Facebook
TwitterMature Support Notice: This item is in mature support as of December 2024. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. See blog for more information.This web map presents a vector basemap of OpenStreetMap (OSM) data hosted by Esri. This version of the map is rendered in a style similar to the Esri Street Map (with Relief). It includes the World Hillshade layer. Created from the sunsetted Daylight map distribution, data updates supporting this layer are no longer available. OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project. Precise Tile Registration: The web map uses the improved tiling scheme “WGS84 Geographic, Version 2” to ensure proper tile positioning at higher resolutions (neighborhood level and beyond). The new tiling scheme is much more precise than tiling schemes of the legacy basemaps Esri released years ago. We recommend that you start using this new basemap for any new web maps in WGS84 that you plan to author. Due to the number of differences between the old and new tiling schemes, some web clients will not be able to overlay tile layers in the old and new tiling schemes in one web map.
Facebook
TwitterThis vector tile layer is designed to support exporting small volumes of basemap tiles for offline use. The content of this layer is equivalent to World Topographic Map. This layer includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries, designed for use with shaded relief for added context. See World Topographic Map for more details.Use this MapThis vector tile service supporting this layer will enable you to export a small number of tiles in a single request. This layer is not intended to be used to display live map tiles for use in a web map or web mapping application. To display map tiles, please use World Topographic Map.Service Information for DevelopersTo export tiles for World Topographic Map (for Export), you must use the instance of the World_Basemap_Export_v2 service hosted on basemaps.arcgis.com referenced by this layer (see URL in Contents below), which has the Export Tiles operation enabled. This layer is optimized to minimize the size of the download for offline use. Due to this optimization, there are small differences between this layer and the display optimized World_Basemap_v2 service. This layer is intended to support export of basemap tiles for offline use in ArcGIS applications and other applications built with an ArcGIS Runtime SDK.
Facebook
TwitterTHE GEOINQUIRIES™ COLLECTION FOR MATHEMATICS
http://www.esri.com/geoinquiries
The GeoInquiry™ collection for Mathematics contains 15 free, standards-based activities that correspond and extend spatial concepts found in course textbooks frequently used in introductory algebra or geometry classes. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the Common Core mathematics national curriculum standards.
All Mathematics GeoInquiries™ can be found at: http://eseriurl.com/mathGeoInquiries
All GeoInquiries™ can be found at: http://www.esri.com/geoinquiries
Facebook
TwitterMature Support Notice: This item is in mature support as of December 2024. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. See blog for more information.This tile layer presents a vector basemap of OpenStreetMap (OSM) data hosted by Esri. This version of the map is rendered in a style similar to the Esri Street Map. Created from the sunsetted Daylight map distribution, data updates supporting this layer are no longer available. OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Miami-Dade County Plastic Free 305 Manager. Implementing successful local programs that paved the way for this county-wide initiative!The Plastic Free 305 program will ensure the continuation of the County's commitment to resiliency by providing support to businesses as they transition to plastic free alternatives.