44 datasets found
  1. f

    Estimating the completeness of death registration: An empirical method

    • plos.figshare.com
    pdf
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tim Adair; Alan D. Lopez (2023). Estimating the completeness of death registration: An empirical method [Dataset]. http://doi.org/10.1371/journal.pone.0197047
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Tim Adair; Alan D. Lopez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionMany national and subnational governments need to routinely measure the completeness of death registration for monitoring and statistical purposes. Existing methods, such as death distribution and capture-recapture methods, have a number of limitations such as inaccuracy and complexity that prevent widespread application. This paper presents a novel empirical method to estimate completeness of death registration at the national and subnational level.MethodsRandom-effects models to predict the logit of death registration completeness were developed from 2,451 country-years in 110 countries from 1970–2015 using the Global Burden of Disease 2015 database. Predictors include the registered crude death rate, under-five mortality rate, population age structure and under-five death registration completeness. Models were developed separately for males, females and both sexes.FindingsAll variables are highly significant and reliably predict completeness of registration across a wide range of registered crude death rates (R-squared 0.85). Mean error is highest at medium levels of observed completeness. The models show quite close agreement between predicted and observed completeness for populations outside the dataset. There is high concordance with the Hybrid death distribution method in Brazilian states. Uncertainty in the under-five mortality rate, assessed using the dataset and in Colombian departmentos, has minimal impact on national level predicted completeness, but a larger effect at the subnational level.ConclusionsThe method demonstrates sufficient flexibility to predict a wide range of completeness levels at a given registered crude death rate. The method can be applied utilising data readily available at the subnational level, and can be used to assess completeness of deaths reported from health facilities, censuses and surveys. Its utility is diminished where the adult mortality rate is unusually high for a given under-five mortality rate. The method overcomes the considerable limitations of existing methods and has considerable potential for widespread application by national and subnational governments.

  2. COVID-19 death rates in 2020 countries worldwide as of April 26, 2022

    • statista.com
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). COVID-19 death rates in 2020 countries worldwide as of April 26, 2022 [Dataset]. https://www.statista.com/statistics/1105914/coronavirus-death-rates-worldwide/
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    COVID-19 rate of death, or the known deaths divided by confirmed cases, was over ten percent in Yemen, the only country that has 1,000 or more cases. This according to a calculation that combines coronavirus stats on both deaths and registered cases for 221 different countries. Note that death rates are not the same as the chance of dying from an infection or the number of deaths based on an at-risk population. By April 26, 2022, the virus had infected over 510.2 million people worldwide, and led to a loss of 6.2 million. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. Note that Statista aims to also provide domestic source material for a more complete picture, and not to just look at one particular source. Examples are these statistics on the confirmed coronavirus cases in Russia or the COVID-19 cases in Italy, both of which are from domestic sources. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

    A word on the flaws of numbers like this

    People are right to ask whether these numbers are at all representative or not for several reasons. First, countries worldwide decide differently on who gets tested for the virus, meaning that comparing case numbers or death rates could to some extent be misleading. Germany, for example, started testing relatively early once the country’s first case was confirmed in Bavaria in January 2020, whereas Italy tests for the coronavirus postmortem. Second, not all people go to see (or can see, due to testing capacity) a doctor when they have mild symptoms. Countries like Norway and the Netherlands, for example, recommend people with non-severe symptoms to just stay at home. This means not all cases are known all the time, which could significantly alter the death rate as it is presented here. Third and finally, numbers like this change very frequently depending on how the pandemic spreads or the national healthcare capacity. It is therefore recommended to look at other (freely accessible) content that dives more into specifics, such as the coronavirus testing capacity in India or the number of hospital beds in the UK. Only with additional pieces of information can you get the full picture, something that this statistic in its current state simply cannot provide.

  3. f

    Modeling Age-Specific Mortality for Countries with Generalized HIV Epidemics...

