Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pen-and-paper homework and project-based learning are both commonly used instructional methods in introductory statistics courses. However, there have been few studies comparing these two methods exclusively. In this case study, each was used in two different sections of the same introductory statistics course at a regional state university. Students’ statistical literacy was measured by exam scores across the course, including the final. The comparison of the two instructional methods includes using descriptive statistics and two-sample t-tests, as well authors’ reflections on the instructional methods. Results indicated that there is no statistically discernible difference between the two instructional methods in the introductory statistics course.
Facebook
Twitterthe Department of Energy’s Enterprise Project Management Organization (EPMO), providing leadership and assistance in developing and implementing DOE-wide policies, procedures, programs, and management systems pertaining to project management, and independently monitors, assesses, and reports on project execution performance. The office validates project performance baselines–scope, cost and schedule–of the Department’s largest construction and environmental clean-up projects prior to budget request to Congress—an active project portfolio totaling over $30 billion. The office also serves as Executive Secretariat for the Department’s Energy Systems Acquisition Advisory Board (ESAAB) and the Project Management Risk Committee (PMRC). In these capacities, the Director is accountable to the Deputy Secretary.
Facebook
Twitterhttps://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Looking for a free Walmart product dataset? The Walmart Products Free Dataset delivers a ready-to-use ecommerce product data CSV containing ~2,100 verified product records from Walmart.com. It includes vital details like product titles, prices, categories, brand info, availability, and descriptions — perfect for data analysis, price comparison, market research, or building machine-learning models.
Complete Product Metadata: Each entry includes URL, title, brand, SKU, price, currency, description, availability, delivery method, average rating, total ratings, image links, unique ID, and timestamp.
CSV Format, Ready to Use: Download instantly - no need for scraping, cleaning or formatting.
Good for E-commerce Research & ML: Ideal for product cataloging, price tracking, demand forecasting, recommendation systems, or data-driven projects.
Free & Easy Access: Priced at USD $0.0, making it a great starting point for developers, data analysts or students.
Facebook
TwitterThis dataset was created by Glitch_in_Vector
Chunk_0 for me, Choose others as you want.
Facebook
TwitterIn 2024, the total number of open source projects taken up was about *** million. Of these, the majority was through JavaScript with about *** million projects, far more than those in any other language.
Facebook
TwitterThis dataset was created by Dhinesh Gupthaa K
Facebook
TwitterAnnual Statistics of Approved Projects under General Support Programme
Facebook
TwitterThis data set contains DOT construction project information. The data is refreshed nightly from multiple data sources, therefore the data becomes stale rather quickly.
Facebook
TwitterIn 2024, around ** percent of organizations stated that the top project used in their Spring environments was Spring Security. Additionally, ** percent pointed out Spring Data as their module of choice.
Facebook
TwitterCity of Pittsburgh Capital Projects Budgets NOTE: The data in this dataset has not updated since 2021 because of a broken data feed. We're working to fix it.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Copies of Anaconda 3 Jupyter Notebooks and Python script for holistic and clustered analysis of "The Impact of COVID-19 on Technical Services Units" survey results. Data was analyzed holistically using cleaned and standardized survey results and by library type clusters. To streamline data analysis in certain locations, an off-shoot CSV file was created so data could be standardized without compromising the integrity of the parent clean file. Three Jupyter Notebooks/Python scripts are available in relation to this project: COVID_Impact_TechnicalServices_HolisticAnalysis (a holistic analysis of all survey data) and COVID_Impact_TechnicalServices_LibraryTypeAnalysis (a clustered analysis of impact by library type, clustered files available as part of the Dataverse for this project).
Facebook
TwitterAnalysis of the projects proposed by the seven finalists to USDOT's Smart City Challenge, including challenge addressed, proposed project category, and project description. The time reported for the speed profiles are between 2:00PM to 8:00PM in increments of 10 minutes.
Facebook
TwitterThis list includes all pipeline projects that have submitted an Intake. Some may be held at Intake due to early concept status or because the developer has reached their maximum project limit in ORCA.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset is constructed from project activity experience.