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Weekly snapshot of Cleveland City Planning Commission datasets that are featured on the City Planning Zoning Viewer. For the official, most current record of zoning info, use the CPC Zoning Viewer.This file is an open-source geospatial (GIS) format called GeoPackage, which can contain multiple layers. It is similar to Esri's file geodatabase format. Free and open-source GIS software like QGIS, or software like ArcGIS, can read the information to view the tables and map the information.It includes the following mapping layers officially maintained by Cleveland City Planning Commission:Planner Assignment AreasPlanned Unit Development OverlayResidential FacilitiesResidential Facilities 1000 ft. BufferPolice DistrictsLandmarks / Historic LayersLocal Landmark PointsLocal Landmark ParcelsLocal Landmark DistrictsNational Historic DistrictsCentral Business DistrictDesign Review RegionsDesign Review DistrictsOverlay Frontage LinesForm & PRO Overlay DistrictsLive-Work Overlay DistrictsSpecific SetbacksStreet CenterlinesZoningUpdate FrequencyWeekly on Mondays at 4:30 AMContactCity Planning Commission, Zoning & Technology
Facebook
TwitterMature Support Notice: This item is in mature support as of December 2024. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. See blog for more information.This tile layer presents a vector basemap of OpenStreetMap (OSM) data hosted by Esri. This version of the map is rendered in a style similar to the Esri Navigation map. Created from the sunsetted Daylight map distribution, data updates supporting this layer are no longer available. OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
(Link to Metadata) EmergencyE911_RDS was originally derived from RDSnn (now called TransRoad_RDS). "Zero-length ranges" in the ROADS layer pertain to grand-fathered towns that have not yet provided the Enhanced 9-1-1 Board road segment range information. RDSnn was originally developed using a combination of paper and RC Kodak RF 5000 orthophotos (visual image interpretation and manual digitizing of centerlines). Road attributes (RTNO and CLASS) were taken from the official VT Agency of Transportation (VTrans) highway maps. New roads not appearing on the photos were digitized with locations approximated from the VTrans highway maps. State Forest maps were used to determine both location and attributes of state forest roads. Some data updates have used RF 2500 or RF 1250 orthophotos and GPS, or other means for adding new roads and improving road locations. The Enhanced E911 program added new roads from GPS and orthos between 1996-1998. Also added road name and address geocoding. VCGI PROCESSING (Tiling and Added items); E911 provides the EmergencyE911_RDS data to VCGI in a statewide format. It lacks FIPS6 coding, making it difficult to extract data on the basis of town/county boundaries. As a result, VCGI has added FIPS6 to the attribute table. This field was originally populated by extracting MCODE value from RDNAME and relating to TBPOLY.PAT to bring over matching MCODE values. FIPS6 problems along the interstates and "Gores & Grants" in the Northeast Kingdom, were corrected. All features with an MCODE equal to 200 or 579 were assigned a FIPS6 equal to 0. The center point of these arcs were then intersected with BoundaryTown_TBHASH to assign a FIPS6 value. This information was then transfered back into the RDS.AAT file via a relate. A relate was established between the ROADNAMES.DBF file (road name lookup table) and the RDS.AAT file. The RDFLNAME attribute was populated by transfering the NAME value in the ROADNAMES.DBF table. The RDFLNAME item was then parsed into SUF.DIR, STREET.NAME, STREET.TYPE, and PRE.DIR, making addressing matching functions a little easier. See the "VT Road Centerline Data FAQ" for more information about TransRoad_RDS and EmergencyE911_RDS. https://vcgi.vermont.gov/techres/?page=./white_papers/default_content.cfmField Descriptions:OBJECTID: Internal feature number, automatically generated by Esri software.SEGMENTID: Unique segment ID.ARCID: Arc identifier, unique statewide. The ARCID is a unique identifier for every ARC in the EmergencyE911_RDS data layer.PD: Prefix Direction, previously name PRE.DIR.PT: Prefix Type.SN: Street Name. Previously named STREET.ST: Street Type.SD: Suffix Direction, i.e., W for West, E for East, etc.GEONAMEID: Unique ID for each road name.PRIMARYNAME: Primary name.ALIAS1: Alternate road name 1.ALIAS2: Alternate road name 2.ALIAS3: Alternate road name 3.ALIAS4: Alternate road name 