Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The "Stock Market Dataset for AI-Driven Prediction and Trading Strategy Optimization" is designed to simulate real-world stock market data for training and evaluating machine learning models. This dataset includes a combination of technical indicators, market metrics, sentiment scores, and macroeconomic factors, providing a comprehensive foundation for developing and testing AI models for stock price prediction and trading strategy optimization.
Key Features Market Metrics:
Open, High, Low, Close Prices: Daily stock price movement. Volume: Represents the trading activity during the day. Technical Indicators:
RSI (Relative Strength Index): A momentum oscillator to measure the speed and change of price movements. MACD (Moving Average Convergence Divergence): An indicator to reveal changes in strength, direction, momentum, and duration of a trend. Bollinger Bands: Upper and lower bands around a stock price to measure volatility. Sentiment Analysis:
Sentiment Score: Simulated sentiment derived from financial news and social media, ranging from -1 (negative) to 1 (positive). Macroeconomic Factors:
GDP Growth: Indicates the overall health and growth of the economy. Inflation Rate: Reflects changes in purchasing power and economic stability. Target Variable:
Buy/Sell Signal: Binary classification (1 = Buy, 0 = Sell) based on price movement thresholds, simulating actionable trading decisions. Use Cases AI Model Training: Ideal for building stock prediction models using LSTM, Gradient Boosting, Random Forest, etc. Trading Strategy Optimization: Enables testing of trading algorithms and strategies in a simulated environment. Sentiment Analysis Research: Useful for understanding how sentiment influences stock movements. Feature Engineering and Selection: Provides a diverse set of features for experimentation with advanced techniques like PCA and LDA. Dataset Highlights Synthetic Yet Realistic: Carefully designed to mimic real-world financial data trends and relationships. Comprehensive Coverage: Includes key indicators and metrics used by traders and analysts. Scalable: Suitable for use in both small-scale academic projects and larger AI-driven trading platforms. Accessible for All Levels: The intuitive structure ensures that even beginners can utilize this dataset for financial machine learning applications. File Format The dataset is provided in CSV format, where:
Rows represent individual trading days. Columns represent features (technical indicators, market metrics, etc.) and the target variable. Acknowledgments This dataset is synthetically generated and is intended for research and educational purposes. It is not based on real market data and should not be used for actual trading.
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sweden's main stock market index, the Stockholm 30, fell to 2782 points on December 2, 2025, losing 0.11% from the previous session. Over the past month, the index has climbed 0.95% and is up 8.08% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Sweden. Sweden Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan's main stock market index, the JP225, rose to 49553 points on December 2, 2025, gaining 0.51% from the previous session. Over the past month, the index has declined 3.78%, though it remains 26.25% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Japan. Japan Stock Market Index (JP225) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterThe dataset contains a total of 25,161 rows, each row representing the stock market data for a specific company on a given date. The information collected through web scraping from www.nasdaq.com includes the stock prices and trading volumes for the companies listed, such as Apple, Starbucks, Microsoft, Cisco Systems, Qualcomm, Meta, Amazon.com, Tesla, Advanced Micro Devices, and Netflix.
Data Analysis Tasks:
1) Exploratory Data Analysis (EDA): Analyze the distribution of stock prices and volumes for each company over time. Visualize trends, seasonality, and patterns in the stock market data using line charts, bar plots, and heatmaps.
2)Correlation Analysis: Investigate the correlations between the closing prices of different companies to identify potential relationships. Calculate correlation coefficients and visualize correlation matrices.
3)Top Performers Identification: Identify the top-performing companies based on their stock price growth and trading volumes over a specific time period.
4)Market Sentiment Analysis: Perform sentiment analysis using Natural Language Processing (NLP) techniques on news headlines related to each company. Determine whether positive or negative news impacts the stock prices and volumes.
5)Volatility Analysis: Calculate the volatility of each company's stock prices using metrics like Standard Deviation or Bollinger Bands. Analyze how volatile stocks are in comparison to others.
Machine Learning Tasks:
1)Stock Price Prediction: Use time-series forecasting models like ARIMA, SARIMA, or Prophet to predict future stock prices for a particular company. Evaluate the models' performance using metrics like Mean Squared Error (MSE) or Root Mean Squared Error (RMSE).
2)Classification of Stock Movements: Create a binary classification model to predict whether a stock will rise or fall on the next trading day. Utilize features like historical price changes, volumes, and technical indicators for the predictions. Implement classifiers such as Logistic Regression, Random Forest, or Support Vector Machines (SVM).
3)Clustering Analysis: Cluster companies based on their historical stock performance using unsupervised learning algorithms like K-means clustering. Explore if companies with similar stock price patterns belong to specific industry sectors.
4)Anomaly Detection: Detect anomalies in stock prices or trading volumes that deviate significantly from the historical trends. Use techniques like Isolation Forest or One-Class SVM for anomaly detection.
5)Reinforcement Learning for Portfolio Optimization: Formulate the stock market data as a reinforcement learning problem to optimize a portfolio's performance. Apply algorithms like Q-Learning or Deep Q-Networks (DQN) to learn the optimal trading strategy.
