Website alows the public full access to the 1940 Census images, census maps and descriptions.
https://www.icpsr.umich.edu/web/ICPSR/studies/7923/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/7923/terms
This data collection consists of modified records from CENSUS OF POPULATION AND HOUSING, 1970 [UNITED STATES]: PUBLIC USE SAMPLES (ICPSR 0018). The original records consisted of 120-character household records and 120-character person records, whereas the new modified records are rectangular (each person record is combined with the corresponding household record) with a length of 188, after the deletion of some items. Additional information was added to the data records, including typical educational requirement for current occupation, occupational prestige score, and group identification code. This version also differs from the original public use census samples in other ways: persons aged 15-75 were included, no majority males were included, but the majority males from CENSUS OF POPULATION AND HOUSING [UNITED STATES], 1970 PUBLIC USE SAMPLE: MODIFIED 1/1000 5% STATE SAMPLES (ICPSR 7922) were included for convenience, 10 percent of the Black population from each file was included, and Mexican Americans (identified by a Spanish surname) from outside the five southwestern states of Arizona, California, Colorado, New Mexico, and Texas were not included in this file. Variables provide information on the housing unit, such as occupancy and vacancy status of house, value of property, commercial use, ratio of rent and property value to family income, availability of plumbing facilities, sewage disposal, complete kitchen facilities, heating facilities, flush toilet, water, television, and telephone. Data are also provided on household characteristics such as household size, family size, and household relationships. Other demographic variables specify age, sex, place of birth, state of residence, Spanish descent, marital status, race, veteran status, income, and ratio of family income to poverty cutoff level. This collection was made available by the National Chicano Research Network of the Institute for Social Research, University of Michigan. See the related collection, CENSUS OF POPULATION AND HOUSING [UNITED STATES], 1970 PUBLIC USE SAMPLE: MODIFIED 1/1000 5% STATE SAMPLES (ICPSR 7922).
The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1910 census data was collected in April 1910. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
This dataset was created on 2020-01-10 23:47:27.924
by merging multiple datasets together. The source datasets for this version were:
IPUMS 1910 households: The Integrated Public Use Microdata Series (IPUMS) Complete Count Data are historic individual and household census records and are a unique source for research on social and economic change.
IPUMS 1910 persons: This dataset includes all individuals from the 1910 US census.
This child item describes Python code used to query census data from the TigerWeb Representational State Transfer (REST) services and the U.S. Census Bureau Application Programming Interface (API). These data were needed as input feature variables for a machine learning model to predict public supply water use for the conterminous United States. Census data were retrieved for public-supply water service areas, but the census data collector could be used to retrieve data for other areas of interest. This dataset is part of a larger data release using machine learning to predict public supply water use for 12-digit hydrologic units from 2000-2020. Data retrieved by the census data collector code were used as input features in the public supply delivery and water use machine learning models. This page includes the following file: census_data_collector.zip - a zip file containing the census data collector Python code used to retrieve data from the U.S. Census Bureau and a README file.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Census statistics play a key role in public policy decisions and social science research. However, given the risk of revealing individual information, many statistical agencies are considering disclosure control methods based on differential privacy, which add noise to tabulated data. Unlike other applications of differential privacy, however, census statistics must be postprocessed after noise injection to be usable. We study the impact of the U.S. Census Bureau’s latest disclosure avoidance system (DAS) on a major application of census statistics, the redrawing of electoral districts. We find that the DAS systematically undercounts the population in mixed-race and mixed-partisan precincts, yielding unpredictable racial and partisan biases. While the DAS leads to a likely violation of the “One Person, One Vote” standard as currently interpreted, it does not prevent accurate predictions of an individual’s race and ethnicity. Our findings underscore the difficulty of balancing accuracy and respondent privacy in the Census.
