This imagery service contains natural color orthophotos covering counties in north Florida that had imagery captured from October 2012 till spring 2013. An orthophoto is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthophotography combines the image characteristics of a photograph with the geometric qualities of a map. Counties covered in this dataset are: Bay, Bradford, Calhoun, Columbia, Dixie, Duval, Escambia, Franklin, Gadsden, Gilchrist, Gulf, Hamilton, Holmes, Jackson, Jefferson, Lafayette, Levy, Madison, Okaloosa, Palm Beach (partial), Santa Rosa, Suwannee, Taylor, Union, Wakulla, Walton, and Washington. Please contact GIS.Librarian@FloridaDEP.gov for more information.
1 ft ortho rectified imagery for the counties flown in the October 2009 - April 2010 flight acquistion cycle. This imagery layer was rebuilt in ArcGIS 10.2 as a raster mosaic dataset using MrSID imagery for the data source and published in ArcGIS Server 10.2 as a Image Service. This dataset has been published as an ArcGIS Server Image Service for easier maintenance and improved performance. Counties included in this dataset are: Bay, Calhoun, Charlotte (partial), Citrus, Columbia, Dixie, Escambia, Franklin, Gadsden, Gilchrist, Gulf, Hamilton, Hernando, Hillsborough, Jackson, Jefferson, Lafayette, Levy (partial), Madison, Manatee, Marion (partial), Okaloosa, Pasco, Pinellas, Santa Rosa, Sarasota, Suwannee, Taylor, Wakulla, and Washington. Please contact GIS.Librarian@FloridaDEP.gov for more information.
High resolution orthorectified images combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a uniform-scale image where corrections have been made for feature displacement such as building tilt and for scale variations caused by terrain relief, sensor geometry, and camera tilt. A mathematical equation based on ground control points, sensor calibration information, and a digital elevation model is applied to each pixel to rectify the image to obtain the geometric qualities of a map.
A digital orthoimage may be created from several photographs mosaicked to form the final image. The source imagery may be black-and-white, natural color, or color infrared with a pixel resolution of 1-meter or finer. With orthoimagery, the resolution refers to the distance on the ground represented by each pixel.
USGS Imagery Only is a tile cache base map service of orthoimagery in The National Map visible to the 1:9,028 zoom scale. Orthoimagery data is typically high resolution aerial images that combine the visual attributes of an aerial photograph with the spatial accuracy and reliability of a planimetric map. USGS digital orthoimage resolution may vary from 6 inches to 1 meter. In the former resolution, every pixel in an orthoimage covers a six inch square of the earth's surface, while in the latter resolution, one meter square is represented by each pixel. Blue Marble: Next Generation and Landsat imagery data sources are displayed at small to medium scales, however, the majority of the imagery service source is from the National Agriculture Imagery Program (NAIP) for the conterminous United States. The data is 1 meter pixel resolution collected with "leaf-on" conditions. Collection of NAIP imagery is administered by the U.S. Department of Agriculture's Farm Service Agency (FSA). In areas where NAIP data is not available, other imagery may be acquired through partnerships by the USGS. For Alaska, 10-meter resolution SPOT imagery is provided for viewing. The National Map download client allows free downloads of public domain, 1-meter resolution orthoimagery in JPEG 2000 (jp2) format for the conterminous United States. However, the 10-meter Alaska orthoimagery data will not be available for direct download from the National Map due to license restrictions. For additional information on orthoimagery, go to https://nationalmap.gov/ortho.html.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The USGS NAIP Imagery service from The National Map consists of 4-band high resolution images that combine the visual attributes of an aerial photograph with the spatial accuracy and reliability of a map. Resolution of National Agriculture Imagery Program (NAIP) data is most commonly 1 meter, which means that every pixel in the digital orthoimage covers a one meter square of the earth’s surface. Some states to include Wyoming and New York began collection of 0.5 meter pixel resolution NAIP in 2015. Many states contribute orthoimagery to The National Map, and USGS relies on a partnership with the U.S. Department of Agriculture’s Farm Service Agency for NAIP data. The USGS NAIP Imagery service is a mosaic of natural color and color infrared (4-band) aerial imagery, containing NAIP and other imagery sources to complete the mosaic. The National Map download client allows free downloads of public domain compressed orthoimagery in JPEG 2000 (.jp2) format for the conterminous United States, with many urban areas and other locations at 1-foot (or better) resolution, also in JPEG 2000 (.jp2) format. For additional information on orthoimagery, go to https://nationalmap.gov/ortho.html. This imagery service is for viewing only, no downloading of the raster images available. NAIP/Statewide_NAIP_2017_3ft_4band_wsps_83h_img
Declassified satellite images provide an important worldwide record of land-surface change. With the success of the first release of classified satellite photography in 1995, images from U.S. military intelligence satellites KH-7 and KH-9 were declassified in accordance with Executive Order 12951 in 2002. The data were originally used for cartographic information and reconnaissance for U.S. intelligence agencies. Since the images could be of historical value for global change research and were no longer critical to national security, the collection was made available to the public.