Columns: not done - Projects that didn't worked out until accomplishment (0 = done // 1 = not done) time required - Time in hours estimated for the accomplishment cost - Cost per hour
Facebook
TwitterThis table contains data on the percent of population age 25 and up with a four-year college degree or higher for California, its regions, counties, county subdivisions, cities, towns, and census tracts. Greater educational attainment has been associated with health-promoting behaviors including consumption of fruits and vegetables and other aspects of healthy eating, engaging in regular physical activity, and refraining from excessive consumption of alcohol and from smoking. Completion of formal education (e.g., high school) is a key pathway to employment and access to healthier and higher paying jobs that can provide food, housing, transportation, health insurance, and other basic necessities for a healthy life. Education is linked with social and psychological factors, including sense of control, social standing and social support. These factors can improve health through reducing stress, influencing health-related behaviors and providing practical and emotional support. More information on the data table and a data dictionary can be found in the Data and Resources section. The educational attainment table is part of a series of indicators in the Healthy Communities Data and Indicators Project (HCI) of the Office of Health Equity. The goal of HCI is to enhance public health by providing data, a standardized set of statistical measures, and tools that a broad array of sectors can use for planning healthy communities and evaluating the impact of plans, projects, policy, and environmental changes on community health. The creation of healthy social, economic, and physical environments that promote healthy behaviors and healthy outcomes requires coordination and collaboration across multiple sectors, including transportation, housing, education, agriculture and others. Statistical metrics, or indicators, are needed to help local, regional, and state public health and partner agencies assess community environments and plan for healthy communities that optimize public health. More information on HCI can be found here: https://www.cdph.ca.gov/Programs/OHE/CDPH%20Document%20Library/Accessible%202%20CDPH_Healthy_Community_Indicators1pager5-16-12.pdf The format of the educational attainment table is based on the standardized data format for all HCI indicators. As a result, this data table contains certain variables used in the HCI project (e.g., indicator ID, and indicator definition). Some of these variables may contain the same value for all observations.
Facebook
TwitterThe statistic shows the success rate of various big data initiatives as of 2019, according to a survey of industry-leading firms, primarily in the United States. As of that time, **** percent of respondents reported having seen measurable results from big data initiatives to decrease expenses.
Facebook
TwitterWelcome to the Cyclistic bike-share analysis case study! In this case study, you will perform many real-world tasks of a junior data analyst. You will work for a fictional company, Cyclistic, and meet different characters and team members. In order to answer the key business questions, you will follow the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Along the way, the Case Study Roadmap tables — including guiding questions and key tasks — will help you stay on the right path. By the end of this lesson, you will have a portfolio-ready case study. Download the packet and reference the details of this case study anytime. Then, when you begin your job hunt, your case study will be a tangible way to demonstrate your knowledge and skills to potential employers.
You are a junior data analyst working in the marketing analyst team at Cyclistic, a bike-share company in Chicago. The director of marketing believes the company’s future success depends on maximizing the number of annual memberships. Therefore, your team wants to understand how casual riders and annual members use Cyclistic bikes differently. From these insights, your team will design a new marketing strategy to convert casual riders into annual members. But first, Cyclistic executives must approve your recommendations, so they must be backed up with compelling data insights and professional data visualizations. Characters and teams ● Cyclistic: A bike-share program that features more than 5,800 bicycles and 600 docking stations. Cyclistic sets itself apart by also offering reclining bikes, hand tricycles, and cargo bikes, making bike-share more inclusive to people with disabilities and riders who can’t use a standard two-wheeled bike. The majority of riders opt for traditional bikes; about 8% of riders use the assistive options. Cyclistic users are more likely to ride for leisure, but about 30% use them to commute to work each day. ● Lily Moreno: The director of marketing and your manager. Moreno is responsible for the development of campaigns and initiatives to promote the bike-share program. These may include email, social media, and other channels. ● Cyclistic marketing analytics team: A team of data analysts who are responsible for collecting, analyzing, and reporting data that helps guide Cyclistic marketing strategy. You joined this team six months ago and have been busy learning about Cyclistic’s mission and business goals — as well as how you, as a junior data analyst, can help Cyclistic achieve them. ● Cyclistic executive team: The notoriously detail-oriented executive team will decide whether to approve the recommended marketing program.