4.ALIAS5: Alternate road name 5.COMMENTS: Free text field for miscellaneous comments.ONEWAY: One-way street. Uses the Oneway domain*.NO_MSAG:MCODE: Municipal code.LESN: Left side of road Emergency Service Number.RESN: Right side of road Emergency Service Number.LTWN: Left side of road town.RTWN: Right side of road town.LLO_A: Low address for left side of road.RLO_A: Low address for right side of road.LHI_A: High address for left side of road.RHI_A: High address for right side of road.LZIP: Left side of road zip code.RZIP: Right side of road zip code.LLO_TRLO_TLHI_TRHI_TRTNAME: Route name.RTNUMBER: Route number.HWYSIGN: Highway sign.RPCCLASSAOTCLASS: Agency of Transportation class. Uses AOTClass domain**.ARCMILES: ESRI ArcGIS miles.AOTMILES: Agency of Transportation miles.AOTMILES_CALC:UPDACT:SCENICHWY: Scenic highway.SCENICBYWAY: Scenic byway.FORMER_RTNAME: Former route name.PROVISIONALYEAR: Provisional year.ANCIENTROADYEAR: Ancient road year.TRUCKROUTE: Truck route.CERTYEAR:MAPYEAR:UPDATEDATE: Update date.GPSUPDATE: Uses GPSUpdate domain***.GlobalID: GlobalID.STATE: State.GAP: Gap.GAPMILES: Gap miles.GAPSTREETID: Gap street ID.FIPS8:FAID_S:RTNUMBER_N:LCOUNTY:RCOUNTY:PRIMARYNAME1:SOURCEOFDATA: Source of data.COUNTRY: Country.PARITYLEFT:PARITYRIGHT:LFIPS:RFIPS:LSTATE:RSTATE:LESZ:RESZ:SPEED_SOURCE: Speed source.SPEEDLIMIT: Speed limit.MILES: Miles.MINUTES: Minutes.Shape: Feature geometry.Shape_Length: Length of feature in internal units. Automatically computed by Esri software.*Oneway Domain:N: NoY: Yes - Direction of arcX: Yes - Opposite direction of arc**AOTClass Domain:1: Town Highway Class 1 - undivided2: Town Highway Class 2 - undivided3: Town Highway Class 3 - undivided4: Town Highway Class 4 - undivided5: State Forest Highway6: National Forest Highway7: Legal Trail. Legal Trail Mileage Approved by Selectboard after the enactment of Act 178 (July 1, 2006). Due to the introduction of Act 178, the Mapping Unit needed to differentiate between officially accepted and designated legal trail versus trails that had traditionally been shown on the maps. Towns have until 2015 to map all Class 1-4 and Legal Trails, based on new changes in VSA Title 19.8: Private Road - No Show. Private road, but not for display on local maps. Some municipalities may prefer not to show certain private roads on their maps, but the roads may need to be maintained in the data for emergency response or other purposes.9: Private road, for display on local maps10: Driveway (put in driveway)11: Town Highway Class 1 - North Bound12: Town Highway Class 1 - South Bound13: Town Highway Class 1 - East Bound14: Town Highway Class 1 - West Bound15: Town Highway Class 1 - On/Off Ramp16: Town Highway Class 1 - Emergency U-Turn20: County Highway21: Town Highway Class 2 - North Bound22: Town Highway Class 2 - South Bound23: Town Highway Class 2 - East Bound24: Town Highway Class 2 - West Bound25: Town Highway Class 2 - On/Off Ramp30: State Highway31: State Highway - North Bound32: State Highway - South Bound33: State Highway - East Bound34: State Highway - West Bound35: State Highway - On/Off Ramp40: US Highway41: US Highway - North Bound42: US Highway - South Bound43: US Highway - East Bound44: US Highway - West Bound45: US Highway - On/Off Ramp46: US Highway - Emergency U-Turn47: US Highway - Rest Area50: Interstate Highway51: Interstate Highway - North Bound52: Interstate Highway - South Bound53: Interstate Highway - East Bound54: Interstate Highway - West Bound55: Interstate Highway - On/Off Ramp56: Interstate Highway - Emergency U-Turn57: Interstate Highway - Rest Area59: Interstate Highway - Other65: Ferry70: Unconfirmed Legal Trail71: Unidentified Corridor80: Proposed Highway Unknown Class81: Proposed Town Highway Class 182: Proposed Town Highway Class 283: Proposed Town Highway Class 384: Proposed State Highway85: Proposed US Highway86: Proposed Interstate Highway87: Proposed Interstate Highway - Ramp88: Proposed Non-Interstate Highway - Ramp89: Proposed Private Road91: New - Class Unknown92: Military - no public access93: Public - Class Unknown95: Class Under Review96: Discontinued Road97: Discontinued Now Private98: Not a Road99: Unknown***GPSUpdate Domain:Y: Yes - Needs GPS UpdateN: No - Does not need GPS UpdateG: GPS Update CompleteV: GPS Update Complete - New RoadX: Unresolved Segment
