CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Explore our anonymized card fraud detection dataset, perfect for developing robust machine learning models.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
As a data contributor, I'm sharing this crucial dataset focused on the detection of fraudulent credit card transactions. Recognizing these illicit activities is paramount for protecting customers and the integrity of financial systems.
About the Dataset:
This dataset encompasses credit card transactions made by European cardholders during a two-day period in September 2013. It presents a real-world scenario with a significant class imbalance, where fraudulent transactions are considerably less frequent than legitimate ones. Out of a total of 284,807 transactions, only 492 are instances of fraud, representing a mere 0.172% of the entire dataset.
Content of the Data:
Due to confidentiality concerns, the majority of the input features in this dataset have undergone a Principal Component Analysis (PCA) transformation. This means the original meaning and context of features V1, V2, ..., V28 are not directly provided. However, these principal components capture the variance in the underlying transaction data.
The only features that have not been transformed by PCA are:
The target variable for this classification task is:
Important Note on Evaluation:
Given the substantial class imbalance (far more legitimate transactions than fraudulent ones), traditional accuracy metrics based on the confusion matrix can be misleading. It is strongly recommended to evaluate models using the Area Under the Precision-Recall Curve (AUPRC), as this metric is more sensitive to the performance on the minority class (fraudulent transactions).
How to Use This Dataset:
Acknowledgements and Citation:
This dataset has been collected and analyzed through a research collaboration between Worldline and the Machine Learning Group (MLG) of ULB (Université Libre de Bruxelles).
When using this dataset in your research or projects, please cite the following works as appropriate:
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by Rupeswara Babu Sangoju
Released under Apache 2.0
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset from https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
The dataset contains transactions made by credit cards in September 2013 by European cardholders.
This dataset presents transactions that occurred in two days, where we have 492 frauds out of 284,807 transactions. The dataset is highly unbalanced, the positive class (frauds) account for 0.172% of all transactions.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This dataset is designed to support research and model development in the area of fraud detection. It consists of real-world credit card transactions made by European cardholders over a two-day period in September 2013. Out of 284,807 transactions, 492 are labeled as fraudulent (positive class), making this a highly imbalanced classification problem.
Due to the extreme class imbalance, standard accuracy metrics are not informative. We recommend using the Area Under the Precision-Recall Curve (AUPRC) or F1-score for model evaluation.
The dataset is provided under the CC0 (Public Domain) license, allowing users to freely use, modify, and distribute the data without any restrictions.
The dataset has been collected and analysed during a research collaboration of Worldline and the Machine Learning Group (http://mlg.ulb.ac.be) of ULB (Université Libre de Bruxelles) on big data mining and fraud detection. More details on current and past projects on related topics are available on https://www.researchgate.net/project/Fraud-detection-5 and the page of the DefeatFraud project
Please cite the following works:
Andrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca Bontempi. Calibrating Probability with Undersampling for Unbalanced Classification. In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015
Dal Pozzolo, Andrea; Caelen, Olivier; Le Borgne, Yann-Ael; Waterschoot, Serge; Bontempi, Gianluca. Learned lessons in credit card fraud detection from a practitioner perspective, Expert systems with applications,41,10,4915-4928,2014, Pergamon
Dal Pozzolo, Andrea; Boracchi, Giacomo; Caelen, Olivier; Alippi, Cesare; Bontempi, Gianluca. Credit card fraud detection: a realistic modeling and a novel learning strategy, IEEE transactions on neural networks and learning systems,29,8,3784-3797,2018,IEEE
Dal Pozzolo, Andrea Adaptive Machine learning for credit card fraud detection ULB MLG PhD thesis (supervised by G. Bontempi)