    • plos.figshare.com
    tiff
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David J. Sharrow; Samuel J. Clark; Adrian E. Raftery (2023). Modeling Age-Specific Mortality for Countries with Generalized HIV Epidemics [Dataset]. http://doi.org/10.1371/journal.pone.0096447
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    David J. Sharrow; Samuel J. Clark; Adrian E. Raftery
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundIn a given population the age pattern of mortality is an important determinant of total number of deaths, age structure, and through effects on age structure, the number of births and thereby growth. Good mortality models exist for most populations except those experiencing generalized HIV epidemics and some developing country populations. The large number of deaths concentrated at very young and adult ages in HIV-affected populations produce a unique ‘humped’ age pattern of mortality that is not reproduced by any existing mortality models. Both burden of disease reporting and population projection methods require age-specific mortality rates to estimate numbers of deaths and produce plausible age structures. For countries with generalized HIV epidemics these estimates should take into account the future trajectory of HIV prevalence and its effects on age-specific mortality. In this paper we present a parsimonious model of age-specific mortality for countries with generalized HIV/AIDS epidemics.Methods and FindingsThe model represents a vector of age-specific mortality rates as the weighted sum of three independent age-varying components. We derive the age-varying components from a Singular Value Decomposition of the matrix of age-specific mortality rate schedules. The weights are modeled as a function of HIV prevalence and one of three possible sets of inputs: life expectancy at birth, a measure of child mortality, or child mortality with a measure of adult mortality. We calibrate the model with 320 five-year life tables for each sex from the World Population Prospects 2010 revision that come from the 40 countries of the world that have and are experiencing a generalized HIV epidemic. Cross validation shows that the model is able to outperform several existing model life table systems.ConclusionsWe present a flexible, parsimonious model of age-specific mortality for countries with generalized HIV epidemics. Combined with the outputs of existing epidemiological and demographic models, this model makes it possible to project future age-specific mortality profiles and number of deaths for countries with generalized HIV epidemics.

  4. T

    Vital Signs: Life Expectancy – Bay Area

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Apr 7, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California, Department of Health: Death Records (2017). Vital Signs: Life Expectancy – Bay Area [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Life-Expectancy-Bay-Area/emjt-svg9
    Explore at:
    xml, csv, tsv, application/rssxml, json, application/rdfxmlAvailable download formats
    Dataset updated
    Apr 7, 2017
    Dataset authored and provided by
    State of California, Department of Health: Death Records
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Life Expectancy (EQ6)

    FULL MEASURE NAME Life Expectancy

    LAST UPDATED April 2017

    DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.

    DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link

    California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/

    CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.

    Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area.

    Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.

  5. f

    Predicted and observed death registration completeness (%), eight countries...

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tim Adair; Alan D. Lopez (2023). Predicted and observed death registration completeness (%), eight countries and two cities in Data for Health Initiative, Models 1 and 2, both sexes. [Dataset]. http://doi.org/10.1371/journal.pone.0197047.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Tim Adair; Alan D. Lopez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Predicted and observed death registration completeness (%), eight countries and two cities in Data for Health Initiative, Models 1 and 2, both sexes.

  6. d

    SHMI primary diagnosis coding contextual indicators

    • digital.nhs.uk
    csv, pdf, xls, xlsx
    Updated Jun 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). SHMI primary diagnosis coding contextual indicators [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/shmi/2024-06
    Explore at:
    csv(8.7 kB), xls(85.5 kB), pdf(228.8 kB), pdf(231.3 kB), csv(9.0 kB), xlsx(76.7 kB)Available download formats
    Dataset updated
    Jun 13, 2024
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Feb 1, 2023 - Jan 31, 2024
    Area covered
    England
    Description

    These indicators are designed to accompany the SHMI publication. Information on the main condition the patient is in hospital for (the primary diagnosis) is used to calculate the expected number of deaths used in the calculation of the SHMI. A high percentage of records with an invalid primary diagnosis may indicate a data quality problem. A high percentage of records with a primary diagnosis which is a symptom or sign may indicate problems with data quality or timely diagnosis of patients, but may also reflect the case-mix of patients or the service model of the trust (e.g. a high level of admissions to acute admissions wards for assessment and stabilisation). Contextual indicators on the percentage of provider spells with an invalid primary diagnosis and the percentage of provider spells with a primary diagnosis which is a symptom or sign are produced to support the interpretation of the SHMI. Notes: 1. There is a shortfall in the number of records for East Lancashire Hospitals NHS Trust (trust code RXR), Guy’s and St Thomas’ NHS Foundation Trust (trust code RJ1), and King’s College Hospital NHS Foundation Trust (trust code RJZ). Values for these trusts are based on incomplete data and should therefore be interpreted with caution. 2. Frimley Health NHS Foundation Trust (trust code RDU) stopped submitting data to the Secondary Uses Service (SUS) during June 2022 and did not start submitting data again until April 2023 due to an issue with their patient records system. This is causing a large shortfall in records and values for this trust should be viewed in the context of this issue. 3. A number of trusts are now submitting Same Day Emergency Care (SDEC) data to the Emergency Care Data Set (ECDS) rather than the Admitted Patient Care (APC) dataset. The SHMI is calculated using APC data. Removal of SDEC activity from the APC data may impact a trust’s SHMI value and may increase it. More information about this is available in the Background Quality Report. 4. Further information on data quality can be found in the SHMI background quality report, which can be downloaded from the 'Resources' section of this page.

