with childrenIDIs with parentsIDIs with CMsFGDsKIIs1st Round (12/2022 – 01/2023)3026-06-2nd Round ( 04/2023 – 05/2023)3023-06053rd Round (11/2023 – 12/2023)26250307-The files in this archive contain the qualitative data and include six types of transcripts:· 1.1 Interviews with children in case study households (IDI): 30 families in round 1, 30 in round 2, and 26 in round 3· 1.2 Interviews with parents in case study households (IDI): 26 families in round 1, 23 in round 2, and 25 in round 3· 1.3 Interviews with community mobiliser (IDI): 3 CM in round 3· 2.0 Key informant interviews (KII): 5 in round 2· 3.0 Focus group discussions (FGD): 6 in round 1, 6 in round 2, and 7 in round 3· 4.0 Community mobiliser micro-narratives (556 cases)Additionally, this repository includes a comprehensive list of all qualitative data files ("List of all qualitative data+MC.xlsx").
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Lower Frederick Township, Pennsylvania, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
https://i.neilsberg.com/ch/lower-frederick-township-pa-median-household-income-by-household-size.jpeg" alt="Lower Frederick Township, Pennsylvania median household income, by household size (in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lower Frederick township median household income. You can refer the same here