2 datasets found
  1. Futures Market Datasets

    • kaggle.com
    Updated Jan 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mlippo (2024). Futures Market Datasets [Dataset]. https://www.kaggle.com/datasets/mlippo/futures-market-dataset/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 9, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    mlippo
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset contains the futures market from the following countries:

    Australia -> Aus200

    Brazil -> Bra50 and MinDol

    Spain -> Esp35

    France -> Fra40

    Germany -> Ger40

    Hong Kong -> HkInd

    Italy-> Ita40

    Netherlands -> Neth25

    Switzerland -> Swi20

    United Kingdom -> UK100

    United States -> Usa500, UsaTec and UsaRus

    There's a csv file for all those markets and one with all in one.

    Note: the MinDol, Swi20 and Neth25 data were taken by it's monthly contract, because MetaTrader5 don't have their historical series (like S&P 500, that has the 'Usa500' and 'Usa500Mar24'):

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F17272056%2Fefa5c9f6d7841c496d20d467d4a1c874%2Ffutures_dailycontract.png?generation=1704756245532483&alt=media" alt="">

    MT5 Library: (I used PyCharm because the i couldn't be able to use the mt5 library on GoogleColab)

    import MetaTrader5 as mt5
    import pandas as pd
    import numpy as np
    import pytz
    from datetime import datetime
    
    if not mt5.initialize(login= , server= "server", password=""):
    # you can use your login and password if you have an account on a broker to use mt5
      print("initialize() failed, error code =", mt5.last_error())
      quit()
    
    
    symbols = mt5.symbols_get()
    
    list_symbols = []
    for num in range(0, len(symbols)):
      list_symbols.append(symbols[num].name)
    
    print(list_symbols)
    
    list_futures = ['Aus200', 'Bra50', 'Esp35', 'Fra40', 'Ger40', 'HKInd', 'Ita40Mar24', 'Jp225', 'MinDolFeb24', 'Neth25Jan24', 'UK100', 'Usa500', 'UsaRus', 'UsaTec', 'Swi20Mar24']
    time_frame = mt5.TIMEFRAME_D1
    dynamic_vars = {}
    
    time_zone = pytz.timezone('Etc/UTC')
    
    time_start = datetime(2017, 1, 1, tzinfo= time_zone)
    time_end = datetime(2023, 12, 31, tzinfo= time_zone)
    
    for sym in list_futures:
      var = f'{sym}'
      rates = mt5.copy_rates_range(sym, time_frame, time_start, time_end)
    
      rates_frame = pd.DataFrame(rates)
      rates_frame['time'] = pd.to_datetime(rates_frame['time'], unit='s')
      rates_frame = rates_frame[['time', 'close']]
      rates_frame.rename(columns = {'close': var}, inplace = True)
      dynamic_vars[var] = rates_frame
    
      dynamic_vars[sym].to_csv(f'{sym}.csv', index = False)
    
  2. T

    France Stock Market Index (FR40) Data

    • tr.tradingeconomics.com
    • fr.tradingeconomics.com
    • +14more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, France Stock Market Index (FR40) Data [Dataset]. https://tr.tradingeconomics.com/france/stock-market
    Explore at:
    csv, xml, json, excelAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 9, 1987 - Jun 9, 2025
    Area covered
    Fransa
    Description

    Fransa'nın ana borsa endeksi olan FR40, 9 Haziran 2025 tarihinde önceki seansına göre %0.21 düşerek 7789 puana geriledi. Son bir ayda endeks %0.78 azaldı ve geçen yılın aynı dönemine göre %1.34 düştü. Bu veriler, Fransa'dan bu endeks üzerine işlem yapan bir fark kontratı (CFD) üzerinden elde edilmiştir. Akım değerleri, tarihsel veriler, tahminler, istatistikler, grafikler ve ekonomik takvim - Fransa - Menkul değerler piyasası.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
mlippo (2024). Futures Market Datasets [Dataset]. https://www.kaggle.com/datasets/mlippo/futures-market-dataset/data
Organization logo

Futures Market Datasets

Data from different countries

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jan 9, 2024
Dataset provided by
Kagglehttp://kaggle.com/
Authors
mlippo
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

This dataset contains the futures market from the following countries:

Australia -> Aus200

Brazil -> Bra50 and MinDol

Spain -> Esp35

France -> Fra40

Germany -> Ger40

Hong Kong -> HkInd

Italy-> Ita40

Netherlands -> Neth25

Switzerland -> Swi20

United Kingdom -> UK100

United States -> Usa500, UsaTec and UsaRus

There's a csv file for all those markets and one with all in one.

Note: the MinDol, Swi20 and Neth25 data were taken by it's monthly contract, because MetaTrader5 don't have their historical series (like S&P 500, that has the 'Usa500' and 'Usa500Mar24'):

https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F17272056%2Fefa5c9f6d7841c496d20d467d4a1c874%2Ffutures_dailycontract.png?generation=1704756245532483&alt=media" alt="">

MT5 Library: (I used PyCharm because the i couldn't be able to use the mt5 library on GoogleColab)

import MetaTrader5 as mt5
import pandas as pd
import numpy as np
import pytz
from datetime import datetime

if not mt5.initialize(login= , server= "server", password=""):
# you can use your login and password if you have an account on a broker to use mt5
  print("initialize() failed, error code =", mt5.last_error())
  quit()


symbols = mt5.symbols_get()

list_symbols = []
for num in range(0, len(symbols)):
  list_symbols.append(symbols[num].name)

print(list_symbols)

list_futures = ['Aus200', 'Bra50', 'Esp35', 'Fra40', 'Ger40', 'HKInd', 'Ita40Mar24', 'Jp225', 'MinDolFeb24', 'Neth25Jan24', 'UK100', 'Usa500', 'UsaRus', 'UsaTec', 'Swi20Mar24']
time_frame = mt5.TIMEFRAME_D1
dynamic_vars = {}

time_zone = pytz.timezone('Etc/UTC')

time_start = datetime(2017, 1, 1, tzinfo= time_zone)
time_end = datetime(2023, 12, 31, tzinfo= time_zone)

for sym in list_futures:
  var = f'{sym}'
  rates = mt5.copy_rates_range(sym, time_frame, time_start, time_end)

  rates_frame = pd.DataFrame(rates)
  rates_frame['time'] = pd.to_datetime(rates_frame['time'], unit='s')
  rates_frame = rates_frame[['time', 'close']]
  rates_frame.rename(columns = {'close': var}, inplace = True)
  dynamic_vars[var] = rates_frame

  dynamic_vars[sym].to_csv(f'{sym}.csv', index = False)
Search
Clear search
Close search
Google apps
Main menu