  7. f

    Model goodness of fit by level of observed death registration completeness...

    • plos.figshare.com
    xls
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tim Adair; Alan D. Lopez (2023). Model goodness of fit by level of observed death registration completeness (%), full sample and country-year and country level out-of-sample validation, Models 1 and 2, both sexes. [Dataset]. http://doi.org/10.1371/journal.pone.0197047.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Tim Adair; Alan D. Lopez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Model goodness of fit by level of observed death registration completeness (%), full sample and country-year and country level out-of-sample validation, Models 1 and 2, both sexes.

  8. 2009-2015 Individual Life Insurance Mortality Experience

    • dr.soa.org
    • soa.org
    txt, xls
    Updated Dec 1, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Society of Actuaries (2018). 2009-2015 Individual Life Insurance Mortality Experience [Dataset]. https://dr.soa.org/resources/research-reports/2019/2009-2015-individual-life-mortality/
    Explore at:
    xls, txtAvailable download formats
    Dataset updated
    Dec 1, 2018
    Dataset provided by
    Society of Actuarieshttp://www.soa.org/
    Time period covered
    2009 - 2015
    Area covered
    United States of America
    Description

    Mortality experience data from 2009 through 2015 on fully underwritten individual life insurance policies

  9. d

    Compendium – Years of life lost

    • digital.nhs.uk
    csv, xls
    Updated Jul 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Compendium – Years of life lost [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/compendium-mortality/current/years-of-life-lost
    Explore at:
    csv(115.6 kB), xls(196.5 kB)Available download formats
    Dataset updated
    Jul 21, 2022
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Jan 1, 2018 - Dec 31, 2020
    Area covered
    Wales, England
    Description

    Years of life lost due to mortality from tuberculosis (ICD-10 A15-A19). Years of life lost (YLL) is a measure of premature mortality. Its primary purpose is to compare the relative importance of different causes of premature death within a particular population and it can therefore be used by health planners to define priorities for the prevention of such deaths. It can also be used to compare the premature mortality experience of different populations for a particular cause of death. The concept of years of life lost is to estimate the length of time a person would have lived had they not died prematurely. By inherently including the age at which the death occurs, rather than just the fact of its occurrence, the calculation is an attempt to better quantify the burden, or impact, on society from the specified cause of mortality. Legacy unique identifier: P00461

  10. f

    Predicted completeness and Queiroz et al (2017) estimates of completeness by...

    • plos.figshare.com
    • figshare.com
    xls
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tim Adair; Alan D. Lopez (2023). Predicted completeness and Queiroz et al (2017) estimates of completeness by state of residence (%), Brazil, 2000–2010, both sexes, ages 5+. [Dataset]. http://doi.org/10.1371/journal.pone.0197047.t007
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Tim Adair; Alan D. Lopez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brazil
    Description

    Predicted completeness and Queiroz et al (2017) estimates of completeness by state of residence (%), Brazil, 2000–2010, both sexes, ages 5+.

  11. g

    Infant Mortality Rate

    • globalmidwiveshub.org
    • global-midwives-hub-directrelief.hub.arcgis.com
    • +1more
    Updated Jun 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Direct Relief (2021). Infant Mortality Rate [Dataset]. https://www.globalmidwiveshub.org/datasets/infant-mortality-rate
    Explore at:
    Dataset updated
    Jun 1, 2021
    Dataset authored and provided by
    Direct Relief
    Area covered
    Description

    The probability of dying between birth and the exact age of 1, expressed per 1,000 live births. The data is sorted by both sex and total and includes a range of values from 1900 to 2019. The calculation for infant mortality rates is derived from a standard period abridged life table using the age-specific deaths and mid-year population counts from civil registration data. This data is sourced from the UN Inter-Agency Group for Child Mortality Estimation. The UN IGME uses the same estimation method across all countries to arrive at a smooth trend curve of age-specific mortality rates. The estimates are based on high quality nationally representative data including statistics from civil registration systems, results from household surveys, and censuses. The child mortality estimates are produced in conjunction with national level agencies such as a country’s Ministry of Health, National Statistics Office, or other relevant agencies.

