Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gold fell to 3,949.99 USD/t.oz on October 7, 2025, down 0.32% from the previous day. Over the past month, Gold's price has risen 8.64%, and is up 50.65% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gold - values, historical data, forecasts and news - updated on October of 2025.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Description for Kaggle Project
Title: Gold Price Prediction
Subtitle: Analysis and Forecasting Using Gold Price Data from Kaggle's goldstock.csv
Description This project aims to analyze and forecast gold prices using a comprehensive dataset spanning from January 19, 2014, to January 22, 2024. The dataset, sourced from Kaggle, includes daily gold prices with key financial metrics such as opening and closing prices, trading volume, and the highest and lowest prices recorded each trading day. Through this project, we perform time series analysis, develop predictive models, formulate and backtest trading strategies, and conduct market sentiment and statistical analyses.
Upload an Image - Choose a relevant image such as a graph of gold price trends, a gold bar, or an illustrative image related to financial data analysis.
Datasets
- Source: Kaggle
- File: goldstock.csv
Context, Sources, and Inspiration -Context: Understanding the dynamics of gold prices is crucial for investors and financial analysts. This project provides insights into historical price trends and equips users with tools to predict future prices. - Sources: The dataset is sourced from Kaggle and contains historical gold price data obtained from Nasdaq. Inspiration: The inspiration behind this project is to enable researchers, analysts, and data enthusiasts to make informed decisions, develop trading strategies, and contribute to a broader understanding of market behavior.
This statistic depicts the average annual prices for gold from 2014 to 2024 with a forecast until 2026. In 2024, the average price for gold stood at 2,388 U.S. dollars per troy ounce, the highest value recorded throughout the period considered. In 2026, the average gold price is expected to increase, reaching 3,200 U.S. dollars per troy ounce.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In 2021, the global gold market decreased by -7.3% to $X for the first time since 2018, thus ending a two-year rising trend. The market value increased at an average annual rate of +3.1% from 2012 to 2021; however, the trend pattern indicated some noticeable fluctuations being recorded in certain years. Over the period under review, the global market reached the maximum level at $X in 2020, and then shrank in the following year.
In 2025, the price of platinum is forecast to hover around ***** U.S. dollars per troy ounce. Meanwhile, the cost of per troy ounce of gold is expected to amount to ***** U.S. dollars. Precious metals Precious metals are counted among the most valuable commodities worldwide. The most well known such metals are gold, silver and the platinum group metals. A precious metal can be used as an industrial commodity or as an investment. The major areas of application include the following sectors: technology, car-making, industrial manufacturing and jewelry making. Furthermore, gold and silver are used as coinage metals, and gold reserves are held by the central banks of many countries worldwide in order to store value or for use as a redemption medium. The idea behind this procedure is that gold reserves will help secure and stabilize the countries’ respective currencies. At ***** tons, the United States is the country with the most extensive stock of gold. It is kept in an underground vault at the New York Federal Reserve Bank. Russia, the United States, Canada, South Africa and China are the main producers of precious metals. Silver is the most abundant of the metals, followed by gold and palladium. Barrick Gold is the world’s largest gold mining company. The Toronto-based firm produced some **** million ounces of gold in 2020. The leading silver producers include Mexico-based Fresnillo, Poland’s KGHM Polska Miedž and the mining giant Glencore. Anglo Platinum and Impala are the key mining companies to produce platinum group metals. In 2023, Silver prices are expected to settle at around **** U.S. dollars per troy ounce. It is expected to remain the precious metal with the lowest value per ounce. The price of gold is forecast to drop to around ***** U.S. dollars per ounce, making it the most expensive precious metal in 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
After three years of decline, the Indian gold market increased by 162% to $X in 2021. In general, consumption showed a relatively flat trend pattern. As a result, consumption attained the peak level and is likely to continue growth in the immediate term.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gold prices are expected to reach $4,000 per ounce by 2026 due to increased demand and economic uncertainty, according to JPMorgan's forecast.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Kuwaiti gold market soared to $X in 2021, jumping by 142% against the previous year. This figure reflects the total revenues of producers and importers (excluding logistics costs, retail marketing costs, and retailers' margins, which will be included in the final consumer price). In general, consumption showed prominent growth. As a result, consumption reached the peak level and is likely to continue growth in the immediate term.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global gold bullion market size was USD 50 Billion in 2023 and is likely to reach USD 133 Billion by 2032, expanding at a CAGR of 10.6% during 2024–2032. The market growth is attributed to the relative stability of gold investments.
Increasing economic uncertainties and geopolitical tensions are fueling the market. Investors are turning to gold as an asset, due to its inherent value and stability. The growing interest of central banks are leading them to expand their gold reserves. This allows them to diversify their holdings and reduce their dependence on the US dollar.