Keyhole (KH) satellite systems KH-7 and KH-9 acquired photographs of the Earth’s surface with a telescopic camera system and transported the exposed film through the use of recovery capsules. The capsules or buckets were de-orbited and retrieved by aircraft while the capsules parachuted to earth. The exposed film was developed and the images were analyzed for a range of military applications.
The KH-7 surveillance system was a high resolution imaging system that was operational from July 1963 to June 1967. Approximately 18,000 black-and-white images and 230 color images are available from the 38 missions flown during this program. Key features for this program were larger area of coverage and improved ground resolution. The cameras acquired imagery in continuous lengthwise sweeps of the terrain. KH-7 images are 9 inches wide, vary in length from 4 inches to 500 feet long, and have a resolution of 2 to 4 feet.
The KH-9 mapping program was operational from March 1973 to October 1980 and was designed to support mapping requirements and exact positioning of geographical points for the military. This was accomplished by using image overlap for stereo coverage and by using a camera system with a reseau grid to correct image distortion. The KH-9 framing cameras produced 9 x 18 inch imagery at a resolution of 20-30 feet. Approximately 29,000 mapping images were acquired from 12 missions.
The original film sources are maintained by the National Archives and Records Administration (NARA). Duplicate film sources held in the USGS EROS Center archive are used to produce digital copies of the imagery.
The New Jersey Office of GIS, NJ Office of Information Technology manages a series of 11 digital orthophotography and scanned aerial photo maps collected at various years ranging from 1930 to 2017. Each year’s worth of imagery are available as Cloud Optimized GeoTIFF (COG) files and some years are available as compressed MrSID and/or JP2 files. Additionally, each year of imagery is organized into a tile grid scheme covering the entire geography of New Jersey. Many years share the same tiling grid while others have unique grids as defined by the project at the time.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
An aerial imagery basemap of New Zealand in Web Mercator (WGS 1984) using the latest quality data from Land Information New Zealand.Add the map service directly to your ArcGIS Online map, or copy the Web Map Tile Service (WMTS) URL below for use in the desktop.This basemap is also available in NZTM from: https://linz.maps.arcgis.com/home/item.html?id=39cf07ebf8a2413696d8fd4d80570b84 The LINZ Aerial Imagery Basemap details New Zealand in high resolution - from a nationwide view all the way down to individual buildings.This basemap combines the latest high-resolution aerial imagery down to 5cm in urban areas and 10m satellite imagery to provide full coverage of mainland New Zealand, Chathams and other offshore islands.LINZ Basemaps are powered by data from the LINZ Data Service and other authoritative open data sources, providing you with a basemap that is free to use under an open licence.A XYZ tile API (Web Mercator only) is also available for use in web and mobile applications.See more information or provide your feedback at https://basemaps.linz.govt.nz/.For attribution requirements and data sources see: https://www.linz.govt.nz/data/linz-data/linz-basemaps/data-attribution.
https://data.linz.govt.nz/license/attribution-4-0-international/https://data.linz.govt.nz/license/attribution-4-0-international/
This dataset provides a seamless cloud-free 10m resolution satellite imagery layer of the New Zealand mainland and offshore islands.
The imagery was captured by the European Space Agency Sentinel-2 satellites between September 2023 - April 2024.
Data comprises: • 450 ortho-rectified RGB GeoTIFF images in NZTM projection, tiled into the LINZ Standard 1:50000 tile layout. • Satellite sensors: ESA Sentinel-2A and Sentinel-2B • Acquisition dates: September 2023 - April 2024 • Spectral resolution: R, G, B • Spatial resolution: 10 meters • Radiometric resolution: 8-bits (downsampled from 12-bits)
This is a visual product only. The data has been downsampled from 12-bits to 8-bits, and the original values of the images have been modified for visualisation purposes.