  12. i

    Demographic and Health Survey 1995 - Uganda

    • datacatalog.ihsn.org
    • microdata.ubos.org
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (2019). Demographic and Health Survey 1995 - Uganda [Dataset]. https://datacatalog.ihsn.org/catalog/2469
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Department of Statistics
    Time period covered
    1995
    Area covered
    Uganda
    Description

    Abstract

    The 1995 Uganda Demographic and Health Survey (UDHS-II) is a nationally-representative survey of 7,070 women age 15-49 and 1,996 men age 15-54. The UDHS was designed to provide information on levels and trends of fertility, family planning knowledge and use, infant and child mortality, and maternal and child health. Fieldwork for the UDHS took place from late-March to mid-August 1995. The survey was similar in scope and design to the 1988-89 UDHS. Survey data show that fertility levels may be declining, contraceptive use is increasing, and childhood mortality is declining; however, data also point to several remaining areas of challenge.

    The 1995 UDHS was a follow-up to a similar survey conducted in 1988-89. In addition to including most of the same questions included in the 1988-89 UDHS, the 1995 UDHS added more detailed questions on AIDS and maternal mortality, as well as incorporating a survey of men. The general objectives of the 1995 UDHS are to: - provide national level data which will allow the calculation of demographic rates, particularly fertility and childhood mortality rates; - analyse the direct and indirect factors which determine the level and trends of fertility; - measure the level of contraceptive knowledge and practice (of both women and men) by method, by urban-rural residence, and by region; - collect reliable data on maternal and child health indicators; immunisation, prevalence, and treatment of diarrhoea and other diseases among children under age four; antenatal visits; assistance at delivery; and breastfeeding; - assess the nutritional status of children under age four and their mothers by means of anthropometric measurements (weight and height), and also child feeding practices; and - assess among women and men the prevailing level of specific knowledge and attitudes regarding AIDS and to evaluate patterns of recent behaviour regarding condom use.

    MAIN RESULTS

    • Fertility:

    Fertility Trends. UDHS data indicate that fertility in Uganda may be starting to decline. The total fertility rate has declined from the level of 7.1 births per woman that prevailed over the last 2 decades to 6.9 births for the period 1992-94. The crude birth rate for the period 1992-94 was 48 live births per I000 population, slightly lower than the level of 52 observed from the 1991 Population and Housing Census. For the roughly 80 percent of the country that was covered in the 1988-89 UDHS, fertility has declined from 7.3 to 6.8 births per woman, a drop of 7 percent over a six and a half year period.

    Birth Intervals. The majority of Ugandan children (72 percent) are born after a "safe" birth interval (24 or more months apart), with 30 percent born at least 36 months after a prior birth. Nevertheless, 28 percent of non-first births occur less than 24 months after the preceding birth, with 10 percent occurring less than 18 months since the previous birth. The overall median birth interval is 29 months. Fertility Preferences. Survey data indicate that there is a strong desire for children and a preference for large families in Ugandan society. Among those with six or more children, 18 percent of married women want to have more children compared to 48 percent of married men. Both men and women desire large families.

    • Family planning:

    Knowledge of Contraceptive Methods. Knowledge of contraceptive methods is nearly universal with 92 percent of all women age 15-49 and 96 percent of all men age 15-54 knowing at least one method of family planning. Increasing Use of Contraception. The contraceptive prevalence rate in Uganda has tripled over a six-year period, rising from about 5 percent in approximately 80 percent of the country surveyed in 1988-89 to 15 percent in 1995.

    Source of Contraception. Half of current users (47 percent) obtain their methods from public sources, while 42 percent use non-governmental medical sources, and other private sources account for the remaining 11 percent.

    • Maternal and child health:

    High Childhood Mortality. Although childhood mortality in Uganda is still quite high in absolute terms, there is evidence of a significant decline in recent years. Currently, the direct estimate of the infant mortality rate is 81 deaths per 1,000 births and under five mortality is 147 per 1,000 births, a considerable decline from the rates of 101 and 180, respectively, that were derived for the roughly 80 percent of the country that was covered by the 1988-89 UDHS.

    Childhood Vaccination Coverage. One possible reason for the declining mortality is improvement in childhood vaccination coverage. The UDHS results show that 47 percent of children age 12-23 months are fully vaccinated, and only 14 percent have not received any vaccinations.

    Childhood Nutritional Status. Overall, 38 percent of Ugandan children under age four are classified as stunted (low height-for-age) and 15 percent as severely stunted. About 5 percent of children under four in Uganda are wasted (low weight-for-height); 1 percent are severely wasted. Comparison with other data sources shows little change in these measures over time.

    • AIDS:

    Virtually all women and men in Uganda are aware of AIDS. About 60 percent of respondents say that limiting the number of sexual partners or having only one partner can prevent the spread of disease. However, knowledge of ways to avoid AIDS is related to respondents' education. Safe patterns of sexual behaviour are less commonly reported by respondents who have little or no education than those with more education. Results show that 65 percent of women and 84 percent of men believe that they have little or no chance of being infected.