Facebook
TwitterMature Support Notice: This item is in mature support as of December 2024. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. See blog for more information.This tile layer presents a vector basemap of OpenStreetMap (OSM) data hosted by Esri. This version of the map is rendered in a style similar to the Esri Navigation map. Created from the sunsetted Daylight map distribution, data updates supporting this layer are no longer available. OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project. Precise Tile Registration: The tile layer uses the improved tiling scheme “WGS84 Geographic, Version 2” to ensure proper tile positioning at higher resolutions (neighborhood level and beyond). The new tiling scheme is much more precise than tiling schemes of the legacy basemaps Esri released years ago. We recommend that you start using this new basemap for any new web maps in WGS84 that you plan to author. Due to the number of differences between the old and new tiling schemes, some web clients will not be able to overlay tile layers in the old and new tiling schemes in one web map.
Facebook
TwitterThis 3D basemap presents OpenStreetMap (OSM) and other data sources and is hosted by Esri using the Topographic style.The Buildings layer references the Esri 3D Buildings scene layer, which includes commercial 3D buildings data acquired from TomTom and Maxar, in addition to Esri Community Maps and Overture Maps Foundation data. The Esri 3D Buildings scene layer is an alternative to the OpenStreetMap (OSM) 3D Buildings scene layer, particularly for areas where the OSM data is missing accurate 3D attributes.Esri created the Places and Labels, Trees, and Topographic layers from the Daylight map distribution of OSM data, which was supported by Meta and supplemented with additional data from Microsoft. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new scene available to the OSM, GIS, and Developer communities.
Facebook
TwitterThis specialized location dataset delivers detailed information about marina establishments. Maritime industry professionals, coastal planners, and tourism researchers can leverage precise location insights to understand maritime infrastructure, analyze recreational boating landscapes, and develop targeted strategies.
How Do We Create Polygons?
-All our polygons are manually crafted using advanced GIS tools like QGIS, ArcGIS, and similar applications. This involves leveraging aerial imagery, satellite data, and street-level views to ensure precision. -Beyond visual data, our expert GIS data engineers integrate venue layout/elevation plans sourced from official company websites to construct highly detailed polygons. This meticulous process ensures maximum accuracy and consistency. -We verify our polygons through multiple quality assurance checks, focusing on accuracy, relevance, and completeness.
What's More?
-Custom Polygon Creation: Our team can build polygons for any location or category based on your requirements. Whether it’s a new retail chain, transportation hub, or niche point of interest, we’ve got you covered. -Enhanced Customization: In addition to polygons, we capture critical details such as entry and exit points, parking areas, and adjacent pathways, adding greater context to your geospatial data. -Flexible Data Delivery Formats: We provide datasets in industry-standard GIS formats like WKT, GeoJSON, Shapefile, and GDB, making them compatible with various systems and tools. -Regular Data Updates: Stay ahead with our customizable refresh schedules, ensuring your polygon data is always up-to-date for evolving business needs.
Unlock the Power of POI and Geospatial Data
With our robust polygon datasets and point-of-interest data, you can: -Perform detailed market and location analyses to identify growth opportunities. -Pinpoint the ideal locations for your next store or business expansion. -Decode consumer behavior patterns using geospatial insights. -Execute location-based marketing campaigns for better ROI. -Gain an edge over competitors by leveraging geofencing and spatial intelligence.