This collection contains individual-level and 1-percent national sample data from the 1960 Census of Population and Housing conducted by the Census Bureau. It consists of a representative sample of the records from the 1960 sample questionnaires. The data are stored in 30 separate files, containing in total over two million records, organized by state. Some files contain the sampled records of several states while other files contain all or part of the sample for a single state. There are two types of records stored in the data files: one for households and one for persons. Each household record is followed by a variable number of person records, one for each of the household members. Data items in this collection include the individual responses to the basic social, demographic, and economic questions asked of the population in the 1960 Census of Population and Housing. Data are provided on household characteristics and features such as the number of persons in household, number of rooms and bedrooms, and the availability of hot and cold piped water, flush toilet, bathtub or shower, sewage disposal, and plumbing facilities. Additional information is provided on tenure, gross rent, year the housing structure was built, and value and location of the structure, as well as the presence of air conditioners, radio, telephone, and television in the house, and ownership of an automobile. Other demographic variables provide information on age, sex, marital status, race, place of birth, nationality, education, occupation, employment status, income, and veteran status. The data files were obtained by ICPSR from the Center for Social Analysis, Columbia University. (Source: downloaded from ICPSR 7/13/10)
Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR07756.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
Archive of 1971 census aggregate data for England, Wales and Scotland, as made available originally on the Casweb (https://casweb.ukdataservice.ac.uk) platform.
This study was conducted under the auspices of the Center for Studies in Demography and Ecology at the University of Washington. It is a nationally representative sample of the population of the United States in 1900, drawn from the manuscript returns of individuals enumerated in the 1900 United States Census. Household variables include region, state and county of household, size of household, and type and ownership of dwelling. Individual variables for each household member include relationship to head of household, race, sex, age, marital status, number of children, and birthplace. Immigration variables include parents' birthplace, year of immigration and number of years in the United States. Occupation variables include occupation, coded by both the 1900 and 1950 systems, and number of months unemployed. Education variables include number of months in school, whether respondents could read or write a language, and whether they spoke English. (Source: downloaded from ICPSR 7/13/10)
Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR07825.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.
This layer shows computer ownership and internet access by income group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of households without a broadband internet subscription. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B28004Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Official statistics are produced impartially and free from political influence.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The United States Census is a decennial census mandated by Article I, Section 2 of the United States Constitution, which states: "Representatives and direct Taxes shall be apportioned among the several States ... according to their respective Numbers."
Source: https://en.wikipedia.org/wiki/United_States_Census
The United States census count (also known as the Decennial Census of Population and Housing) is a count of every resident of the US. The census occurs every 10 years and is conducted by the United States Census Bureau. Census data is publicly available through the census website, but much of the data is available in summarized data and graphs. The raw data is often difficult to obtain, is typically divided by region, and it must be processed and combined to provide information about the nation as a whole.
The United States census dataset includes nationwide population counts from the 2000 and 2010 censuses. Data is broken out by gender, age and location using zip code tabular areas (ZCTAs) and GEOIDs. ZCTAs are generalized representations of zip codes, and often, though not always, are the same as the zip code for an area. GEOIDs are numeric codes that uniquely identify all administrative, legal, and statistical geographic areas for which the Census Bureau tabulates data. GEOIDs are useful for correlating census data with other censuses and surveys.
Fork this kernel to get started.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:census_bureau_usa
https://cloud.google.com/bigquery/public-data/us-census
Dataset Source: United States Census Bureau
Use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by Steve Richey from Unsplash.
What are the ten most populous zip codes in the US in the 2010 census?
What are the top 10 zip codes that experienced the greatest change in population between the 2000 and 2010 censuses?
https://cloud.google.com/bigquery/images/census-population-map.png" alt="https://cloud.google.com/bigquery/images/census-population-map.png">
https://cloud.google.com/bigquery/images/census-population-map.png
Abstract copyright UK Data Service and data collection copyright owner.