    Availability of Health Services. Roughly half of women in Uganda live within 5 km of a facility providing antenatal care, delivery care, and immunisation services. However, the data show that children whose mothers receive both antenatal and delivery care are more likely to live within 5 km of a facility providing maternal and child health (MCH) services (70 percent) than either those whose mothers received only one of these services (46 percent) or those whose mothers received neither antenatal nor delivery care (39 percent).

    Geographic coverage

    The 1995 Uganda Demographic and Health Survey (UDHS-II) is a nationally-representative survey. For the purpose of the 1995 UDHS, the following domains were utilised: Uganda as a whole; urban and rural areas separately; each of the four regions: Central, Eastern, Northern, and Western; areas in the USAID-funded DISH project to permit calculation of contraceptive prevalence rates.

    Analysis unit

    • Household
    • Women age 15-49
    • Men age 15-54
    • Children under four

    Universe

    The population covered by the 1995 UDHS is defined as the universe of all women age 15-49 in Uganda. But because of insecurity, eight EAs could not be surveyed (six in Kitgum District, one in Apac District, and one in Moyo District). An additional two EAs (one in Arua and one in Moroto) could not be surveyed, but substitute EAs were selected in their place.

    Kind of data

    Sample survey data

    Sampling procedure

    A sample of 303 primary sampling units (PSU) consisting of enumeration areas (EAs) was selected from a sampling frame of the 1991 Population and Housing Census. For the purpose of the 1995 UDHS, the following domains were utilised: Uganda as a whole; urban and rural areas separately; each of the four regions: Central, Eastern, Northern, and Western; areas in the USAID-funded DISH project to permit calculation of contraceptive prevalence rates.

    Districts in the DISH project area were grouped by proximity into the following five reporting domains: - Kasese and Mbarara Districts - Masaka and Rakai Districts - Luwero and Masindi Districts - Jinja and Kamuli Districts - Kampala District

    The sample for the 1995 UDHS was selected in two stages. In the first stage, 303 EAs were selected with probability proportional to size. Then, within each selected EA, a complete household listing and mapping exercise was conducted in December 1994 forming the basis for the second-stage sampling. For the listing exercise, 11 listers from the Statistics Department were trained. Institutional populations (army barracks, hospitals, police camps, etc.) were not listed.

    From these household lists, households to be included in the UDHS were selected with probability inversely proportional to size based on the household listing results. All women age 15-49 years in these households were eligible to be interviewed in the UDHS. In one-third of these selected households, all men age 15-54 years were eligible for individual interview as well. The overall target sample was 6,000 women and 2,000 men. Because of insecurity, eight EAs could not be surveyed (six in Kitgum District, one in Apac District, and one in Moyo District). An additional two EAs (one in Arua and one in Moroto) could not be surveyed, but substitute EAs were selected in their place.

    Since one objective of the survey was to produce estimates of specific demographic and health indicators for the areas included in the DISH project, the sample design allowed for oversampling of households in these districts relative to their actual proportion in the population. Thus, the 1995 UDHS sample is not self-weighting at the national level; weights are required to estimate national-level indicators. Due to the weighting factor and rounding of estimates, figures may not add to totals. In addition, the percent total may not add to 100.0 due to rounding.

    Mode of data collection

    Face-to-face

    Research instrument

    Four questionnaires were used in the 1995 UDHS.

    a) A Household Schedule was used to list the names and certain

  13. e

    Maternal mortality

    • data.europa.eu
    excel xls
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    North Gate II & III - INS (STATBEL - Statistics Belgium), Maternal mortality [Dataset]. https://data.europa.eu/data/datasets/9f2ce5d363de77c9f2485d3fe1b3844f8aa13697?locale=en
    Explore at:
    excel xlsAvailable download formats
    Dataset authored and provided by
    North Gate II & III - INS (STATBEL - Statistics Belgium)
    Description