Why Choose LocationsXYZ?
LocationsXYZ is trusted by leading brands to unlock actionable business insights with our accurate and comprehensive spatial data solutions. Join our growing network of successful clients who have scaled their operations with precise polygon and POI datasets. Request your free sample today and explore how we can help accelerate your business growth.
Facebook
TwitterLandsat 8's Operational Land Imager (OLI) collects new imagery for a given location every 16 days. In this band combination, vigorous vegetation appears bright green, healthy vegetation appears as a darker green, while stressed vegetation appears dull green. Coniferous forests appear as a dark, rich green while deciduous forests appear as a bright green. Sparsely vegetated and bare areas appear brown and mauve. This map is updated on a daily basis, retaining the 4 most recent scenes for each path/row that have cloud coverage < 50%, plus the scene closest to the corresponding GLS 2000 scene. Over time the older or cloudier scenes will be removed from the service. Each scene has attributes such as the acquisition date and estimated cloud cover percentage, which can be seen by clicking on the image. By default the map shows the most recent scenes, but by enabling time animation on the imagery layer, it is possible to restrict the displayed scenes to specific date range. Filters can be set to restrict and order the scenes based on other attributes as well.At scales smaller than 1:1 Million, overviews with 300m resolution are shown. To work with an individual scene at all scales use the lock raster functionality - (Set display order to a list of images Web Maps). Note that ‘Lock Raster’ should not be used on the service except for short periods of time, since each day a new service is created the Object IDs will change.Band Combination: Shortwave Infrared (6), Near infrared (5), Blue (2) into RGBImportant Note: This web map shows imagery from the Landsat 8 Views image service, which is a free service and doesn't need any subscription. Similar services exist for returning PanSharpened, Panchromatic, and Analytic (full bit depth) imagery. Landsat data can also be accessed at https://landsatlook.usgs.gov/For more information on Landsat 8 imagery, see https://landsat.usgs.gov/landsat8.php.
Facebook
Twitter
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains both large (A0) printable maps of the Torres Strait broken into six overlapping regions, based on a clear sky, clear water composite Sentinel 2 composite imagery and the imagery used to create these maps. These maps show satellite imagery of the region, overlaid with reef and island boundaries and names. Not all features are named, just the more prominent features. This also includes a vector map of Ashmore Reef and Boot Reef in Coral Sea as these were used in the same discussions that these maps were developed for. The map of Ashmore Reef includes the atoll platform, reef boundaries and depth polygons for 5 m and 10 m.
This dataset contains all working files used in the development of these maps. This includes all a copy of all the source datasets and all derived satellite image tiles and QGIS files used to create the maps. This includes cloud free Sentinel 2 composite imagery of the Torres Strait region with alpha blended edges to allow the creation of a smooth high resolution basemap of the region.
The base imagery is similar to the older base imagery dataset: Torres Strait clear sky, clear water Landsat 5 satellite composite (NERP TE 13.1 eAtlas, AIMS, source: NASA).
Most of the imagery in the composite imagery from 2017 - 2021.
Method:
The Sentinel 2 basemap was produced by processing imagery from the World_AIMS_Marine-satellite-imagery dataset (01-data/World_AIMS_Marine-satellite-imagery in the data download) for the Torres Strait region. The TrueColour imagery for the scenes covering the mapped area were downloaded. Both the reference 1 imagery (R1) and reference 2 imagery (R2) was copied for processing. R1 imagery contains the lowest noise, most cloud free imagery, while R2 contains the next best set of imagery. Both R1 and R2 are typically composite images from multiple dates.
The R2 images were selectively blended using manually created masks with the R1 images. This was done to get the best combination of both images and typically resulted in a reduction in some of the cloud artefacts in the R1 images. The mask creation and previewing of the blending was performed in Photoshop. The created masks were saved in 01-data/R2-R1-masks. To help with the blending of neighbouring images a feathered alpha channel was added to the imagery. The processing of the merging (using the masks) and the creation of the feathered borders on the images was performed using a Python script (src/local/03-merge-R2-R1-images.py) using the Pillow library and GDAL. The neighbouring image blending mask was created by applying a blurring of the original hard image mask. This allowed neighbouring image tiles to merge together.
