Facebook
TwitterThe three digital maps provided in this product aim to assess the degree of Offshore windfarm siting suitability existing over the geographical area extent with a focal point where waters of France, Ireland and UK meet. The maps display respectively the spatial distribution of the average and lowest windfarm siting suitability scores along with the average wind speed distribution over a time period of 10 years. They are part of a process set up to assess the fit for use quality of the currently available datasets to support a preliminary selection of potential offshore sites for wind energy development. To build these maps, GIS tools were applied to several key spatial datasets from the 5 data type domains considered in the project: Air, Marine Water, Riverbed/Seabed, Biota/Biology and Human Activities, collated during the initial stages of the project. Initially, each selected dataset was formatted and clipped to the study area extent and spatially classified according to suitability scores, to define raster layers with the variables depicting levels of current anthropogenic and environmental spatial occupation of activities, seabed depth and slope, distances to shoreline, shipping intensity, mean significant wave height, and substrate type. These pre-processed layers were employed as inputs for applying a spatial multi-criteria model using a wind farming suitability classification based on a discrete 5 grades index, ranging from Very Low up to Very High suitability. In adition to suitability maps, an average wind speed spatial distribution map for a 10 years period, at 10 m height, was obtained over the study area from the raster processing of a wind speed time series of monthly means available from daily wind analysis data. The characteristics of the datasets used in this exercise underwent an appropriateness evaluation procedure based on a comparison between their measured quality and those specified for the product. The most part of the area was classified with low scores due to the high depths, unsuited seafloor and remote location in average 350 km from land, despite the low presence of human activities. All the spatial information made available in these maps and from the subsequent appropriateness analysis of the datasets, contributes to a clearer overview of the amount of public-access baseline knowledge currently existing for the North Atlantic basin area.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The period 1691 to 1729 was a time of relative inactivity for exploration in areas of concern to New France and England. The main journeys were out of Louisiana to explore the Mississippi and its tributaries, and, much further north, there were some forays into Hudson Bay conducted or ordered by Henry Kelsey of the Hudson's Bay Company. Nine explorer routes are shown: Le Sueur (1700 to 1701), Bourgmont (1714), Kelsey (1690 to 1692), Stuart (1715 to 1716), De Vincennes (1696 to 1704), Louis Jolliet (1694), De Courtemanche (1704), Kelsey (1719) and Scroggs and Norton (1722). The map also shows the extent of territory known to Europeans and the navigation of all exploration routes in the period 1651 to 1760. The historical names found on the map are derived from contemporaneous maps and written documents of the period.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Digital Map Market Size 2025-2029
The digital map market size is forecast to increase by USD 31.95 billion at a CAGR of 31.3% between 2024 and 2029.
The market is driven by the increasing adoption of intelligent Personal Digital Assistants (PDAs) and the availability of location-based services. PDAs, such as smartphones and smartwatches, are becoming increasingly integrated with digital map technologies, enabling users to navigate and access real-time information on-the-go. The integration of Internet of Things (IoT) enables remote monitoring of cars and theft recovery. Location-based services, including mapping and navigation apps, are a crucial component of this trend, offering users personalized and convenient solutions for travel and exploration. However, the market also faces significant challenges.
Ensuring the protection of sensitive user information is essential for companies operating in this market, as trust and data security are key factors in driving user adoption and retention. Additionally, the competition in the market is intense, with numerous players vying for market share. Companies must differentiate themselves through innovative features, user experience, and strong branding to stand out in this competitive landscape. Security and privacy concerns continue to be a major obstacle, as the collection and use of location data raises valid concerns among consumers.
What will be the Size of the Digital Map Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
In the market, cartographic generalization and thematic mapping techniques are utilized to convey complex spatial information, transforming raw data into insightful visualizations. Choropleth maps and dot density maps illustrate distribution patterns of environmental data, economic data, and demographic data, while spatial interpolation and predictive modeling enable the estimation of hydrographic data and terrain data in areas with limited information. Urban planning and land use planning benefit from these tools, facilitating network modeling and location intelligence for public safety and emergency management.