Carcillo, Fabrizio; Dal Pozzolo, Andrea; Le Borgne, Yann-Aël; Caelen, Olivier; Mazzer, Yannis; Bontempi, Gianluca. Scarff: a scalable framework for streaming credit card fraud detection with Spark, Information fusion,41, 182-194,2018,Elsevier
Carcillo, Fabrizio; Le Borgne, Yann-Aël; Caelen, Olivier; Bontempi, Gianluca. Streaming active learning strategies for real-life credit card fraud detection: assessment and visualization, International Journal of Data Science and Analytics, 5,4,285-300,2018,Springer International Publishing
Bertrand Lebichot, Yann-Aël Le Borgne, Liyun He, Frederic Oblé, Gianluca Bontempi Deep-Learning Domain Adaptation Techniques for Credit Cards Fraud Detection, INNSBDDL 2019: Recent Advances in Big Data and Deep Learning, pp 78-88, 2019
Fabrizio Carcillo, Yann-Aël Le Borgne, Olivier Caelen, Frederic Oblé, Gianluca Bontempi Combining Unsupervised and Supervised Learning in Credit Card Fraud Detection Information Sciences, 2019
Yann-Aël Le Borgne, Gianluca Bontempi Reproducible machine Learning for Credit Card Fraud Detection - Practical Handbook
Bertrand Lebichot, Gianmarco Paldino, Wissam Siblini, Liyun He, Frederic Oblé, Gianluca Bontempi Incremental learning strategies for credit cards fraud detection, IInternational Journal of Data Science and Analytics
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Below is a draft DMP–style description of your credit‐card fraud detection experiment, modeled on the antiquities example:
Research Domain
This work resides in the domain of financial fraud detection and applied machine learning. We focus on detecting anomalous credit‐card transactions in real time to reduce financial losses and improve trust in digital payment systems.
Purpose
The goal is to train and evaluate a binary classification model that flags potentially fraudulent transactions. By publishing both the code and data splits via FAIR repositories, we enable reproducible benchmarking of fraud‐detection algorithms and support future research on anomaly detection in transaction data.
Data Sources
We used the publicly available credit‐card transaction dataset from Kaggle (original source: https://www.kaggle.com/mlg-ulb/creditcardfraud), which contains anonymized transactions made by European cardholders over two days in September 2013. The dataset includes 284 807 transactions, of which 492 are fraudulent.
Method of Dataset Preparation
Schema validation: Renamed columns to snake_case (e.g. transaction_amount
, is_declined
) so they conform to DBRepo’s requirements.
Data import: Uploaded the full CSV into DBRepo, assigned persistent identifiers (PIDs).
Splitting: Programmatically derived three subsets—training (70%), validation (15%), test (15%)—using range‐based filters on the primary key actionnr
. Each subset was materialized in DBRepo and assigned its own PID for precise citation.
Cleaning: Converted the categorical flags (is_declined
, isforeigntransaction
, ishighriskcountry
, isfradulent
) from “Y”/“N” to 1/0 and dropped non‐feature identifiers (actionnr
, merchant_id
).
Modeling: Trained a RandomForest classifier on the training split, tuned on validation, and evaluated on the held‐out test set.
Dataset Structure
The raw data is a single CSV with columns:
actionnr
(integer transaction ID)
merchant_id
(string)
average_amount_transaction_day
(float)
transaction_amount
(float)
is_declined
, isforeigntransaction
, ishighriskcountry
, isfradulent
(binary flags)
total_number_of_declines_day
, daily_chargeback_avg_amt
, sixmonth_avg_chbk_amt
, sixmonth_chbk_freq
(numeric features)
Naming Conventions
All columns use lowercase snake_case.
Subsets are named creditcard_training
, creditcard_validation
, creditcard_test
in DBRepo.
Files in the code repo follow a clear structure:
├── data/ # local copies only; raw data lives in DBRepo
├── notebooks/Task.ipynb
├── models/rf_model_v1.joblib
├── outputs/ # confusion_matrix.png, roc_curve.png, predictions.csv
├── README.md
├── requirements.txt
└── codemeta.json
Required Software
Python 3.9+
pandas, numpy (data handling)
scikit-learn (modeling, metrics)
matplotlib (visualizations)
dbrepo‐client.py (DBRepo API)
requests (TU WRD API)
Additional Resources
Original dataset: https://www.kaggle.com/mlg-ulb/creditcardfraud
Scikit-learn docs: https://scikit-learn.org/stable
DBRepo API guide: via the starter notebook’s dbrepo_client.py
template
TU WRD REST API spec: https://test.researchdata.tuwien.ac.at/api/docs
Data Limitations
Highly imbalanced: only ~0.17% of transactions are fraudulent.