The imagery and reference datasets (reef boundaries, EEZ) were loaded into QGIS for the creation of the printable maps.
To optimise the matching of the resulting map slight brightness adjustments were applied to each scene tile to match its neighbours. This was done in the setup of each image in QGIS. This adjustment was imperfect as each tile was made from a different combinations of days (to remove clouds) resulting in each scene having a different tonal gradients across the scene then its neighbours. Additionally Sentinel 2 has slight stripes (at 13 degrees off the vertical) due to the swath of each sensor having a slight sensitivity difference. This effect was uncorrected in this imagery.
Single merged composite GeoTiff:
The image tiles with alpha blended edges work well in QGIS, but not in ArcGIS Pro. To allow this imagery to be used across tools that don't support the alpha blending we merged and flattened the tiles into a single large GeoTiff with no alpha channel. This was done by rendering the map created in QGIS into a single large image. This was done in multiple steps to make the process manageable.
The rendered map was cut into twenty 1 x 1 degree georeferenced PNG images using the Atlas feature of QGIS. This process baked in the alpha blending across neighbouring Sentinel 2 scenes. The PNG images were then merged back into a large GeoTiff image using GDAL (via QGIS), removing the alpha channel. The brightness of the image was adjusted so that the darkest pixels in the image were 1, saving the value 0 for nodata masking and the boundary was clipped, using a polygon boundary, to trim off the outer feathering. The image was then optimised for performance by using internal tiling and adding overviews. A full breakdown of these steps is provided in the README.md in the 'Browse and download all data files' link.
The merged final image is available in export\TS_AIMS_Torres Strait-Sentinel-2_Composite.tif.
Source datasets:
Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries including Torres Strait Version 1b (NESP TWQ 3.13, AIMS, TSRA, GBRMPA), https://eatlas.org.au/data/uuid/d2396b2c-68d4-4f4b-aab0-52f7bc4a81f5
Geoscience Australia (2014b), Seas and Submerged Lands Act 1973 - Australian Maritime Boundaries 2014a - Geodatabase [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, https://dx.doi.org/10.4225/25/5539DFE87D895
Basemap/AU_GA_AMB_2014a/Exclusive_Economic_Zone_AMB2014a_Limit.shp
The original data was obtained from GA (Geoscience Australia, 2014a). The Geodatabase was loaded in ArcMap. The Exclusive_Economic_Zone_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.
Geoscience Australia (2014a), Treaties - Australian Maritime Boundaries (AMB) 2014a [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, http://dx.doi.org/10.4225/25/5539E01878302
Basemap/AU_GA_Treaties-AMB_2014a/Papua_New_Guinea_TSPZ_AMB2014a_Limit.shp
The original data was obtained from GA (Geoscience Australia, 2014b). The Geodatabase was loaded in ArcMap. The Papua_New_Guinea_TSPZ_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.
AIMS Coral Sea Features (2022) - DRAFT
This is a draft version of this dataset. The region for Ashmore and Boot reef was checked. The attributes in these datasets haven't been cleaned up. Note these files should not be considered finalised and are only suitable for maps around Ashmore Reef. Please source an updated version of this dataset for any other purpose.
CS_AIMS_Coral-Sea-Features/CS_Names/Names.shp
CS_AIMS_Coral-Sea-Features/CS_Platform_adj/CS_Platform.shp
CS_AIMS_Coral-Sea-Features/CS_Reef_Boundaries_adj/CS_Reef_Boundaries.shp
CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth5m_Coral-Sea.shp
CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth10m_Coral-Sea.shp
Murray Island 20 Sept 2011 15cm SISP aerial imagery, Queensland Spatial Imagery Services Program, Department of Resources, Queensland
This is the high resolution imagery used to create the map of Mer.