If you require the 12-bit imagery (R, G, B, NIR bands), send your request to imagery@linz.govt.nz
AID is a new large-scale aerial image dataset, by collecting sample images from Google Earth imagery. Note that although the Google Earth images are post-processed using RGB renderings from the original optical aerial images, it has proven that there is no significant difference between the Google Earth images with the real optical aerial images even in the pixel-level land use/cover mapping. Thus, the Google Earth images can also be used as aerial images for evaluating scene classification algorithms.
The new dataset is made up of the following 30 aerial scene types: airport, bare land, baseball field, beach, bridge, center, church, commercial, dense residential, desert, farmland, forest, industrial, meadow, medium residential, mountain, park, parking, playground, pond, port, railway station, resort, river, school, sparse residential, square, stadium, storage tanks and viaduct. All the images are labelled by the specialists in the field of remote sensing image interpretation, and some samples of each class are shown in Fig.1. In all, the AID dataset has a number of 10000 images within 30 classes.
The images in AID are actually multi-source, as Google Earth images are from different remote imaging sensors. This brings more challenges for scene classification than the single source images like UC-Merced dataset. Moreover, all the sample images per each class in AID are carefully chosen from different countries and regions around the world, mainly in China, the United States, England, France, Italy, Japan, Germany, etc., and they are extracted at different time and seasons under different imaging conditions, which increases the intra-class diversities of the data.
The National Aerial Photography Program (NAPP) was coordinated by the USGS as an interagency project to acquire cloud-free aerial photographs at an altitude of 20,000 feet above mean terrain elevation. The photographs were taken with a 6-inch focal length lens at a scale of 1:40,000. Coverage over the conterminous United States includes both black-and-white (BW) and color infrared (CIR) aerial photographs. Film type and extent of coverage were determined by available funds and operational requirements. The NAPP program, which was operational from 1987 to 2007, consists of more than 1.3 million images. Photographs were acquired on 9-inch film and were centered over quarters of USGS 7.5-minute quadrangles.To view historical imagery availability by county please visit the Historical Availability of Imagery map.To view more NAPP imagery visit the NAPP Historical Imagery Portfolio app.For ordering information please contact the GEO Customer Service Section at geo.sales@usda.gov.
Cloud-free Landsat satellite imagery mosaics of the islands of the main 8 Hawaiian Islands (Hawaii, Maui, Kahoolawe, Lanai, Molokai, Oahu, Kauai and Niihau). Landsat 7 ETM (enhanced thematic mapper) is a polar orbiting 8 band multispectral satellite-borne sensor. The ETM+ instrument provides image data from eight spectral bands. The spatial resolution is 30 meters for the visible and near-infrared (bands 1-5 and 7). Resolution for the panchromatic (band 8) is 15 meters, and the thermal infrared (band 6) is 60 meters. The approximate scene size is 170 x 183 kilometers (106 x 115 miles). A Nadir-looking system, the sensor has provided continuous coverage since July 1999, with a 16-day repeat cycle. The Level 1G product is radiometrically and geometrically corrected (systematic) to the user-specified parameters including output map projection, image orientation, pixel grid-cell size, and resampling kernel. The correctional gorithms model the spacecraft and sensor using data generated by onboard computers during imaging. Sensor, focal plane, and detector alignment information provided by the Image Assessment System (IAS) in the Calibration Parameter File (CPF) is also used to improve the overall geometric fidelity. The resulting product is free from distortions related to the sensor (e.g., jitter, view angle effect), satellite (e.g., attitude deviations from nominal), and Earth (e.g., rotation, curvature). Residual error in the systematic L1G product is less than 250 meters (1 sigma) inflat areas at sea level. The systematic L1G correction process does not employ ground control or relief models to attain absolute geodetic accuracy.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The satellite image of Canada is a composite of several individual satellite images form the Advanced Very High Resolution Radiometre (AVHRR) sensor on board various NOAA Satellites. The colours reflect differences in the density of vegetation cover: bright green for dense vegetation in humid southern regions; yellow for semi-arid and for mountainous regions; brown for the north where vegetation cover is very sparse; and white for snow and ice. An inset map shows a satellite image mosaic of North America with 35 land cover classes, based on data from the SPOT satellite VGT (vegetation) sensor.