Anonymized PCA features (V1
–V28
) hidden; we extended with domain features but cannot reverse engineer raw variables.
Time‐bounded: only covers two days of transactions, may not capture seasonal patterns.
Licensing and Attribution
Raw data: CC-0 (per Kaggle terms)
Code & notebooks: MIT License
Model artifacts & outputs: CC-BY 4.0
DUWRD records include ORCID identifiers for the author.
Recommended Uses
Benchmarking new fraud‐detection algorithms on a standard imbalanced dataset.
Educational purposes: demonstrating model‐training pipelines, FAIR data practices.
Extension: adding time‐series or deep‐learning models.
Known Issues
Possible temporal leakage if date/time features not handled correctly.
Model performance may degrade on live data due to concept drift.
Binary flags may oversimplify nuanced transaction outcomes.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global credit card fraud detection platform market is experiencing robust growth, driven by the escalating volume of digital transactions and the increasing sophistication of fraudulent activities. While precise figures for market size and CAGR are not provided, based on industry reports and observed trends, a reasonable estimation places the 2025 market size at approximately $15 billion. Considering the rapid adoption of advanced technologies like AI and machine learning in fraud detection, a conservative Compound Annual Growth Rate (CAGR) of 15% is projected for the forecast period (2025-2033). This growth is fueled by several factors, including the rising prevalence of e-commerce, the expanding adoption of mobile payments, and the increasing demand for robust security solutions from both personal and enterprise users. The market is segmented by screening type (manual and automatic) and application (personal and enterprise), with the automatic screening and enterprise segments expected to witness faster growth due to their efficiency and scalability. The competitive landscape is highly dynamic, with a mix of established players like Visa, Mastercard, and FICO, alongside innovative technology companies like Kount, Riskified, and Feedzai. These companies are continuously developing and deploying advanced algorithms and analytics to stay ahead of evolving fraud techniques. Regional growth varies, with North America and Europe currently holding significant market share, though Asia-Pacific is projected to exhibit rapid expansion due to increasing internet penetration and e-commerce adoption in developing economies. Challenges to market growth include the high cost of implementation and maintenance of these platforms, along with the need for continuous updates to counter evolving fraud tactics. However, the increasing financial losses incurred due to fraud are incentivizing businesses and consumers to invest in more sophisticated fraud detection solutions, thereby sustaining the market's upward trajectory.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global credit card fraud detection platform market is experiencing robust growth, driven by the increasing prevalence of digital transactions and the sophistication of fraudulent activities. The market, estimated at $15 billion in 2025, is projected to maintain a healthy Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $45 billion by 2033. This expansion is fueled by several key factors: the rising adoption of e-commerce and mobile payments, the increasing volume of online transactions, the growing need for robust security measures among businesses to protect customer data and prevent financial losses, and the continuous evolution of fraud techniques necessitating advanced detection capabilities. Furthermore, the increasing regulatory scrutiny and compliance requirements are pushing organizations to invest heavily in sophisticated fraud detection systems. The market is segmented by deployment (cloud-based and on-premise), by organization size (small, medium, and large enterprises), and by industry vertical (banking, financial services, and insurance, retail, healthcare, and others). Key players in this dynamic market include established companies like Kount, ClearSale, Stripe Radar, Riskified, and FICO, alongside emerging technology providers like Akkio and Dataiku. These companies are constantly innovating to improve detection accuracy, reduce false positives, and offer seamless integration with existing payment processing systems. While challenges remain, such as the rising complexity of fraud schemes and the need to balance security with user experience, the market is poised for continued strong growth, driven by technological advancements in machine learning, artificial intelligence, and big data analytics. The increasing adoption of real-time fraud detection and advanced analytics capabilities will further shape the market landscape in the coming years, creating opportunities for both established and emerging players.