In 2016, Cyclistic launched a successful bike-share offering. Since then, the program has grown to a fleet of 5,824 bicycles that are geotracked and locked into a network of 692 stations across Chicago. The bikes can be unlocked from one station and returned to any other station in the system anytime. Until now, Cyclistic’s marketing strategy relied on building general awareness and appealing to broad consumer segments. One approach that helped make these things possible was the flexibility of its pricing plans: single-ride passes, full-day passes, and annual memberships. Customers who purchase single-ride or full-day passes are referred to as casual riders. Customers who purchase annual memberships are Cyclistic members. Cyclistic’s finance analysts have concluded that annual members are much more profitable than casual riders. Although the pricing flexibility helps Cyclistic attract more customers, Moreno believes that maximizing the number of annual members will be key to future growth. Rather than creating a marketing campaign that targets all-new customers, Moreno believes there is a very good chance to convert casual riders into members. She notes that casual riders are already aware of the Cyclistic program and have chosen Cyclistic for their mobility needs. Moreno has set a clear goal: Design marketing strategies aimed at converting casual riders into annual members. In order to do that, however, the marketing analyst team needs to better understand how annual members and casual riders differ, why casual riders would buy a membership, and how digital media could affect their marketing tactics. Moreno and her team are interested in analyzing the Cyclistic historical bike trip data to identify trends
How do annual members and casual riders use Cyclistic bikes differently? Why would casual riders buy Cyclistic annual memberships? How can Cyclistic use digital media to influence casual riders to become members? Moreno has assigned you the first question to answer: How do annual members and casual rid...
Facebook
TwitterFiles included are original data inputs on stream fishes (fish_data_OEPA_2012.csv), water chemistry (OEPA_WATER_2012.csv), geographic data (NHD_Plus_StreamCat); modeling files for generating predictions from the original data, including the R code (MVP_R_Final.txt) and Stan code (MV_Probit_Stan_Final.txt); and the model output file containing predictions for all NHDPlus catchments in the East Fork Little Miami River watershed (MVP_EFLMR_cooc_Final). This dataset is associated with the following publication: Martin, R., E. Waits, and C. Nietch. Empirically-based modeling and mapping to consider the co-occurrence of ecological receptors and stressors. SCIENCE OF THE TOTAL ENVIRONMENT. Elsevier BV, AMSTERDAM, NETHERLANDS, 613(614): 1228-1239, (2018).
Facebook
TwitterThis dataset is for the Status of Partner led Projects with ratings of Red, Yellow and Green. It provides the monthly count, target and Year to date values for every month.
Facebook
TwitterCyclistic Trip Data
This dataset contains rows of cyclistic trip data, collected from Index of bucket "divvy-tripdata". The dataset includes 10 columns, each representing a different attribute or feature of the data.
The data has been preprocessed to remove any missing values, duplicates, or other inconsistencies. It is ready for use in a wide range of data analysis and machine learning tasks.
The dataset includes the following columns:
This dataset contains data from the capstone project section of the google data analytics course on the coursera platform. This dataset has been cleaned and processed, ready for the user to analyze. We hope that it will help everyone who takes this course and tries to make the preparation process related to the data in the last stage.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pen-and-paper homework and project-based learning are both commonly used instructional methods in introductory statistics courses. However, there have been few studies comparing these two methods exclusively. In this case study, each was used in two different sections of the same introductory statistics course at a regional state university. Students’ statistical literacy was measured by exam scores across the course, including the final. The comparison of the two instructional methods includes using descriptive statistics and two-sample t-tests, as well authors’ reflections on the instructional methods. Results indicated that there is no statistically discernible difference between the two instructional methods in the introductory statistics course.