    Statistics on maternal mortality are produced based on the database of causes of death. "Maternal deaths" are selected from the database via a complex procedure, which takes into account the definition given by the WHO and is described in detail in the metadata. The tenth revision of the International Classification of Diseases (ICD-10) defines maternal death as "the death of a woman while pregnant or within 42 days of termination of pregnancy, irrespective of the duration and the site of the pregnancy, from any cause related to or aggravated by the pregnancy or its management, but not from accidental or incidental causes." "Maternal deaths should be subdivided into two groups. Direct obstetric deaths: those resulting from obstetric complications of the pregnant state (pregnancy, labour and puerperium), from interventions, omissions, incorrect treatment, or from a chain of events resulting from any of the above. Indirect obstetric deaths: those resulting from previous existing disease or disease that developed during pregnancy and which was not due to direct obstetric causes, but which was aggravated by physiologic effects of pregnancy." Furthermore, the ICD-10 also defines late maternal death as "the death of a woman from direct or indirect obstetric causes more than 42 days but less than one year after termination of pregnancy." The "maternal mortality rate" is the ratio between the number of recorded direct and indirect maternal deaths over one year and the number of live birth in the same year, expressed per 100,000 live births. Late maternal deaths are not taken into account in the calculation of this ratio. Given the small and markedly variable number of cases recorded each year in Belgium, it has been decided to calculate this ratio based on the cumulated maternal deaths and live births of five consecutive years, with the ratio calculated being recorded in the middle year. When identifying these maternal deaths, the ad hoc working group, bringing together the Belgian statistical office and all data producing federated entities, did not exclude the risk of an underestimation of these deaths, based on the only statistical bulletin used as main source. It therefore asks for continued efforts to further improve the follow-up of maternal deaths, and supports the recent initiative of the College of physicians for Mother and Newborn to consider the creation of a maternal mortality register.

  14. Sichuan Death Rate

    • knoema.de
    csv, json, sdmx, xls
    Updated May 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Knoema (2023). Sichuan Death Rate [Dataset]. https://knoema.de/atlas/China/Sichuan/Death-Rate
    Explore at:
    json, sdmx, csv, xlsAvailable download formats
    Dataset updated
    May 23, 2023
    Dataset authored and provided by
    Knoemahttp://knoema.com/
    Time period covered
    2009 - 2021
    Area covered
    Sichuan
    Variables measured
    Death Rate
    Description

    8,74 (per thousand population) in 2021. Death Rate (or Crude Death Rate) refers to the ratio of the number of deaths to the average population (or mid-period population) during a certain period of time (usually a year), expressed in ‰. Death rate refers to annual death rate. The following formula is used: (Number of deaths)/(Annual average population)*1000‰.

  15. Crude birth rate, age-specific fertility rates and total fertility rate...

    • www150.statcan.gc.ca
    • datasets.ai
    • +3more
    Updated Sep 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Crude birth rate, age-specific fertility rates and total fertility rate (live births) [Dataset]. http://doi.org/10.25318/1310041801-eng
    Explore at:
    Dataset updated
    Sep 25, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Crude birth rates, age-specific fertility rates and total fertility rates (live births), 2000 to most recent year.

  16. 2009-13 Individual Payout Annuity Experience Report & Pivot Tables

    • dr.soa.org
    • soa.org
    xlsx
    Updated Dec 1, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Society of Actuaries (2016). 2009-13 Individual Payout Annuity Experience Report & Pivot Tables [Dataset]. https://dr.soa.org/resources/experience-studies/2016/2009-13-invidual-payout-annuity/
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Dec 1, 2016
    Dataset provided by
    Society of Actuarieshttp://www.soa.org/
    Time period covered
    2009 - 2013
    Area covered
    United States of America
    Description

    Mortality experience data from 2009 through 2013 on individual payout annuities

  17. Crude death rate in Vietnam 2013-2023

    • statista.com
    Updated Jul 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Minh-Ngoc Nguyen (2024). Crude death rate in Vietnam 2013-2023 [Dataset]. https://www.statista.com/topics/5991/demographics-in-vietnam/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Minh-Ngoc Nguyen
    Area covered
    Vietnam
    Description

    In 2023, the crude death rate in Vietnam was estimated at 5.5 deaths per 1,000 inhabitants. In that year, Vietnam's population reached approximately 100.3 million.

  18. i

    Population and Family Health Survey 1990 - Jordan

    • dev.ihsn.org
    • datacatalog.ihsn.org
    • +2more
    Updated Apr 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (DOS) (2019). Population and Family Health Survey 1990 - Jordan [Dataset]. https://dev.ihsn.org/nada/catalog/71992
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset authored and provided by
    Department of Statistics (DOS)
    Time period covered
    1990
    Area covered
    Jordan
    Description

    Abstract

    The JPFHS is part of the worldwide Demographic and Health Surveys (DHS) program, which is designed to collect data on fertility, family planning, and maternal and child health.

    The 1990 Jordan Population and Family Health Survey (JPFHS) was carried out as part of the Demographic and Health Survey (DHS) program. The Demographic and Health Surveys is assisting governments and private agencies in the implementation of household surveys in developing countries.