https://www.marketresearchintellect.com/de/privacy-policyhttps://www.marketresearchintellect.com/de/privacy-policy
Learn more about Market Research Intellect's Credit Card Fraud Detection Platform Market Report, valued at USD 3.5 billion in 2024, and set to grow to USD 8.2 billion by 2033 with a CAGR of 10.5% (2026-2033).
This dataset was created by Shuvom Dhar
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Credit card fraud can lead to significant financial losses for both individuals and financial institutions. In this paper, we propose a novel method called CTCN, which uses Conditional Tabular Generative Adversarial Networks (CTGAN) and Temporal Convolutional Network (TCN) for credit card fraud detection. Our approach includes an oversampling algorithm that uses CTGAN to balance the dataset, and Neighborhood Cleaning Rule (NCL) to filter out majority class samples that overlap with the minority class. We generate synthetic minority class samples that conform to the original data distribution, resulting in a balanced dataset. We then employ TCN to analyze transaction sequences and capture long-term dependencies between data, revealing potential relationships between transaction sequences, thus achieving accurate credit card fraud detection. Experiments on three public datasets demonstrate that our proposed method outperforms current machine learning and deep learning methods, as measured by recall, F1-Score, and AUC-ROC.
https://gomask.ai/licensehttps://gomask.ai/license
This dataset provides detailed, labeled records of simulated credit card transactions, including transaction amounts, merchant and cardholder information, and fraud indicators. It is ideal for developing and benchmarking machine learning models aimed at detecting fraudulent activity and reducing financial risk in payment systems. The inclusion of transaction context and cardholder demographics supports advanced analytics and feature engineering.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The dataset has been released by [1], which had been collected and analysed during a research collaboration of Worldline and the Machine Learning Group (http://mlg.ulb.ac.be) of Université Libre de Bruxelles (ULB) on big data mining and fraud detection. [1] Pozzolo, A. D., Caelan, O., Johnson, R. A., and Bontempi, G. (2015). Calibrating Probability with Undersampling for Unbalanced Classification. 2015 IEEE Symposium Series on Computational, pp. 159-166, doi: 10.1109/SSCI.2015.33 open source kaggle : https://www.kaggle.com/mlg-ulb/creditcardfraud
https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Credit Card Transactions Dataset includes more than 20 million credit card transactions over the decades of 2,000 U.S. resident consumers created by IBM's simulations, providing details of each transaction and fraudulent labels.
2) Data Utilization (1) Credit Card Transactions Dataset has characteristics that: • This dataset provides a variety of properties that are similar to real credit card transactions, including transaction amount, time, card information, purchase location, and store category (MCC). (2) Credit Card Transactions Dataset can be used to: • Development of Credit Card Fraud Detection Model: Using transaction history and properties, you can build a fraud (abnormal transaction) detection model based on machine learning. • Analysis of consumption patterns and risks: Long-term and diverse transaction data can be used to analyze customer consumption behavior and identify risk factors.
https://gomask.ai/licensehttps://gomask.ai/license
This dataset contains simulated credit card transaction records, including detailed information on transaction amounts, merchant details, geolocation, device usage, and fraud labels. It is designed for training and evaluating fraud detection models, supporting the identification of both typical and anomalous transaction patterns. The dataset is ideal for fintech AI development, security analytics, and research into payment fraud behaviors.
https://gomask.ai/licensehttps://gomask.ai/license
This dataset provides detailed credit card transaction records enriched with fraud suspicion flags, risk scores, and contextual information such as merchant, location, and transaction method. It is ideal for developing, training, and evaluating fraud detection models, as well as for analyzing transaction patterns and identifying emerging fraud tactics in the financial sector.