https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
The Ontario Imagery Web Map Service (OIWMS) is an open data service available to everyone free of charge. It provides instant online access to the most recent, highest quality, province wide imagery. GEOspatial Ontario (GEO) makes this data available as an Open Geospatial Consortium (OGC) compliant web map service or as an ArcGIS map service. Imagery was compiled from many different acquisitions which are detailed in the Ontario Imagery Web Map Service Metadata Guide linked below. Instructions on how to use the service can also be found in the Imagery User Guide linked below.Note: This map displays the Ontario Imagery Web Map Service Source, a companion ArcGIS web map service to the Ontario Imagery Web Map Service. It provides an overlay that can be used to identify acquisition relevant information such as sensor source and acquisition date. OIWMS contains several hierarchical layers of imagery, with coarser less detailed imagery that draws at broad scales, such as a province wide zooms, and finer more detailed imagery that draws when zoomed in, such as city-wide zooms. The attributes associated with this data describes at what scales (based on a computer screen) the specific imagery datasets are visible.Available ProductsOntario Imagery OCG Web Map Service – public linkOntario Imagery ArcGIS Map Service – public linkOntario Imagery Web Map Service Source – public linkOntario Imagery ArcGIS Map Service – OPS internal linkOntario Imagery Web Map Service Source – OPS internal linkAdditional DocumentationOntario Imagery Web Map Service Metadata Guide (PDF)Imagery User Guide (Word)StatusCompleted: Production of the data has been completedMaintenance and Update FrequencyAnnually: Data is updated every yearContactOntario Ministry of Natural Resources, Geospatial Ontario, imagery@ontario.ca
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Vertical aerial photography is an airborne mapping technique, which uses a high-resolution camera mounted vertically underneath the aircraft to capture reflected light in the red, green, blue and for some datasets, near infra-red spectrum. Images of the ground are captured at resolutions between 10cm and 50cm, and ortho-rectified using simultaneous LIDAR and GPS to a high spatial accuracy.
The Environment Agency has been capturing vertical aerial photography data regularly since 2006 on a project by project basis each ranging in coverage from a few square kilometers to hundreds of square kilometers. The data is available as a raster dataset in ECW (enhanced compressed wavelet) format as either a true colour (RGB), near infra-red (NIR) or a 4-band (RGBN) raster. Where imagery has been captured under incident response conditions and the lighting conditions may be sub-optimal this is defined by the prefix IR. The data are presented as tiles in British National Grid OSGB 1936 projections. Data is available in 5km download zip files for each year of survey. Within each zip file are ECW files aligned to the Ordinance Survey grid. The size of each tile is dependent upon the spatial resolution of the data.
Please refer to the metadata index catalgoues for the survey date captured, type of survey and spatial resolution of the imagery.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This image service contains high resolution satellite imagery for selected regions throughout the Yukon. Imagery is 1m pixel resolution, or better. Imagery was supplied by the Government of Yukon, and the Canadian Department of National Defense. All the imagery in this service is licensed. If you have any questions about Yukon government satellite imagery, please contact Geomatics.Help@gov.yk.can. This service is managed by Geomatics Yukon.
Lands Department captures aerial photographs at various flying heights over different years covering the whole territory of Hong Kong. DAP-L0 is a digital compressed image of these aerial photographs which is saved in 300 dpi image resolution in JPEG format.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains both large (A0) printable maps of the Torres Strait broken into six overlapping regions, based on a clear sky, clear water composite Sentinel 2 composite imagery and the imagery used to create these maps. These maps show satellite imagery of the region, overlaid with reef and island boundaries and names. Not all features are named, just the more prominent features. This also includes a vector map of Ashmore Reef and Boot Reef in Coral Sea as these were used in the same discussions that these maps were developed for. The map of Ashmore Reef includes the atoll platform, reef boundaries and depth polygons for 5 m and 10 m.
This dataset contains all working files used in the development of these maps. This includes all a copy of all the source datasets and all derived satellite image tiles and QGIS files used to create the maps. This includes cloud free Sentinel 2 composite imagery of the Torres Strait region with alpha blended edges to allow the creation of a smooth high resolution basemap of the region.
The base imagery is similar to the older base imagery dataset: Torres Strait clear sky, clear water Landsat 5 satellite composite (NERP TE 13.1 eAtlas, AIMS, source: NASA).
Most of the imagery in the composite imagery from 2017 - 2021.
Method:
The Sentinel 2 basemap was produced by processing imagery from the World_AIMS_Marine-satellite-imagery dataset (01-data/World_AIMS_Marine-satellite-imagery in the data download) for the Torres Strait region. The TrueColour imagery for the scenes covering the mapped area were downloaded. Both the reference 1 imagery (R1) and reference 2 imagery (R2) was copied for processing. R1 imagery contains the lowest noise, most cloud free imagery, while R2 contains the next best set of imagery. Both R1 and R2 are typically composite images from multiple dates.