    The JPFIS was designed to provide information on levels and trends of fertility, infant and child mortality, and family planning. The survey also gathered information on breastfeeding, matemal and child health cam, the nutritional status of children under five, as well as the characteristics of households and household members.

    The main objectives of the project include: a) Providing decision makers with a data base and analyses useful for informed policy choices, b) Expanding the international population and health data base, c) Advancing survey methodology, and d) Developing skills and resources necessary to conduct high quality demographic and health surveys in the participating countries.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men

    Kind of data

    Sample survey data

    Sampling procedure

    The sample for the JPFHS survey was selected to be representative of the major geographical regions, as well as the nation as a whole. The survey adopted a stratified, multi-stage sampling design. In each governorate, localities were classified into 9 strata according to the estimated population size in 1989. The sampling design also allowed for the survey results to be presented according to major cities (Amman, Irbid and Zarqa), other urban localities, and the rural areas. Localities with fewer than 5,000 people were considered rural.

    For this survey, 349 sample units were drawn, containing 10,708 housing units for the individual interview. Since the survey used a separate household questionnaire, the Department of Statistics doubled the household sample size and added a few questions on labor force, while keeping the original individual sample intact. This yielded 21,172 housing units. During fieldwork for the household interview, it was found that 4,359 household units were ineligible either because the dwelling was vacant or destroyed, the household was absent during the team visit, or some other reason. There were 16,296 completed household interviews out of 16,813 eligible households, producing a response rate of 96.9 percent.

    The completed household interviews yielded 7,246 women eligible for the individual interview, of which 6,461 were successfully interviewed, producing a response rate of 89.2 percent.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    The 1990 JPFIS utilized two questionnaires, one for the household interview and the other for individual women. Both questionnaires were developed first in English and then translated into Arabic. The household questionnaire was used to list all members of the sample households, including usual residents as well as visitors. For each member of the household, basic demographic and socioeconomic characteristics were recorded and women eligible for the individual interview were identified. To be eligible for individual interview, a woman had to be a usual member of the household (part of the de jure population), ever-married, and between 15 and 49 years of age. The household questionnaire was expanded from the standard DHS-II model questionnaire to facilitate the estimation of adult mortality using the orphanhood and widowhood techniques. In addition, the questionnaire obtained information on polygamy, economic activity of persons 15 years of age and over, family type, type of insurance covering the household members, country of work in the summer of 1990 which coincided with the Gulf crisis, and basic data for the calculation of the crude birth rate and the crude death rate. Additional questions were asked about deceased women if they were ever-married and age 15-49, in order to obtain information for the calculation of materoal mortality indices.

    The individual questionnaire is a modified version of the standard DHS-II model "A" questionnaire. Experience gained from previous surveys, in particular the 1983 Jordan Fertility and Family Health Survey, and the questionnaire developed by the Pan Arab Project for Child Development (PAPCHILD), were useful in the discussions on the content of the JPFHS questionnaire. A major change from the DHS-II model questionnaire was the rearrangement of the sections so that the marriage section came before reproduction; this allowed the interview to flow more smoothly. Questions on children's cause of death based on verbal autopsy were added to the section on health, which, due to its size, was split into two parts. The first part focused on antenatal care and breastfeeding; the second part examined measures for prevention of childhood diseases and information on the morbidity and mortality of children loom since January 1985. As questions on sexual relations were considered too sensitive, they were replaced by questions about the husband's presence in the household during the specified time period; this served as a proxy for recent sexual activity.

    The JPFHS individual questionnaire consists of nine sections: - Respondent's background and household characteristics - Marriage - Reproduction - Contraception - Breastfeeding and health - Immunization, morbidity, and child mortality - Fertility preferences - Husband's background, residence, and woman's work - Height and weight of children

    Response rate

    For the individual interview, the number of eligible women found in the selected households and the number of women successfully interviewed are presented. The data indicate a high response rate for the household interview (96.9 percent), and a lower rate for the individual interview (89.2 percent). Women in large cities have a slightly lower response rate (88.6 percent) than those in other areas. Most of the non-response for the individual interview was due to the absence of respondents and the postponement of interviews which were incomplete.

    Note: See summarized response rates by place of residence in Table 1.1 of the survey report.

    Sampling error estimates

    The results from sample surveys are affected by two types of errors, non-sampling error and sampling error. Nonsampling error is due to mistakes made in carrying out field activities, such as failure to locate and interview the correct household, errors in the way the questions are asked, misunderstanding on the part of either the interviewer or the respondent, data entry errors, etc. Although efforts were made during the design and implementation of the JPFHS to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically

    Sampling errors, on the other hand, can be measured statistically. The sample of women selected in the JPFHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each one would have yielded results that differed somewhat from the actual sample selected. The sampling error is a measure of the variability between all possible samples; although it is not known exactly, it can be estimated from the survey results.