The growing popularity of gold-backed exchange-traded funds (ETFs) is propelling the market. These investments provide investors with exposure to the price movements of gold without the need to physically store the precious metal. The convenience and ease of investing in gold ETFs are attracting a new generation of investors, spurring the market.
According to a January 2024 report published by the World Gold Council, the total value of global gold ETFs rose by 6% to USD 2.4 Billion. This rise was due to a 15% hike in gold prices during 2023.
The use of artificial intelligence (AI) is likely to provide substantial propulsion to the gold bullion market. It is enhancing the efficiency and accuracy of gold trading with algorithms. These algorithms rapidly analyze vast amounts of data to make real-time trading decisions. This leads to increasingly profitable trades and reduces the risk of human error.
<br
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Silver fell to 47.83 USD/t.oz on October 7, 2025, down 1.50% from the previous day. Over the past month, Silver's price has risen 15.70%, and is up 55.97% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Silver - values, historical data, forecasts and news - updated on October of 2025.
This dataset was created by Ambika Kumar
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average gold price increased by 1.7% to $1800 per troy ounce in 2021. This year, it was forecast to ease, but rising political uncertainty may reverse the forecast.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Banking and stock markets consider gold to be an important component of their economic and financial status. There are various factors that influence the gold price trend and its fluctuations. Accurate and reliable prediction of the gold price is an essential part of financial and portfolio management. Moreover, it could provide insights about potential buy and sell points in order to prevent financial damages and reduce the risk of investment. In this paper, different architectures of deep neural network (DNN) have been proposed based on long short-term memory (LSTM) and convolutional-based neural networks (CNN) as a hybrid model, along with automatic parameter tuning to increase the accuracy, coefficient of determination, of the forecasting results. An illustrative dataset from the closing gold prices for 44 years, from 1978 to 2021, is provided to demonstrate the effectiveness and feasibility of this method. The grid search technique finds the optimal set of DNNs’ parameters. Furthermore, to assess the efficiency of DNN models, three statistical indices of RMSE, RMAE, and coefficient of determination (R2), were calculated for the test set. Results indicate that the proposed hybrid model (CNN-Bi-LSTM) outperforms other models in total bias, capturing extreme values and obtaining promising results. In this model, CNN is used to extract features of input dataset. Furthermore, Bi-LSTM uses CNN’s outputs to predict the daily closing gold price.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Canadian gold market totaled $X in 2021, rising by 6.8% against the previous year. Overall, consumption, however, recorded a relatively flat trend pattern. Gold consumption peaked at $X in 2013; however, from 2014 to 2021, consumption failed to regain momentum.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In 2021, the Saudi gold market increased by 20% to $X for the first time since 2017, thus ending a three-year declining trend. Over the period under review, consumption, however, continues to indicate a pronounced downturn. Gold consumption peaked at $X in 2017; however, from 2018 to 2021, consumption stood at a somewhat lower figure.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global gold bars market, valued at approximately $120.49 billion in 2025, is projected to experience steady growth, driven by a Compound Annual Growth Rate (CAGR) of 4.2% from 2025 to 2033. This growth is fueled by several key factors. Increased investment demand, particularly from both institutional investors (like central banks diversifying reserves) and individual investors seeking safe haven assets during economic uncertainty, is a major driver. Furthermore, the ongoing popularity of physical gold as a tangible asset, coupled with rising inflation in several regions, contributes to the market's expansion. The market is segmented by application (investment and central bank holdings) and type (cast bars and minted bars), with investment-grade bars dominating the market share. Geographically, North America and Europe currently hold significant market share, but Asia-Pacific, particularly China and India, are expected to witness substantial growth due to increasing affluence and a rising middle class with a growing interest in gold as a store of value and for jewelry purposes. The presence of established players like Umicore, Argor-Heraeus, and Metalor Technologies, alongside significant regional refineries in Asia, ensures a competitive yet stable market landscape. However, market growth may face some challenges. Fluctuations in gold prices, influenced by global economic conditions and currency exchange rates, represent a significant restraint. Geopolitical instability and regulatory changes impacting gold trading and refining can also affect market dynamics. Nevertheless, the inherent value of gold as a safe-haven asset and its diverse applications across various sectors suggest a positive long-term outlook for the gold bars market. The continued expansion of the global economy, coupled with increasing demand from emerging markets, positions the market for sustained growth over the forecast period. Specific market segments, like minted bars, might witness accelerated growth due to their appeal to individual investors seeking smaller, more easily traded units.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gold fell to 3,949.99 USD/t.oz on October 7, 2025, down 0.32% from the previous day. Over the past month, Gold's price has risen 8.64%, and is up 50.65% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gold - values, historical data, forecasts and news - updated on October of 2025.