Spatial regression and spatial autocorrelation analyses provide valuable insights into urban development trends and patterns. Network analysis and shortest path algorithms optimize transportation planning and logistics management, enhancing marketing analytics and sales territory optimization. Decision support systems and fleet management incorporate 3D building models and real-time data from street view imagery, enabling effective resource management and disaster response. The market in the US is experiencing robust growth, driven by the integration of Geographic Information Systems (GIS), Global Positioning Systems (GPS), and advanced computer technology into various industries.
How is this Digital Map Industry segmented?
The digital map industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Application
Navigation
Geocoders
Others
Type
Outdoor
Indoor
Solution
Software
Services
Deployment
On-premises
Cloud
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
Indonesia
Japan
South Korea
Rest of World (ROW)
By Application Insights
The navigation segment is estimated to witness significant growth during the forecast period. Digital maps play a pivotal role in various industries, particularly in automotive applications for driver assistance systems. These maps encompass raster data, aerial photography, government data, and commercial data, among others. Open-source data and proprietary data are integrated to ensure map accuracy and up-to-date information. Map production involves the use of GPS technology, map projections, and GIS software, while map maintenance and quality control ensure map accuracy. Location-based services (LBS) and route optimization are integral parts of digital maps, enabling real-time navigation and traffic data.
Data validation and map tiles ensure data security. Cloud computing facilitates map distribution and map customization, allowing users to access maps on various devices, including mobile mapping and indoor mapping. Map design, map printing, and reverse geocoding further enhance the user experience. Spatial analysis and data modeling are essential for data warehousing and real-time navigation. The automotive industry's increasing adoption of connected cars and long-term evolution (LTE) technologies have fueled the demand for digital maps. These maps enable driver assistance applications,
Facebook
TwitterGeolocet's Administrative Boundaries Spatial Data serves as the gateway to visualizing geographic distributions and patterns with precision. The comprehensive dataset covers all European countries, encompassing the boundaries of each country, as well as its political and statistical divisions. Tailoring data purchases to exact needs is possible, allowing for the selection of individual levels of geography or bundling all levels for a country with a discount. The seamless integration of administrative boundaries onto digital maps transforms raw data into actionable insights.
🌐 Coverage Across European Countries
Geolocet's Administrative Boundaries Data offers coverage across all European countries, ensuring access to the most up-to-date and accurate geographic information. From national borders to the finest-grained administrative units, this data enables informed choices based on verified and official sources.
🔍 Geographic Context for Strategic Decisions
Understanding the geographical context is crucial for strategic decision-making. Geolocet's Administrative Boundaries Spatial Data empowers exploration of geo patterns, planning expansions, analysis of regional demographics, and optimization of operations with precision. Whether it is for establishing new business locations, efficient resource allocation, or policy impact analysis, this data provides the essential geographic context for success.
🌍 Integration with Geolocet’s Demographic Data
The integration of Geolocet's Administrative Boundaries Spatial Data with Geolocet's Demographic Data creates a synergy that enriches insights. The combination of administrative boundaries and demographic information offers a comprehensive understanding of regions and their unique characteristics. This integration enables tailoring of strategies, marketing campaigns, and resource allocation to specific areas with confidence.
🌍 Integration with Geolocet’s POI Data
Combining Geolocet's Administrative Boundaries Spatial Data with our POI (Points of Interest) Data unveils not only the administrative divisions but also insights into the local characteristics of these areas. Overlaying POI data on administrative boundaries reveals details about the number and types of businesses, services, and amenities within specific regions. Whether conducting market research, identifying prime locations for retail outlets, or analyzing the accessibility of essential services, this combined data empowers a holistic view of target areas.
🔍 Customized Data Solutions with DaaS
Geolocet's Data as a Service (DaaS) model offers flexibility tailored to specific needs. The transparent pricing model ensures cost-efficiency, allowing payment solely for the required data. Whether nationwide administrative boundary data or specific regional details are needed, Geolocet provides a solution to match individual objectives. Contact us today to explore how Geolocet's Administrative Boundaries Spatial Data can elevate decision-making processes and provide the essential geographic data for success.
Facebook
TwitterGet an accurate and fresh 2D geospatial representation of the world's road networks, points of interest (POIs), land use and land cover across the globe.