The R2 images were selectively blended using manually created masks with the R1 images. This was done to get the best combination of both images and typically resulted in a reduction in some of the cloud artefacts in the R1 images. The mask creation and previewing of the blending was performed in Photoshop. The created masks were saved in 01-data/R2-R1-masks. To help with the blending of neighbouring images a feathered alpha channel was added to the imagery. The processing of the merging (using the masks) and the creation of the feathered borders on the images was performed using a Python script (src/local/03-merge-R2-R1-images.py) using the Pillow library and GDAL. The neighbouring image blending mask was created by applying a blurring of the original hard image mask. This allowed neighbouring image tiles to merge together.
The imagery and reference datasets (reef boundaries, EEZ) were loaded into QGIS for the creation of the printable maps.
To optimise the matching of the resulting map slight brightness adjustments were applied to each scene tile to match its neighbours. This was done in the setup of each image in QGIS. This adjustment was imperfect as each tile was made from a different combinations of days (to remove clouds) resulting in each scene having a different tonal gradients across the scene then its neighbours. Additionally Sentinel 2 has slight stripes (at 13 degrees off the vertical) due to the swath of each sensor having a slight sensitivity difference. This effect was uncorrected in this imagery.
Single merged composite GeoTiff:
The image tiles with alpha blended edges work well in QGIS, but not in ArcGIS Pro. To allow this imagery to be used across tools that don't support the alpha blending we merged and flattened the tiles into a single large GeoTiff with no alpha channel. This was done by rendering the map created in QGIS into a single large image. This was done in multiple steps to make the process manageable.
The rendered map was cut into twenty 1 x 1 degree georeferenced PNG images using the Atlas feature of QGIS. This process baked in the alpha blending across neighbouring Sentinel 2 scenes. The PNG images were then merged back into a large GeoTiff image using GDAL (via QGIS), removing the alpha channel. The brightness of the image was adjusted so that the darkest pixels in the image were 1, saving the value 0 for nodata masking and the boundary was clipped, using a polygon boundary, to trim off the outer feathering. The image was then optimised for performance by using internal tiling and adding overviews. A full breakdown of these steps is provided in the README.md in the 'Browse and download all data files' link.
The merged final image is available in export\TS_AIMS_Torres Strait-Sentinel-2_Composite.tif
.
Source datasets:
Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries including Torres Strait Version 1b (NESP TWQ 3.13, AIMS, TSRA, GBRMPA), https://eatlas.org.au/data/uuid/d2396b2c-68d4-4f4b-aab0-52f7bc4a81f5
Geoscience Australia (2014b), Seas and Submerged Lands Act 1973 - Australian Maritime Boundaries 2014a - Geodatabase [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, https://dx.doi.org/10.4225/25/5539DFE87D895
Basemap/AU_GA_AMB_2014a/Exclusive_Economic_Zone_AMB2014a_Limit.shp
The original data was obtained from GA (Geoscience Australia, 2014a). The Geodatabase was loaded in ArcMap. The Exclusive_Economic_Zone_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.
Geoscience Australia (2014a), Treaties - Australian Maritime Boundaries (AMB) 2014a [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, http://dx.doi.org/10.4225/25/5539E01878302
Basemap/AU_GA_Treaties-AMB_2014a/Papua_New_Guinea_TSPZ_AMB2014a_Limit.shp
The original data was obtained from GA (Geoscience Australia, 2014b). The Geodatabase was loaded in ArcMap. The Papua_New_Guinea_TSPZ_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.
AIMS Coral Sea Features (2022) - DRAFT
This is a draft version of this dataset. The region for Ashmore and Boot reef was checked. The attributes in these datasets haven't been cleaned up. Note these files should not be considered finalised and are only suitable for maps around Ashmore Reef. Please source an updated version of this dataset for any other purpose.
CS_AIMS_Coral-Sea-Features/CS_Names/Names.shp
CS_AIMS_Coral-Sea-Features/CS_Platform_adj/CS_Platform.shp
CS_AIMS_Coral-Sea-Features/CS_Reef_Boundaries_adj/CS_Reef_Boundaries.shp
CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth5m_Coral-Sea.shp
CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth10m_Coral-Sea.shp
Murray Island 20 Sept 2011 15cm SISP aerial imagery, Queensland Spatial Imagery Services Program, Department of Resources, Queensland
This is the high resolution imagery used to create the map of Mer.