The 1940 Census Public Use Microdata Sample Project was assembled through a collaborative effort between the United States Bureau of the Census and the Center for Demography and Ecology at the University of Wisconsin. The collection contains a stratified 1-percent sample of households, with separate records for each household, for each 'sample line' respondent, and for each person in the household. These records were encoded from microfilm copies of original handwritten enumeration schedules from the 1940 Census of Population. Geographic identification of the location of the sampled households includes Census regions and divisions, states (except Alaska and Hawaii), standard metropolitan areas (SMAs), and state economic areas (SEAs). Accompanying the data collection is a codebook that includes an abstract, descriptions of sample design, processing procedures and file structure, a data dictionary (record layout), category code lists, and a glossary. Also included is a procedural history of the 1940 Census. Each of the 20 subsamples contains three record types: household, sample line, and person. Household variables describe the location and condition of the household. The sample line records contain variables describing demographic characteristics such as nativity, marital status, number of children, veteran status, wage deductions for Social Security, and occupation. Person records also contain variables describing demographic characteristics including nativity, marital status, family membership, education, employment status, income, and occupation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Starting in July, data.census.gov will be the primary way to access Census Bureau data, including upcoming releases from the 2018 American Community Survey, 2017 Economic Census, 2020 Census and more. After July 1, 2019, all new data (previously released on American FactFinder) will be released on this new data platform. (https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml)
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Employment and unemployment estimates may vary from the official labor force data released by the Bureau of Labor Statistics because of differences in survey design and data collection. For guidance on differences in employment and unemployment estimates from different sources go to Labor Force Guidance..The "Employed" and "Unemployment rate" columns refer to the civilian population. For more information, see the ACS Subject Definitions..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Public Use Microdata AreaThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Census Bureau (USCB), displays Public Use Microdata Areas (PUMAs) in the United States. Per USCB, "nesting within states, or equivalent entities, PUMAs cover the entirety of the United States, Puerto Rico, Guam, and the U.S. Virgin Islands. PUMA delineations are subject to population, building block geography, geographic nesting, and contiguity criteria. Each PUMA is identified by a 5-character numeric census code that may contain leading zeros and a descriptive name.”Data currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Public Use Microdata Areas) and will support mapping, analysis, data exports and OGC API – Feature access.Data.gov: TIGER/Line Shapefile, 2019, Series Information for the 2010 Census Public Use Microdata Area (PUMA) State-basedGeoplatform: TIGER/Line Shapefile, 2019, Series Information for the 2010 Census Public Use Microdata Area (PUMA) State-basedFor more information, please visit: Public Use Microdata Areas (PUMAs)For feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the "boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes."To access other NGDA content that may interest you: NGDA Content
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de442054https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de442054
Abstract (en): This collection contains individual-level and 1-percent national sample data from the 1960 Census of Population and Housing conducted by the Census Bureau. It consists of a representative sample of the records from the 1960 sample questionnaires. The data are stored in 30 separate files, containing in total over two million records, organized by state. Some files contain the sampled records of several states while other files contain all or part of the sample for a single state. There are two types of records stored in the data files: one for households and one for persons. Each household record is followed by a variable number of person records, one for each of the household members. Data items in this collection include the individual responses to the basic social, demographic, and economic questions asked of the population in the 1960 Census of Population and Housing. Data are provided on household characteristics and features such as the number of persons in household, number of rooms and bedrooms, and the availability of hot and cold piped water, flush toilet, bathtub or shower, sewage disposal, and plumbing facilities. Additional information is provided on tenure, gross rent, year the housing structure was built, and value and location of the structure, as well as the presence of air conditioners, radio, telephone, and television in the house, and ownership of an automobile. Other demographic variables provide information on age, sex, marital status, race, place of birth, nationality, education, occupation, employment status, income, and veteran status. The data files were obtained by ICPSR from the Center for Social Analysis, Columbia University. About 600,000 households and group quarters segments, and about 1,800,000 persons in the United States. One sample household for every 100 households, and persons in group quarters in the United States. Records have been sampled on a household-by-household basis so that the characteristics of family members may be interrelated and related to the characteristics of the housing unit. 2006-01-18 File CB7756.ALL.PDF was removed from any previous datasets and flagged as a study-level file, so that it will accompany all downloads.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The "2014 Census of Open Access Repositories in Germany, Austria and Switzerland” (2014 Census) is a study on the green open access landscape conducted in the course of a project seminar at the Berlin School of Library and Information Science (BSLIS) at Humboldt-Universität zu Berlin. The 2014 Census not only succeeds the "2012 Census of Open Access Repositories in Germany"[1] but enhances it by adding an online survey to the qualitative analysis of the open access repository websites and the automatic validation of its metadata. Like in 2012 the 2014 Census gives insights into the development of open access repositories and current trends in repository design being of substantial use to open access repository operators.