Across multiple industries, you can select the best map type and location content products for your specific use case or application. Build your own tailored interactive map with road segments, addresses, cartographic data and administrative areas.
HERE Maps can be further enriched with additional curated and specialized location content products that enable you to build differentiating location-enabled services and applications.
Facebook
TwitterThis project systematically processed high-resolution and manuscript historical maps to unlock a dormant body of information about the historical development of cities and regions during periods of structural economic transformation.
The work was organised across six interlinked work packages, combining empirical and theoretical analysis in the UK, France, and Canada. Outputs included peer-reviewed publications and robust algorithms for extracting spatial data from historical sources, contributing valuable tools and insights to the fields of urban economics and economic history.
This data package contains three segmentation codes designed to extract features and segment historical maps.
Little is known about the patterns of city development during the structural transformation of economies. This project will systematically process high-resolution and manuscript historical maps to make a dormant body of information about our cities' and regions' past accessible.
The proposed research will advance our understanding of long-run urban growth through the development of three innovative methodologies, which will overcome practical limitations of historical data sources: 1) A technique to extract land use patterns from historical colour maps applied to France (1750-1950); 2) A recognition algorithm to detect, tag and geo-locate points of interest in historical high-quality maps of the 70 largest urban centre in England and Wales; 3) An algorithm to geo-locate address information from Micro-censuses and trade registers.
We have identified four main research questions that will be developed in the following separate research projects. In Project 1, the main question is: what are the long-term empirical patterns of urban development, most notably the persistence of the spatial organisation of economic activity and the role of building infrastructure in shaping such persistence? In Project 2, the main question is: How do environmental disamenities and their unequal distribution within cities affect the spatial organisation of consumption amenities and production? In Project 3, the main question is: Do cities grow towards their bad parts, their neighbourhoods with the lowest environmental amenities? In Project 4, the main question is: How does vertical growth and advances in building technologies affect the spatial organisation of cities?
To address these research questions, we will organise our workflow in six inter-connected work packages (WP):
WP1--Classification of land use in France (1750-2015): The objective of WP1 will be to recover land use information at a fine scale from digitised maps using state-of-the-art machine learning techniques;
WP2--Digitisation of micro-features embedded in Ordnance Survey (OS) city maps of England and Wales (1870-1960);
WP3--Geo-localization of residents and production units in England and Wales (1851-1911);
WP4--Dynamic model of city growth with persistent building stock: WP4 builds a general equilibrium model of spatial economic activity that embeds the durability of housing and infrastructure and exploits the three hundred years of population settlement data produced in WP1;
WP5--Pollution and the long-run development of cities: WP5 builds on WP2,3 and proposes to study the joint dynamics of residential sorting and the location of production within cities to understand how a major environmental disamenity-industrial pollution-affects the spatial organisation of cities in the longer-run;
WP6--Horizontal and vertical urban growth in Montreal and Toronto: WP6 will bridge between the previous working packages WP1, WP2, WP4 and WP5, and study--empirically and theoretically--horizontal and vertical urban growth.
The project will be jointly led by three teams. The French team will be composed of Gobillon (PI), Combes (CoI) and Duranton (TM) who have contributed to the development of major theoretical approaches in urban economics. The Canadian team will be led by Heblich (PI), who is a lead researcher in urban economics/economic history, and Fortin (Co-I), a lead in GIS analysis. The UK team will be led by Zylberberg (PI), who is an economist specialist in data extraction form historical sources and remote sensing. Shaw-Taylor and Schürer, advisory board, will help design the analysis of the population micro-censuses between 1851 and 1911 (WP3). The collaboration partner, Redding (TM), involved in the design of WP3 and the implementation of WP6, is one of the World lead researchers in urban economics.
Outputs will include articles in top economic journals, and detailed algorithms to extract relevant spatial information from manuscript maps.
Facebook
TwitterExploration in the period 1731 to 1757 was dominated by the rapid thrust of French exploration into the western interior of Canada, particularly by Pierre Gaultier de la Vérendrye and his five sons who made nine expeditions between 1731 to 1743. As well, the map shows the exploration routes of other explorers sponsored either by New France or by England: Mallet (1739), De Niverville (1751), Henday (1754 to 1755) and Smith and Waggoner (1756 to 1757). The map also shows the extent of territory known to Europeans and the navigation of all exploration routes in the period 1651 to 1760. The historical names found on the map are derived from contemporaneous maps and written documents of the period.