World_AIMS_Marine-satellite-imagery
The base image composites used in this dataset were based on an early version of Lawrey, E., Hammerton, M. (2024). Marine satellite imagery test collections (AIMS) [Data set]. eAtlas. https://doi.org/10.26274/zq26-a956. A snapshot of the code at the time this dataset was developed is made available in the 01-data/World_AIMS_Marine-satellite-imagery folder of the download of this dataset.
Data Location:
This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\TS_AIMS_Torres-Strait-Sentinel-2-regional-maps. On the eAtlas server it is stored at eAtlas GeoServer\data\2020-2029-AIMS.
Change Log:
2025-05-12: Eric Lawrey
Added Torres-Strait-Region-Map-Masig-Ugar-Erub-45k-A0 and Torres-Strait-Eastern-Region-Map-Landscape-A0. These maps have a brighten satellite imagery to allow easier reading of writing on the maps. They also include markers for geo-referencing the maps for digitisation.
2025-02-04: Eric Lawrey
Fixed up the reference to the World_AIMS_Marine-satellite-imagery dataset, clarifying where the source that was used in this dataset. Added ORCID and RORs to the record.
2023-11-22: Eric Lawrey
Added the data and maps for close up of Mer.
- 01-data/TS_DNRM_Mer-aerial-imagery/
- preview/Torres-Strait-Mer-Map-Landscape-A0.jpeg
- exports/Torres-Strait-Mer-Map-Landscape-A0.pdf
Updated 02-Torres-Strait-regional-maps.qgz to include the layout for the new map.
2023-03-02: Eric Lawrey
Created a merged version of the satellite imagery, with no alpha blending so that it can be used in ArcGIS Pro. It is now a single large GeoTiff image. The Google Earth Engine source code for the World_AIMS_Marine-satellite-imagery was included to improve the reproducibility and provenance of the dataset, along with a calculation of the distribution of image dates that went into the final composite image. A WMS service for the imagery was also setup and linked to from the metadata. A cross reference to the older Torres Strait clear sky clear water Landsat composite imagery was also added to the record.
Facebook
TwitterThe downloadable ZIP file contains an Esri grid. These data were created as part of a graduate thesis at the University of Idaho to 1.) demonstrate that a combination of geographic information systems (GIS) and multivariate statistical procedures can be used to map climate using data from the Parameter-elevation Regressions on Independent Slopes Model (PRISM), and to 2). delineate agroclimate zones for the purpose of applying successful dryland agricultural research management practices throughout areas of relative climatic uniformity. No responsibility is assumed by Idaho State Climate Services in the use of these data.Multivariate statistical analysis and geographic information systems were used to delineate homogeneous agroclimate zones for Idaho for the purpose of applying successful dryland agricultural research practices and management decisions throughout these areas of relative climatic uniformity. Data used to produce the classification are from the Parameter-elevation Regressions on Independent Slopes Model (PRISM), developed at Oregon State University. PRISM has produced gridded estimates of mean monthly and annual climatic parameters from point data and a digital elevation model (DEM). Principal components analysis was performed on fifty-five variables including various temperature and precipitation parameters, the number of growing-degree days, the mean annual number of freeze-free days, the mean annual day of first freeze in the fall, and the mean annual day of last freeze in the spring. Cluster analysis was used to identify sixteen agroclimate zones each having similar climatic conditions regardless of its spatial location. As a result, successful dryland agricultural practices and management decisions that are based on new technologies and developed for one part of the state may potentially be applied to other parts of the state that fall within the same agroclimate zone.These data were created as part of this thesis: https://alliance-primo.hosted.exlibrisgroup.com/permalink/f/m1uotc/CP7117420067000145136" x 48" PDF map: https://insideidaho.org/data/ago/ics/agroclimate-zones.pdfThese data were contributed to INSIDE Idaho at the University of Idaho Library in 1999.
