https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Australia
-> Aus200
Brazil
-> Bra50 and MinDol
Spain
-> Esp35
France
-> Fra40
Germany
-> Ger40
Hong Kong
-> HkInd
Italy
-> Ita40
Netherlands
-> Neth25
Switzerland
-> Swi20
United Kingdom
-> UK100
United States
-> Usa500, UsaTec and UsaRus
Note: the MinDol, Swi20 and Neth25 data were taken by it's monthly contract, because MetaTrader5 don't have their historical series (like S&P 500, that has the 'Usa500' and 'Usa500Mar24'):
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F17272056%2Fefa5c9f6d7841c496d20d467d4a1c874%2Ffutures_dailycontract.png?generation=1704756245532483&alt=media" alt="">
import MetaTrader5 as mt5
import pandas as pd
import numpy as np
import pytz
from datetime import datetime
if not mt5.initialize(login= , server= "server", password=""):
# you can use your login and password if you have an account on a broker to use mt5
print("initialize() failed, error code =", mt5.last_error())
quit()
symbols = mt5.symbols_get()
list_symbols = []
for num in range(0, len(symbols)):
list_symbols.append(symbols[num].name)
print(list_symbols)
list_futures = ['Aus200', 'Bra50', 'Esp35', 'Fra40', 'Ger40', 'HKInd', 'Ita40Mar24', 'Jp225', 'MinDolFeb24', 'Neth25Jan24', 'UK100', 'Usa500', 'UsaRus', 'UsaTec', 'Swi20Mar24']
time_frame = mt5.TIMEFRAME_D1
dynamic_vars = {}
time_zone = pytz.timezone('Etc/UTC')
time_start = datetime(2017, 1, 1, tzinfo= time_zone)
time_end = datetime(2023, 12, 31, tzinfo= time_zone)
for sym in list_futures:
var = f'{sym}'
rates = mt5.copy_rates_range(sym, time_frame, time_start, time_end)
rates_frame = pd.DataFrame(rates)
rates_frame['time'] = pd.to_datetime(rates_frame['time'], unit='s')
rates_frame = rates_frame[['time', 'close']]
rates_frame.rename(columns = {'close': var}, inplace = True)
dynamic_vars[var] = rates_frame
dynamic_vars[sym].to_csv(f'{sym}.csv', index = False)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Fransa'nın ana borsa endeksi olan FR40, 9 Haziran 2025 tarihinde önceki seansına göre %0.21 düşerek 7789 puana geriledi. Son bir ayda endeks %0.78 azaldı ve geçen yılın aynı dönemine göre %1.34 düştü. Bu veriler, Fransa'dan bu endeks üzerine işlem yapan bir fark kontratı (CFD) üzerinden elde edilmiştir. Akım değerleri, tarihsel veriler, tahminler, istatistikler, grafikler ve ekonomik takvim - Fransa - Menkul değerler piyasası.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Australia
-> Aus200
Brazil
-> Bra50 and MinDol
Spain
-> Esp35
France
-> Fra40
Germany
-> Ger40
Hong Kong
-> HkInd
Italy
-> Ita40
Netherlands
-> Neth25
Switzerland
-> Swi20
United Kingdom
-> UK100
United States
-> Usa500, UsaTec and UsaRus
Note: the MinDol, Swi20 and Neth25 data were taken by it's monthly contract, because MetaTrader5 don't have their historical series (like S&P 500, that has the 'Usa500' and 'Usa500Mar24'):
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F17272056%2Fefa5c9f6d7841c496d20d467d4a1c874%2Ffutures_dailycontract.png?generation=1704756245532483&alt=media" alt="">
import MetaTrader5 as mt5
import pandas as pd
import numpy as np
import pytz
from datetime import datetime
if not mt5.initialize(login= , server= "server", password=""):
# you can use your login and password if you have an account on a broker to use mt5
print("initialize() failed, error code =", mt5.last_error())
quit()
symbols = mt5.symbols_get()
list_symbols = []
for num in range(0, len(symbols)):
list_symbols.append(symbols[num].name)
print(list_symbols)
list_futures = ['Aus200', 'Bra50', 'Esp35', 'Fra40', 'Ger40', 'HKInd', 'Ita40Mar24', 'Jp225', 'MinDolFeb24', 'Neth25Jan24', 'UK100', 'Usa500', 'UsaRus', 'UsaTec', 'Swi20Mar24']
time_frame = mt5.TIMEFRAME_D1
dynamic_vars = {}
time_zone = pytz.timezone('Etc/UTC')
time_start = datetime(2017, 1, 1, tzinfo= time_zone)
time_end = datetime(2023, 12, 31, tzinfo= time_zone)
for sym in list_futures:
var = f'{sym}'
rates = mt5.copy_rates_range(sym, time_frame, time_start, time_end)
rates_frame = pd.DataFrame(rates)
rates_frame['time'] = pd.to_datetime(rates_frame['time'], unit='s')
rates_frame = rates_frame[['time', 'close']]
rates_frame.rename(columns = {'close': var}, inplace = True)
dynamic_vars[var] = rates_frame
dynamic_vars[sym].to_csv(f'{sym}.csv', index = False)