Facebook
Twitterhttps://portal.medin.org.uk/portal/?tpc=015_a51a62ee9c1a57eea096dc9ab2adb503&licensehttps://portal.medin.org.uk/portal/?tpc=015_a51a62ee9c1a57eea096dc9ab2adb503&license
"The aim of the Eastern English Channel Marine Habitat Map (EECMHM) study is to produce integrated regional habitat maps. The principal driver is the planned exploitation of substantial marine aggregate resources in this area and the need to place these resources in a wider spatial context to inform management decicisionsrelating to sustainable use and conservation. The EECMHM study provides this context through regional scale geological and biological interpretations and will contribute to the effective stewardship of the marine environment by providing broader understanding of how the potential resource areas relate to the wider wider regional ecology and physical processes. The study area covers an extensive sea bed area of approximately 5090km² between Selsey Bill and Dungeness, out to the UK/France median line, centred on ten current aggregate licence application areas."
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The period 1691 to 1729 was a time of relative inactivity for exploration in areas of concern to New France and England. The main journeys were out of Louisiana to explore the Mississippi and its tributaries, and, much further north, there were some forays into Hudson Bay conducted or ordered by Henry Kelsey of the Hudson's Bay Company. Nine explorer routes are shown: Le Sueur (1700 to 1701), Bourgmont (1714), Kelsey (1690 to 1692), Stuart (1715 to 1716), De Vincennes (1696 to 1704), Louis Jolliet (1694), De Courtemanche (1704), Kelsey (1719) and Scroggs and Norton (1722). The map also shows the extent of territory known to Europeans and the navigation of all exploration routes in the period 1651 to 1760. The historical names found on the map are derived from contemporaneous maps and written documents of the period.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Contained within the 4th Edition (1974) of the Atlas of Canada is a map that shows locations of fur trading posts for the period 1600 to 1870. The first known owner of the post (France, England, Canadian independent, XY Company, North West Company or Hudson's Bay Company) and the known length of operation are noted on the map. Two supplementary texts accompany the map with background information on post owners as well as a condensed history of the Canadian fur trade.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Geographic Information System Analytics Market Size 2024-2028
The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.
The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
What will be the Size of the GIS Analytics Market during the forecast period?
Request Free Sample
The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
How is this Geographic Information System Analytics Industry segmented?
The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
End-user
Retail and Real Estate
Government
Utilities
Telecom
Manufacturing and Automotive
Agriculture
Construction
Mining
Transportation
Healthcare
Defense and Intelligence
Energy
Education and Research
BFSI
Components
Software
Services
Deployment Modes
On-Premises
Cloud-Based
Applications
Urban and Regional Planning
Disaster Management
Environmental Monitoring Asset Management
Surveying and Mapping
Location-Based Services
Geospatial Business Intelligence
Natural Resource Management
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
South Korea
Middle East and Africa
UAE
South America
Brazil
Rest of World
By End-user Insights
The retail and real estate segment is estimated to witness significant growth during the forecast period.
The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.
The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector, gover
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Locations identified for repeat litter surveys. Includes information on accessibility, availability of pubic facilities, current waste management protocols and the presence or absence of wastewater outfalls.The Preventing Plastic Pollution initiative is supported by the Interreg France (Channel) England programme, funded by the European Regional Development Fund.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
GIS Market Size 2025-2029
The GIS market size is forecast to increase by USD 24.07 billion, at a CAGR of 20.3% between 2024 and 2029.
The Global Geographic Information System (GIS) market is experiencing significant growth, driven by the increasing integration of Building Information Modeling (BIM) and GIS technologies. This convergence enables more effective spatial analysis and decision-making in various industries, particularly in soil and water management. However, the market faces challenges, including the lack of comprehensive planning and preparation leading to implementation failures of GIS solutions. Companies must address these challenges by investing in thorough project planning and collaboration between GIS and BIM teams to ensure successful implementation and maximize the potential benefits of these advanced technologies.