Facebook
TwitterThis 3D basemap presents OpenStreetMap (OSM) and other data sources and is hosted by Esri using the Light Gray Canvas style.The Buildings layer references the Esri 3D Buildings scene layer, which includes commercial 3D buildings data acquired from TomTom and Vantor, in addition to Esri Community Maps and Overture Maps Foundation data. The Esri 3D Buildings scene layer is an alternative to the OpenStreetMap (OSM) 3D Buildings scene layer, particularly for areas where the OSM data is missing accurate 3D attributes.Esri created the Places and Labels, and Light Gray Canvas layers from the Daylight map distribution of OSM data, which was supported by Meta and supplemented with additional data from Microsoft. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new scene available to the OSM, GIS, and Developer communities.
Facebook
TwitterAttribution-NoDerivs 3.0 (CC BY-ND 3.0)https://creativecommons.org/licenses/by-nd/3.0/
License information was derived automatically
You are free to: Share - copy and redistribute the data in any medium or format. Adapt - You may make derivative works, transform, and build upon the data for any purpose, even commercial. The licensor cannot revoke these freedoms as long as you follow the license terms.License terms: Attribution - You must give appropriate credit (if supplied, you must provide the name of the creator and attribution parties, a copyright notice, a license notice, a disclaimer notice and a link to the material) and indicate if any changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you, your organization, or your use of the data. ShareAlike - if you modify, transform, or build on the data, you must distribute your contributions under the same license as the original.No additional Restrictions - You may not apply legal terms or technological measures that legally restrict others form doing anything the license permits.Notices: You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation. No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the data.EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE DATA, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.The above is an easily understandable summary of and not a substitute for the license and disclaimer for the Attribution-ShareAlike 3.0 United States (CC BY-SA 3.0 US) the full text is available at creativecommons.org.https://creativecommons.org/licenses/by-sa/3.0/us/legalcode
Facebook
TwitterMature Support Notice: This item is in mature support as of December 2024. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. See blog for more information. This web map presents a vector basemap of OpenStreetMap (OSM) data hosted by Esri. This version of the map is rendered in a style similar to the Night version of the Esri Street map. The GCS vector tiles are updated quarterly. Created from the sunsetted Daylight map distribution, data updates supporting this layer are no longer available. OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project.
Facebook
TwitterAs part of the Blue W program this dataset contains the business name and location of businesses within Waterloo Region that offer clean, free public and commercial sources to fill reusable bottles. The Blue W Program is a community-based program dedicated to promoting municipal tap water as a healthy, easily accessible alternative to purchasing bottled drinks. For more information visit www.bluew.org . Data is from 2013
Facebook
TwitterMature Support Notice: This item is in mature support as of December 2024. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. See blog for more information.This web map presents a vector basemap of OpenStreetMap (OSM) data hosted by Esri. This version of the map is rendered in a style similar to the Esri Navigation Dark Mode map. Created from the sunsetted Daylight map distribution, data updates supporting this layer are no longer available.OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project.
Facebook
TwitterMature Support Notice: This item is in mature support as of December 2024. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. See blog for more information.This web map presents a vector basemap of OpenStreetMap (OSM) data hosted by Esri. This version of the map is rendered in a style similar to the Esri Street Map (with Relief). It includes the World Hillshade layer. Created from the sunsetted Daylight map distribution, data updates supporting this layer are no longer available. OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project. Precise Tile Registration: The web map uses the improved tiling scheme “WGS84 Geographic, Version 2” to ensure proper tile positioning at higher resolutions (neighborhood level and beyond). The new tiling scheme is much more precise than tiling schemes of the legacy basemaps Esri released years ago. We recommend that you start using this new basemap for any new web maps in WGS84 that you plan to author. Due to the number of differences between the old and new tiling schemes, some web clients will not be able to overlay tile layers in the old and new tiling schemes in one web map.