The dataset provided on Kaggle, titled "Stock Market Stars: Historical Data of Top 10 Companies," is intended for learning purposes only. The data has been gathered from public sources, specifically from web scraping www.nasdaq.com, and is presented in good faith to facilitate educational and research endeavors related to stock market analysis and data science.
It is essential to acknowledge that while we have taken reasonable measures to ensure the accuracy and reliability of the data, we do not guarantee its completeness or correctness. The information provided in this dataset may contain errors, inaccuracies, or omissions. Users are advised to use this dataset at their own risk and are responsible for verifying the data's integrity for their specific applications.
This dataset is not intended for any commercial or legal use, and any reliance on the data for financial or investment decisions is not recommended. We disclaim any responsibility or liability for any damages, losses, or consequences arising from the use of this dataset.
By accessing and utilizing this dataset on Kaggle, you agree to abide by these terms and conditions and understand that it is solely intended for educational and research purposes.
Please note that the dataset's contents, including the stock market data and company names, are subject to copyright and other proprietary rights of the respective sources. Users are advised to adhere to all applicable laws and regulations related to data usage, intellectual property, and any other relevant legal obligations.
In summary, this dataset is provided "as is" for learning purposes, without any warranties or guarantees, and users should exercise due diligence and judgment when using the data for any purpose.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6825 points on December 2, 2025, gaining 0.18% from the previous session. Over the past month, the index has declined 0.39%, though it remains 12.82% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.
Facebook
Twitterhttps://www.focus-economics.com/terms-and-conditions/https://www.focus-economics.com/terms-and-conditions/
Monthly and long-term Sweden Stock Market data: historical series and analyst forecasts curated by FocusEconomics.
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
Twitterhttps://www.focus-economics.com/terms-and-conditions/https://www.focus-economics.com/terms-and-conditions/
Monthly and long-term Ireland Stock Market data: historical series and analyst forecasts curated by FocusEconomics.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
North America Rolling Stock Market Size 2025-2029
The North America rolling stock market size is forecast to increase by USD 1.93 billion at a CAGR of 4.1% between 2024 and 2029.
The market is driven by the surging demand for freight wagons, underpinned by the low transportation cost of freight. This dynamic is particularly notable in the context of the growing demand for raw materials and finished goods, necessitating the transportation of large volumes over long distances. However, the market faces significant challenges. Stringent safety and environmental regulations for rolling stock pose substantial hurdles for manufacturers and operators. These regulations require substantial investments in research and development, as well as the adoption of advanced technologies to ensure compliance.
Additionally, the need for continuous innovation to meet evolving customer needs and regulatory requirements adds to the market's complexity. Companies seeking to capitalize on market opportunities must navigate these challenges effectively, focusing on the development of safe, environmentally friendly, and cost-effective rolling stock solutions.
What will be the size of the North America Rolling Stock Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
The North American railway market is experiencing significant advancements, with railroad electrification gaining momentum. Body shells and suspension systems are being upgraded for enhanced passenger comfort, while tunnel boring technology facilitates the expansion of rail networks. Axle assemblies, trucks (bogies), and wheel sets undergo continuous improvement for optimal track stability and condition monitoring. Climate control systems ensure passenger comfort in extreme temperatures, and accessibility features cater to diverse user needs. Seating capacity is a key consideration in train scheduling and route optimization. Railroad construction incorporates advanced braking systems, fire suppression systems, and security measures. Power substations and overhead catenery are essential components of electric traction motors, enabling efficient energy transfer.
Track alignment and geometry are crucial for ensuring optimal train performance and safety. Bridge construction and track renewal are ongoing processes to maintain the integrity of the railway infrastructure. Suspension systems, body shells, and wheel sets are integral to maintaining track stability, while axle assemblies and trucks (bogies) facilitate smooth train movement. Railroad electrification, passenger information systems, and route optimization contribute to the overall efficiency and productivity of the railway sector. Accessibility features, climate control, and passenger comfort are essential considerations for enhancing the user experience. Braking systems, track alignment, and track renewal are critical for ensuring safety and reliability.
Suspension systems, axle assemblies, and wheel sets undergo continuous improvement for optimal train performance. Railway electrification, tunnel boring, and bridge construction are driving the expansion of railway networks. Seating capacity, train scheduling, and route optimization are essential for efficient rail operations. Track condition monitoring, climate control, and passenger information systems are key components of modern railway infrastructure. Fire suppression systems, security systems, and suspension systems are integral to ensuring train safety and passenger comfort. Track alignment, track renewal, and axle assemblies are crucial for maintaining optimal train performance. Electric traction motors, overhead catenery, and power substations facilitate efficient energy transfer and train movement.
The North American railway market is witnessing advancements in railroad electrification, suspension systems, and passenger comfort. Bridge construction, track renewal, and train scheduling are essential for maintaining the integrity and efficiency of railway infrastructure. Axle assemblies, wheel sets, and braking systems are critical components for optimal train performance. Climate control, passenger comfort, and accessibility features are essential considerations for modern railway infrastructure. Railroad electrification, track alignment, and route optimization are key drivers of railway expansion and efficiency. Suspension systems, axle assemblies, and wheel sets are integral to maintaining optimal train performance and safety.