By focusing on strategic planning and effective implementation, organizations can capitalize on the opportunities presented by the growing adoption of GIS and BIM technologies, ultimately driving operational efficiency and innovation.
What will be the Size of the GIS Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
The global Geographic Information Systems (GIS) market continues to evolve, driven by the increasing demand for advanced spatial data analysis and management solutions. GIS technology is finding applications across various sectors, including natural resource management, urban planning, and infrastructure management. The integration of Bing Maps, terrain analysis, vector data, Lidar data, and Geographic Information Systems enables precise spatial data analysis and modeling. Hydrological modeling, spatial statistics, spatial indexing, and route optimization are essential components of GIS, providing valuable insights for sectors such as public safety, transportation planning, and precision agriculture. Location-based services and data visualization further enhance the utility of GIS, enabling real-time mapping and spatial analysis.
The ongoing development of OGC standards, spatial data infrastructure, and mapping APIs continues to expand the capabilities of GIS, making it an indispensable tool for managing and analyzing geospatial data. The continuous unfolding of market activities and evolving patterns in the market reflect the dynamic nature of this technology and its applications.
How is this GIS Industry segmented?
The GIS industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Software
Data
Services
Type
Telematics and navigation
Mapping
Surveying
Location-based services
Device
Desktop
Mobile
Geography
North America
US
Canada
Europe
France
Germany
UK
Middle East and Africa
UAE
APAC
China
Japan
South Korea
South America
Brazil
Rest of World (ROW)
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.
The Global Geographic Information System (GIS) market encompasses a range of applications and technologies, including raster data, urban planning, geospatial data, geocoding APIs, GIS services, routing APIs, aerial photography, satellite imagery, GIS software, geospatial analytics, public safety, field data collection, transportation planning, precision agriculture, OGC standards, location intelligence, remote sensing, asset management, network analysis, spatial analysis, infrastructure management, spatial data standards, disaster management, environmental monitoring, spatial modeling, coordinate systems, spatial overlay, real-time mapping, mapping APIs, spatial join, mapping applications, smart cities, spatial data infrastructure, map projections, spatial databases, natural resource management, Bing Maps, terrain analysis, vector data, Lidar data, and geographic information systems.
The software segment includes desktop, mobile, cloud, and server solutions. Open-source GIS software, with its industry-specific offerings, poses a challenge to the market, while the adoption of cloud-based GIS software represents an emerging trend. However, the lack of standardization and interoperability issues hinder the widespread adoption of cloud-based solutions. Applications in sectors like public safety, transportation planning, and precision agriculture are driving market growth. Additionally, advancements in technologies like remote sensing, spatial modeling, and real-time mapping are expanding the market's scope.
Request Free Sample
The Software segment was valued at USD 5.06 billion in 2019 and sho
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for INTEREST RATE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Exploration in the period 1731 to 1757 was dominated by the rapid thrust of French exploration into the western interior of Canada, particularly by Pierre Gaultier de la Vérendrye and his five sons who made nine expeditions between 1731 to 1743. As well, the map shows the exploration routes of other explorers sponsored either by New France or by England: Mallet (1739), De Niverville (1751), Henday (1754 to 1755) and Smith and Waggoner (1756 to 1757). The map also shows the extent of territory known to Europeans and the navigation of all exploration routes in the period 1651 to 1760. The historical names found on the map are derived from contemporaneous maps and written documents of the period.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
GIS In Telecom Sector Market Size 2025-2029
The GIS in telecom sector market size is valued to increase USD 2.35 billion, at a CAGR of 15.7% from 2024 to 2029. Increased use of GIS for capacity planning will drive the GIS in telecom sector market.
Major Market Trends & Insights
APAC dominated the market and accounted for a 28% growth during the forecast period.
By Product - Software segment was valued at USD 470.60 billion in 2023
By Deployment - On-premises segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 256.91 million
Market Future Opportunities: USD 2350.30 million
CAGR from 2024 to 2029: 15.7%
Market Summary
The market is experiencing significant growth as communication companies increasingly adopt Geographic Information Systems (GIS) for network planning and optimization. Core technologies, such as satellite imagery and location-based services, are driving this trend, enabling telecom providers to improve network performance and customer experience. One major application of GIS in the telecom sector is capacity planning, which allows companies to optimize their network infrastructure based on real-time data.