    Sampling error is usually measured in terms of standard error of a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which one can reasonably assured that, apart from nonsampling errors, the true value of the variable for the whole population falls. For example, for any given statistic calculated from a sample survey, the value of that same statistic as measured in 95 percent of all possible samples with the same design (and expected size) will fall within a range of plus or minus two times the standard error of that statistic.

    If the sample of women had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the JPFI-IS sample design depended on stratification, stages and clusters. Consequently, it was necessary to utilize more complex formulas. The computer package CLUSTERS, developed by the International Statistical Institute for the World Fertility Survey, was used to assist in computing the sampling errors with the proper statistical methodology.

    Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Completeness of reporting - Births by calendar year since birth - Reporting of age at death in days - Reporting of age at death in months

    Note: See detailed tables in APPENDIX C of the report which is presented in this documentation.

  19. Chongqing Death Rate

    • knoema.de
    csv, json, sdmx, xls
    Updated May 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Knoema (2023). Chongqing Death Rate [Dataset]. https://knoema.de/atlas/China/Chongqing/Death-Rate
    Explore at:
    json, sdmx, xls, csvAvailable download formats
    Dataset updated
    May 23, 2023
    Dataset authored and provided by
    Knoemahttp://knoema.com/
    Time period covered
    2009 - 2021
    Area covered
    Chongqing
    Variables measured
    Death Rate
    Description

    8,04 (per thousand population) in 2021. Death Rate (or Crude Death Rate) refers to the ratio of the number of deaths to the average population (or mid-period population) during a certain period of time (usually a year), expressed in ‰. Death rate refers to annual death rate. The following formula is used: (Number of deaths)/(Annual average population)*1000‰.

  20. Age-standardised mortality rate (women)

    • data.europa.eu
    csv, json
    Updated Feb 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IWEPS (2025). Age-standardised mortality rate (women) [Dataset]. https://data.europa.eu/data/datasets/202501-0?locale=en
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 1, 2025
    Dataset provided by
    Walloon Institute for Evaluation, Prospective Studies and Statistics
    Authors
    IWEPS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The rate standardised by age and sex obtained by direct standardisation is the rate that would be observed in the population studied if it had the same age structure as a reference population, here the standard European population of 2013. It is calculated by weighting the age-specific mortality rates observed in the population by the age structure of the reference population.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Tim Adair; Alan D. Lopez (2023). Estimating the completeness of death registration: An empirical method [Dataset]. http://doi.org/10.1371/journal.pone.0197047

Estimating the completeness of death registration: An empirical method

Explore at:
50 scholarly articles cite this dataset (View in Google Scholar)
pdfAvailable download formats
Dataset updated
Jun 1, 2023
Dataset provided by
PLOS ONE
Authors
Tim Adair; Alan D. Lopez
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

IntroductionMany national and subnational governments need to routinely measure the completeness of death registration for monitoring and statistical purposes. Existing methods, such as death distribution and capture-recapture methods, have a number of limitations such as inaccuracy and complexity that prevent widespread application. This paper presents a novel empirical method to estimate completeness of death registration at the national and subnational level.MethodsRandom-effects models to predict the logit of death registration completeness were developed from 2,451 country-years in 110 countries from 1970–2015 using the Global Burden of Disease 2015 database. Predictors include the registered crude death rate, under-five mortality rate, population age structure and under-five death registration completeness. Models were developed separately for males, females and both sexes.FindingsAll variables are highly significant and reliably predict completeness of registration across a wide range of registered crude death rates (R-squared 0.85). Mean error is highest at medium levels of observed completeness. The models show quite close agreement between predicted and observed completeness for populations outside the dataset. There is high concordance with the Hybrid death distribution method in Brazilian states. Uncertainty in the under-five mortality rate, assessed using the dataset and in Colombian departmentos, has minimal impact on national level predicted completeness, but a larger effect at the subnational level.ConclusionsThe method demonstrates sufficient flexibility to predict a wide range of completeness levels at a given registered crude death rate. The method can be applied utilising data readily available at the subnational level, and can be used to assess completeness of deaths reported from health facilities, censuses and surveys. Its utility is diminished where the adult mortality rate is unusually high for a given under-five mortality rate. The method overcomes the considerable limitations of existing methods and has considerable potential for widespread application by national and subnational governments.

Search
Clear search
Close search
Google apps
Main menu