World_AIMS_Marine-satellite-imagery
The base image composites used in this dataset were based on an early version of Lawrey, E., Hammerton, M. (2024). Marine satellite imagery test collections (AIMS) [Data set]. eAtlas. https://doi.org/10.26274/zq26-a956. A snapshot of the code at the time this dataset was developed is made available in the 01-data/World_AIMS_Marine-satellite-imagery folder of the download of this dataset.
Data Location:
This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\TS_AIMS_Torres-Strait-Sentinel-2-regional-maps. On the eAtlas server it is stored at eAtlas GeoServer\data\2020-2029-AIMS.
Change Log:
2025-05-12: Eric Lawrey
Added Torres-Strait-Region-Map-Masig-Ugar-Erub-45k-A0 and Torres-Strait-Eastern-Region-Map-Landscape-A0. These maps have a brighten satellite imagery to allow easier reading of writing on the maps. They also include markers for geo-referencing the maps for digitisation.
2025-02-04: Eric Lawrey
Fixed up the reference to the World_AIMS_Marine-satellite-imagery dataset, clarifying where the source that was used in this dataset. Added ORCID and RORs to the record.
2023-11-22: Eric Lawrey
Added the data and maps for close up of Mer.
- 01-data/TS_DNRM_Mer-aerial-imagery/
- preview/Torres-Strait-Mer-Map-Landscape-A0.jpeg
- exports/Torres-Strait-Mer-Map-Landscape-A0.pdf
Updated 02-Torres-Strait-regional-maps.qgz to include the layout for the new map.
2023-03-02: Eric Lawrey
Created a merged version of the satellite imagery, with no alpha blending so that it can be used in ArcGIS Pro. It is now a single large GeoTiff image. The Google Earth Engine source code for the World_AIMS_Marine-satellite-imagery was included to improve the reproducibility and provenance of the dataset, along with a calculation of the distribution of image dates that went into the final composite image. A WMS service for the imagery was also setup and linked to from the metadata. A cross reference to the older Torres Strait clear sky clear water Landsat composite imagery was also added to the record.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This collection is a legacy product that is no longer supported. It may not meet current government standards. This inventory presents chronologically the satellite images acquired, orthorectified and published over time by Natural Resources Canada. It is composed of imagery from the Landsat7 (1999-2003) and RADARSAT-1 (2001-2002) satellites, as well as the CanImage by-product and the control points used to process the images. Landsat7 Orthorectified Imagery: The orthoimage dataset is a complete set of cloud-free (less than 10%) orthoimages covering the Canadian landmass and created with the most accurate control data available at the time of creation. RADARSAT-1 Orthorectified Imagery: The 5 RADARSAT-1 images (processed and distributed by RADARSAT International (RSI) complete the landsat 7 orthoimagery coverage. They are stored as raster data produced from SAR Standard 7 (S7) beam mode with a pixel size of 15 m. They have been produced in accordance with NAD83 (North American Datum of 1983) using the Universal Transverse Mercator (UTM) projection. RADARSAT-1 orthoimagery were produced with the 1:250 000 Canadian Digital Elevation Data (CDED) and photogrammetric control points generated from the Aerial Survey Data Base (ASDB). CanImage -Landsat7 Orthoimages of Canada,1:50 000: CanImage is a raster image containing information from Landsat7 orthoimages that have been resampled and based on the National Topographic System (NTS) at the 1:50 000 scale in the UTM projection. The product is distributed in datasets in GeoTIFF format. The resolution of this product is 15 metres. Landsat7 Imagery Control Points: the control points were used for the geometric correction of Landsat7 satellite imagery. They can also be used to correct vector data and for simultaneously displaying data from several sources prepared at different scales or resolutions.
This imagery service contains natural color orthophotos covering counties in north Florida that had imagery captured from October 2012 till spring 2013. An orthophoto is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthophotography combines the image characteristics of a photograph with the geometric qualities of a map. Counties covered in this dataset are: Bay, Bradford, Calhoun, Columbia, Dixie, Duval, Escambia, Franklin, Gadsden, Gilchrist, Gulf, Hamilton, Holmes, Jackson, Jefferson, Lafayette, Levy, Madison, Okaloosa, Palm Beach (partial), Santa Rosa, Suwannee, Taylor, Union, Wakulla, Walton, and Washington. Please contact GIS.Librarian@FloridaDEP.gov for more information.