However, the integration of GIS with big data and other advanced technologies presents a communication gap between developers and end-users, requiring a focus on user-friendly interfaces and training programs. Additionally, regulatory compliance and data security remain significant challenges for the market. Despite these hurdles, the opportunities for innovation and improved operational efficiency make the market an exciting and evolving space.
What will be the Size of the GIS In Telecom Sector Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the GIS In Telecom Sector Market Segmented ?
The GIS in telecom sector industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Software
Data
Services
Deployment
On-premises
Cloud
Application
Mapping
Telematics and navigation
Surveying
Location based services
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
Japan
South Korea
South America
Brazil
Rest of World (ROW)
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.
The global telecom sector's reliance on Geographic Information Systems (GIS) continues to expand, with the market for GIS in telecoms projected to grow significantly. According to recent industry reports, the market for GIS data visualization and spatial data infrastructure in telecoms has experienced a notable increase of 18.7% in the past year. Furthermore, the demand for advanced spatial analysis tools, such as building penetration analysis, geospatial asset management, and work order management systems, has risen by 21.3%. Telecom companies utilize GIS for network performance monitoring, data integration platforms, and network planning. For instance, GIS enables network design, radio frequency interference analysis, route optimization software, mobile network optimization, signal propagation modeling, and service area mapping.
Request Free Sample
The Software segment was valued at USD 470.60 billion in 2019 and showed a gradual increase during the forecast period.
Additionally, it plays a crucial role in infrastructure management, location-based services, emergency response planning, maintenance scheduling, and telecom network design. Moreover, the adoption of 3D GIS modeling, LIDAR data processing, and customer location mapping has gained traction, contributing to the market's expansion. The future outlook is promising, with industry experts anticipating a 25.6% increase in the use of GIS for telecom network capacity planning and telecom outage prediction. These trends underscore the continuous evolution of the market and its applications across various sectors.
Request Free Sample
Regional Analysis
APAC is estimated to contribute 28% to the growth of the global market during the forecast period. Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
See How GIS In Telecom Sector Market Demand is Rising in APAC Request Free Sample
In China, the construction of smart cities in Qingdao, Hangzhou, and Xiamen, among others, is driving the demand for Geographic Information Systems (GIS) in various sectors. By 2025, China aims to build more smart cities, leading to significant growth opportunities for GIS companies. Esri Global Inc., a leading player
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterThe three digital maps provided in this product aim to assess the degree of Offshore windfarm siting suitability existing over the geographical area extent with a focal point where waters of France, Ireland and UK meet. The maps display respectively the spatial distribution of the average and lowest windfarm siting suitability scores along with the average wind speed distribution over a time period of 10 years. They are part of a process set up to assess the fit for use quality of the currently available datasets to support a preliminary selection of potential offshore sites for wind energy development. To build these maps, GIS tools were applied to several key spatial datasets from the 5 data type domains considered in the project: Air, Marine Water, Riverbed/Seabed, Biota/Biology and Human Activities, collated during the initial stages of the project. Initially, each selected dataset was formatted and clipped to the study area extent and spatially classified according to suitability scores, to define raster layers with the variables depicting levels of current anthropogenic and environmental spatial occupation of activities, seabed depth and slope, distances to shoreline, shipping intensity, mean significant wave height, and substrate type. These pre-processed layers were employed as inputs for applying a spatial multi-criteria model using a wind farming suitability classification based on a discrete 5 grades index, ranging from Very Low up to Very High suitability. In adition to suitability maps, an average wind speed spatial distribution map for a 10 years period, at 10 m height, was obtained over the study area from the raster processing of a wind speed time series of monthly means available from daily wind analysis data. The characteristics of the datasets used in this exercise underwent an appropriateness evaluation procedure based on a comparison between their measured quality and those specified for the product. The most part of the area was classified with low scores due to the high depths, unsuited seafloor and remote location in average 350 km from land, despite the low presence of human activities. All the spatial information made available in these maps and from the subsequent appropriateness analysis of the datasets, contributes to a clearer overview of the amount of public-access baseline knowledge currently existing for the North Atlantic basin area.