Fraud Detection And Prevention Market Size 2025-2029
The fraud detection and prevention market size is forecast to increase by USD 122.65 billion, at a CAGR of 30.1% between 2024 and 2029.
The market is witnessing significant growth, driven by the increasing adoption of cloud-based services. Businesses are recognizing the benefits of cloud solutions, such as real-time fraud detection, scalability, and cost savings. Additionally, technological advancements in fraud detection and prevention solutions and services are enabling organizations to better protect their assets from sophisticated fraud schemes. However, the complex IT infrastructure of modern businesses poses a challenge in implementing and integrating these solutions effectively. The complexity of the IT infrastructure, which integrates cloud computing, big data, and mobile devices, creates a vast network of devices with insufficient security features.
To capitalize on market opportunities, companies must stay abreast of these trends and invest in advanced fraud detection technologies. Effective implementation and integration of these solutions, coupled with continuous innovation, will be crucial for businesses seeking to mitigate fraud risks and protect their reputation and financial stability. Furthermore, the constant evolution of fraud techniques necessitates continuous innovation and adaptation from solution providers. Encryption techniques and network security protocols form the foundation of robust cybersecurity defenses, while compliance regulations and penetration testing help identify vulnerabilities and strengthen security posture.
What will be the Size of the Fraud Detection And Prevention Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
The market continues to evolve, driven by the constant emergence of new threats and the need for advanced technologies to mitigate risks across various sectors. Real-time fraud alerts, anomaly detection systems, forensic accounting tools, and risk mitigation strategies are integrated into comprehensive solutions that adapt to the ever-changing fraud landscape. Entities rely on these tools to maintain regulatory compliance frameworks and incident response planning, ensuring access control management and vulnerability assessments are up-to-date. Machine learning algorithms and transaction monitoring tools enable the detection of suspicious activity, providing valuable insights into potential threats.
Intrusion detection systems and behavioral biometrics offer real-time protection against cyberattacks and payment fraud, while identity verification methods and risk scoring models help prevent account takeover and data loss. Cybersecurity threat intelligence and authentication protocols enhance the overall security strategy, providing a layered approach to fraud prevention. Fraud investigation techniques and loss prevention metrics enable entities to respond effectively to incidents and minimize the impact of data breaches. Social engineering countermeasures and payment fraud detection solutions further fortify the fraud prevention arsenal, ensuring continuous protection against evolving threats.
The ongoing dynamism of the market demands a proactive approach, with entities staying informed and agile to maintain a strong defense against fraudulent activities.
How is this Fraud Detection And Prevention Industry segmented?
The fraud detection and prevention industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Component
Solutions
Services
End-user
Large enterprise
SMEs
Application
Transaction monitoring
Compliance and risk management
Identity verification
Behavioral analytics
Others
Geography
North America
US
Canada
Europe
France
Germany
Italy
Russia
UK
APAC
China
India
Japan
Rest of World (ROW)
By Component Insights
The Solutions segment is estimated to witness significant growth during the forecast period. The market is experiencing significant growth due to escalating cyber threats, increasing regulatory compliance requirements, and the need to mitigate financial losses. Biometric authentication, encryption techniques, machine learning algorithms, and intrusion detection systems are among the key solutions driving market expansion. Regulatory frameworks, such as the General Data Protection Regulation (GDPR) and the Health Insurance Portability and Accountability Act (HIPAA), are mandating robust incident response planning, access control management, and data breach prevention strategies. Vulnerability as
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global AI-based fraud detection tools market size was valued at approximately USD 6.5 billion in 2023 and is projected to reach USD 22.8 billion by 2032, growing at a robust CAGR of 15.1% during the forecast period. The significant growth factors driving this market include the increasing sophistication of fraudulent activities, the growing adoption of AI and machine learning technologies in various sectors, and the heightened demand for real-time fraud detection solutions.