How is this market segmented?
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Rapid transit vehicles
Railroad cars
Locomotives
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
Twitterhttps://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
The global stock market demonstrates a robust growth trajectory, poised for significant expansion in the coming decade. Projections indicate the market will surge from approximately $9.55 trillion in 2021 to over $23.85 trillion by 2033, expanding at a compound annual growth rate (CAGR) of 7.926%. This growth is underpinned by strong corporate earnings, technological advancements in trading, and increasing participation from retail investors. While North America currently dominates in terms of market size, the Asia-Pacific region is emerging as the fastest-growing hub, driven by the burgeoning economies of India and China. Factors such as monetary policies, geopolitical stability, and regulatory environments will continue to be pivotal in shaping regional market dynamics and overall global performance.
Key strategic insights from our comprehensive analysis reveal:
The Asia-Pacific region is the primary growth engine for the global stock market, exhibiting the highest CAGR of 9.112%, with nations like India and China leading this rapid expansion.
North America, particularly the United States, will maintain its position as the largest market by value, commanding a significant share of the global total, despite a slightly more moderate growth rate compared to APAC.
There is a consistent and broad-based growth trend across all major global regions, indicating widespread investor confidence and economic recovery, though the pace of expansion varies, highlighting diverse investment opportunities and risks.
Global Market Overview & Dynamics of Stock Market Analysis The global stock market is on a path of sustained and significant growth, driven by a confluence of economic, technological, and social factors. The market is forecast to expand from $9.55 trillion in 2021 to nearly $23.86 trillion by 2033. This expansion reflects growing global wealth, increased corporate profitability, and the continuous innovation in financial technologies that makes investing more accessible. However, this growth is not without its challenges, as markets must navigate through geopolitical tensions, inflationary pressures, and evolving regulatory landscapes that can introduce volatility and uncertainty.
Global Stock Market Drivers
Favorable Economic Conditions: Broad-based global GDP growth, coupled with supportive monetary policies from central banks in major economies, stimulates corporate investment and boosts earnings, attracting investors to equity markets.
Technological Innovation and Accessibility: The proliferation of online trading platforms, robo-advisors, and mobile investing apps has democratized access to stock markets, leading to a surge in retail investor participation.
Corporate Profitability and IPO Activity: Strong and resilient corporate earnings growth, along with a healthy pipeline of Initial Public Offerings (IPOs) from innovative companies, continually injects fresh capital and opportunities into the market.
Global Stock Market Trends
Rise of ESG Investing: There is a rapidly growing trend of investors integrating Environmental, Social, and Governance (ESG) criteria into their investment decisions, pushing companies to adopt more sustainable practices.
Increased Focus on Emerging Markets: Investors are increasingly allocating capital to emerging markets, particularly in the Asia-Pacific and South American regions, in pursuit of higher growth potential compared to more mature markets.
Growth of Passive Investing: The shift towards passive investment strategies, such as index funds and Exchange-Traded Funds (ETFs), continues to gain momentum due to their lower costs and broad market exposure.
Global Stock Market Restraints
Geopolitical Instability and Trade Disputes: International conflicts, trade wars, and political uncertainty can disrupt global supply chains, dampen investor sentiment, and lead to significant market volatility.
Inflation and Interest Rate Hikes: Persistent inflationary pressures force central banks to raise interest rates, which increases borrowing costs for companies and can make less risky assets like bonds more attractive relative to stocks.
Regulatory Scrutiny and Complexity: Stricter regulations on financial markets, data privacy, and corporate governance can increase compliance costs and limit certain market activities, potentially hindering growth.
Strategic Recommendations for Manufacturers
Prioritize market entry and expansion s...
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
Twitterhttps://www.focus-economics.com/terms-and-conditions/https://www.focus-economics.com/terms-and-conditions/
Monthly and long-term Switzerland Stock Market data: historical series and analyst forecasts curated by FocusEconomics.
Facebook
Twitterhttps://www.focus-economics.com/terms-and-conditions/https://www.focus-economics.com/terms-and-conditions/
Monthly and long-term Kenya Stock Market data: historical series and analyst forecasts curated by FocusEconomics.
Facebook
Twitterhttps://www.focus-economics.com/terms-and-conditions/https://www.focus-economics.com/terms-and-conditions/
Monthly and long-term Ukraine Stock Market data: historical series and analyst forecasts curated by FocusEconomics.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hong Kong's main stock market index, the HK50, rose to 26095 points on December 2, 2025, gaining 0.24% from the previous session. Over the past month, the index has declined 0.24%, though it remains 32.15% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Hong Kong. Hong Kong Stock Market Index (HK50) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
Twitterhttps://www.marknteladvisors.com/privacy-policyhttps://www.marknteladvisors.com/privacy-policy
The Global Rolling Stock Market is expected to demonstrate a CAGR of approximately 4.13% during the period 2023-2028, as stated by MarkNtel Advisors.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.