This 2014 Census data set represents the data collected in three different ways:
qualitative analysis of the open access repository websites
automatic validation of the metadata via OAI-PMH using the DINI-Validator [2]
online survey of repository operators
As in 2012 [3] the data set is provided in XLSX as well as in CSV format. The columns represent the criteria and the rows represent the analyzed open access repositories. In the XLSX file the header row gives the definition of each criterion in English and German. In the CSV "content" file the header row is in English short terms. The respective English and German definition can be found in the CSV "readme" file.
[1] Vierkant, P. (2013). 2012 Census of Open Access Repositories in Germany: Turning Perceived Knowledge Into Sound Understanding. D-Lib Magazine, 19. http://dx.doi.org/10.1045/november2013-vierkant
[2] http://oanet.cms.hu-berlin.de/validator/pages/validation_dini.xhtml
[3] Vierkant, Paul; Voigt, Michaela; Dupski, Jens; David, Sammy; Lösch, Mathias (2013): 2012 Census of Open Access Repositories in Germany. figshare. http://dx.doi.org/10.6084/m9.figshare.677099
*USE geoid TO JOIN DATA DOWNLOADED FROM DATA.CENSUS.GOV*The TIGER/Line Shapefiles are extracts of selected geographic and cartographic information from the Census Bureau's Master Address File (MAF)/Topologically Integrated Geographic Encoding and Referencing (TIGER) System (MTS).The TIGER/Line Shapefiles contain a standard geographic identifier (GEOID) for each entity that links to the GEOID in the data from censuses and surveys. The TIGER/Line Shapefiles do not include demographic data from surveys and censuses (e.g., Decennial Census, Economic Census, American Community Survey, and the Population Estimates Program). Other, non-census, data often have this standard geographic identifier as well. Data from many of the Census Bureau’s surveys and censuses, including the geographic codes needed to join to the TIGER/Line Shapefiles, are available at the Census Bureau’s public data dissemination website (https://data.census.gov/).Public Use Microdata Areas (PUMAs) are statistical geographic areas for the dissemination of decennial census and American Community Survey (ACS) Public Use Microdata Sample files in which the Census Bureau provides selected extracts of raw data from a small sample of census records that are screened to protect confidentiality. The ACS also uses the PUMAs as a tabulation geographic entity.For the 2020 Census, the State Data Centers in each state, the District of Columbia, and Puerto Rico are involved in the delineation of the 2020 PUMAs. Counties and census tracts are used to define PUMAs, and each PUMA must include at least 100,000 people based on the 2020 Census published counts. For the 2020 Census in Guam and the U.S. Virgin Islands, the Census Bureau establishes a single, separate PUMA for each of these two Island Areas. American Samoa and the Commonwealth of the Northern Mariana Islands do not have PUMAs, because the total population of each is under 100,000 people.Downloaded from https://www2.census.gov/geo/tiger/TIGER2022/PUMA/ on June 22, 2023
https://www.icpsr.umich.edu/web/ICPSR/studies/8251/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/8251/terms
This data collection contains a stratified 1-percent sample of households, with separate records for each household, each "sample line" respondent, and each person in the household. These records were encoded from microfilm copies of original handwritten enumeration schedules from the 1950 Census of Population. Geographic identification of the location of the sampled households includes Census regions and divisions, states (except Alaska and Hawaii), Standard Metropolitan Areas (SMAs), and State Economic Areas (SEAs). The data collection was constructed from and consists of 20 independently-drawn subsamples stored in 20 discrete physical files. The 1950 Census had both a complete-count and a sample component. Individuals selected for the sample component were asked a set of additional questions. Only households with a sample line person were included in the 1950 Public Use Microdata Sample. The collection also contains records of group quarters members who were also on the Census sample line. Each household record contains variables describing the location and composition of the household. The sample line records contain variables describing demographic characteristics such as nativity, marital status, number of children, veteran status, education, income, and occupation. The person records contain demographic variables such as nativity, marital status, family membership, and occupation.
Website alows the public full access to the 1940 Census images, census maps and descriptions.