One of the primary growth factors for the AI-based fraud detection tools market is the rising complexity of fraudulent activities. In today's digital age, fraudsters are employing increasingly sophisticated techniques to breach security systems, making traditional detection methods inadequate. AI-based solutions, which leverage advanced algorithms and machine learning, are capable of analyzing large volumes of data to identify patterns and anomalies indicative of fraud. This capability is crucial for organizations seeking to protect their assets and maintain customer trust in an environment where cyber threats are continually evolving.
Another significant growth driver is the widespread adoption of AI and machine learning technologies across various industries. Businesses are recognizing the potential of these technologies to enhance their fraud detection capabilities, leading to increased investments in AI-driven solutions. The banking and financial services sector, in particular, has been at the forefront of adopting AI-based fraud detection tools to combat financial crimes such as identity theft, credit card fraud, and money laundering. Furthermore, the retail and e-commerce sectors are increasingly implementing these tools to safeguard against fraudulent transactions and account takeovers.
The growing demand for real-time fraud detection solutions is also propelling the market forward. Traditional fraud detection systems often rely on rule-based approaches that can be slow and reactive, allowing fraudulent activities to go undetected until significant damage has been done. In contrast, AI-based solutions can process and analyze data in real-time, enabling organizations to identify and respond to threats rapidly. This real-time capability is essential for minimizing losses and mitigating risks, particularly in sectors where the speed of transactions is critical, such as online retail and financial services.
Regionally, North America currently dominates the AI-based fraud detection tools market, owing to the high adoption rate of advanced technologies and the presence of major industry players. However, other regions like Asia Pacific and Europe are also experiencing significant growth. Asia Pacific, in particular, is expected to exhibit the highest CAGR during the forecast period, driven by the increasing digitization of economies, rising internet penetration, and the growing awareness of cybersecurity threats. Europe is also witnessing substantial growth due to stringent regulatory requirements and the increasing focus on data privacy and security.
The AI-based fraud detection tools market can be segmented by component into software, hardware, and services. The software segment is expected to hold the largest market share during the forecast period. This dominance can be attributed to the continuous advancements in AI algorithms and machine learning models, which enhance the accuracy and efficiency of fraud detection systems. Furthermore, the software solutions are designed to be scalable and easily integrated into existing systems, making them an attractive option for organizations of all sizes.
Hardware components, though not as dominant as software, play a crucial role in the deployment of AI-based fraud detection systems. High-performance computing hardware, including GPUs and specialized AI processors, are essential for handling the large datasets and complex computations required for real-time fraud detection. As the demand for more powerful and efficient hardware grows, this segment is expected to see steady growth, particularly in large enterprises that require robust infrastructure to support their AI initiatives.
The services segment, encompassing consulting, integration, and maintenance services, is also poised for significant growth. Organizations often lack the in-house expertise required to develop and implement AI-based fraud detection systems, leading to an increased reliance on external service providers. These services help organizations to customize and opti
Card fraud losses across the world increased by more than ** percent between 2020 and 2021, the largest increase since 2018. It was estimated that merchants and card acquirers lost well over ** billion U.S. dollars, with - so the source adds - roughly ** billion U.S. dollar coming from the United States alone. Note that the figures provided here included both credit card fraud and debit card fraud. The source does not separate between the two, and also did not provide figures on the United States - a country known for its reliance on credit cards.
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Credit Card Fraud Detection Platform Market size was valued at USD 3.4 Billion in 2024 and is projected to reach USD 12.44 Billion by 2032, growing at a CAGR of 17.6% during the forecast period 2026 to 2032.Global Credit Card Fraud Detection Platform Market Drivers:The market drivers for the credit card fraud detection platform market can be influenced by various factors. These may include:Rising Incidence of Online Payment Fraud: The increasing number of fraud attempts during online transactions pushes financial institutions to adopt platforms that monitor and detect unauthorized credit card activity in real time.Growth in E-Commerce Transactions: With more consumers shopping online, the volume of card-not-present transactions rises, creating higher exposure to fraud and driving demand for detection platforms to secure digital payments.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Explore our anonymized card fraud detection dataset, perfect for developing robust machine learning models.