12 datasets found
  1. 2014 ACS Dashboard

    • kaggle.com
    zip
    Updated Nov 21, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    William Hyde (2016). 2014 ACS Dashboard [Dataset]. https://www.kaggle.com/wjhyde1/2014-acs-dashboard
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Nov 21, 2016
    Authors
    William Hyde
    Description

    Here are the files to download the example Visualization Using the 2014 American Community Survey Data. Users will need to download Tableau Reader (http://www.tableau.com/products/reader) to view the Dashboard, but it is Free to Download and allows users the interactivity that dashboards provide.

  2. Human Resources Data Set

    • kaggle.com
    Updated Oct 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr. Rich (2020). Human Resources Data Set [Dataset]. http://doi.org/10.34740/kaggle/dsv/1572001
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 19, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Dr. Rich
    Description

    Updated 30 January 2023

    Version 14 of Dataset

    License Update:

    There has been some confusion around licensing for this data set. Dr. Carla Patalano and Dr. Rich Huebner are the original authors of this dataset.

    We provide a license to anyone who wishes to use this dataset for learning or teaching. For the purposes of sharing, please follow this license:

    CC-BY-NC-ND This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

    Codebook

    https://rpubs.com/rhuebner/hrd_cb_v14

    PLEASE NOTE -- I recently updated the codebook - please use the above link. A few minor discrepancies were identified between the codebook and the dataset. Please feel free to contact me through LinkedIn (www.linkedin.com/in/RichHuebner) to report discrepancies and make requests.

    Context

    HR data can be hard to come by, and HR professionals generally lag behind with respect to analytics and data visualization competency. Thus, Dr. Carla Patalano and I set out to create our own HR-related dataset, which is used in one of our graduate MSHRM courses called HR Metrics and Analytics, at New England College of Business. We created this data set ourselves. We use the data set to teach HR students how to use and analyze the data in Tableau Desktop - a data visualization tool that's easy to learn.

    This version provides a variety of features that are useful for both data visualization AND creating machine learning / predictive analytics models. We are working on expanding the data set even further by generating even more records and a few additional features. We will be keeping this as one file/one data set for now. There is a possibility of creating a second file perhaps down the road where you can join the files together to practice SQL/joins, etc.

    Note that this dataset isn't perfect. By design, there are some issues that are present. It is primarily designed as a teaching data set - to teach human resources professionals how to work with data and analytics.

    Content

    We have reduced the complexity of the dataset down to a single data file (v14). The CSV revolves around a fictitious company and the core data set contains names, DOBs, age, gender, marital status, date of hire, reasons for termination, department, whether they are active or terminated, position title, pay rate, manager name, and performance score.

    Recent additions to the data include: - Absences - Most Recent Performance Review Date - Employee Engagement Score

    Acknowledgements

    Dr. Carla Patalano provided the baseline idea for creating this synthetic data set, which has been used now by over 200 Human Resource Management students at the college. Students in the course learn data visualization techniques with Tableau Desktop and use this data set to complete a series of assignments.

    Inspiration

    We've included some open-ended questions that you can explore and try to address through creating Tableau visualizations, or R or Python analyses. Good luck and enjoy the learning!

    • Is there any relationship between who a person works for and their performance score?
    • What is the overall diversity profile of the organization?
    • What are our best recruiting sources if we want to ensure a diverse organization?
    • Can we predict who is going to terminate and who isn't? What level of accuracy can we achieve on this?
    • Are there areas of the company where pay is not equitable?

    There are so many other interesting questions that could be addressed through this interesting data set. Dr. Patalano and I look forward to seeing what we can come up with.

    If you have any questions or comments about the dataset, please do not hesitate to reach out to me on LinkedIn: http://www.linkedin.com/in/RichHuebner

    You can also reach me via email at: Richard.Huebner@go.cambridgecollege.edu

  3. Cyclistic trip data 202006-202105

    • kaggle.com
    Updated Jun 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zeo Zhang (2021). Cyclistic trip data 202006-202105 [Dataset]. https://www.kaggle.com/zeozhang/cyclistic-total-tripdata-v00
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 18, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Zeo Zhang
    Description

    Context

    This is a case study from Coursera: Google Data Analytics Professional Certificate. Cyclistic is a fictional bike-share company and the data is obtained from
    Divvy.

    Content

    The data used for this case study is the trip data of Divvy from June 2020 to May 2021 License. The original data can be access here.

    Acknowledgements

    Thanks to Gaurav Dutta's note 'How to integrate Tableau with Kaggle Notebook', helped me with embeding Tableau visualizations.

    If you see any mistake or anything to improve, feel free to point that out. Excited to learn more about Data Analysis!

  4. d

    Removed Facebook Pages: Engagement Metrics and Posts

    • data.world
    csv, zip
    Updated Jun 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan A. (2025). Removed Facebook Pages: Engagement Metrics and Posts [Dataset]. https://data.world/d1gi/missing-fb-posts-w-share-stats
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jun 3, 2025
    Authors
    Jonathan A.
    Time period covered
    Jul 12, 2015 - Aug 27, 2017
    Description

    About this Dataset

    This dataset includes: 1) A worksheet with structured tabular data of 3000 posts from the five removed Facebook pages linked to the 2016 US election investigation; 2) Previewable PDFs of the raw text from the posts for five of these six Facebook pages; and 3) A full set of connected data visualizations on Tableau public https://public.tableau.com/views/FB4/TotalReachbyPage?:embed=y&:display_count=yes

    Objectives of Project

    Outside of a limited number of statements regarding election "ads," and hearsay news about a handful of 470 closed Facebook pages, the researchers and the public have been left in the dark about the election hacking scandal as it relates to the internet and society.

    Whereas Twitter is over-represented in research, few Americans of outside of politicians, celebrities, sports, and media figures use Twitter to get their daily news, or use it to regularly interact with friends and family. Facebook, on the other hand, is far and away the dominant platform in America for obtaining news as well as for social and civic engagement.

    The data presented here is a catalog of the non-promoted organic reach of the posts on each of the alleged foreign influence ops pages, showing the "total shared to" and sum of interactions (FB "reactions" + "likes" + shares, and comments) for each of the individual posts. Data was obtained directly from Crowdtangle, a Facebook-owned social analytics service.

    Along with the complete text archive for each of posts, this data sheds light on the larger potential impact of the use of Facebook's platform beyond of a single advertising buy. Specifically, the work presented here suggests that there was a much more subtle, if not outright subversive campaign on these five closed pages to:

    a) Siphon Facebook users' data related to their personal views and moral standings about sensitive topics by observing their responses to suggestive statements followed by discussion questions and conversation prompts;

    b) Use faux-support, trust-building, and actor deception to test users' attitudes, core values, religious beliefs, and push the boundaries of social norms (e.g., racism justification through immigration); and

    c) Encourage users' to be tracked through emotional sharing vectors - "likes," "reactions," and url shares - to monitor issue "wedges," further segment audiences, and to identify "hot-button" issues and keywords around current events.

    Share and Use

    Please feel free to use this data for your own research and subsequent analysis. All I ask is that you give attribution. The collection, cleaning, and organization of this data -- and the design of the corresponding visualizations were extremely time intensive.

    Related Resources

  5. Visual Analytics Market by End-user and Geography - Forecast and Analysis...

    • technavio.com
    Updated Sep 15, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2021). Visual Analytics Market by End-user and Geography - Forecast and Analysis 2021-2025 [Dataset]. https://www.technavio.com/report/visual-analytics-market-industry-analysis
    Explore at:
    Dataset updated
    Sep 15, 2021
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global
    Description

    Snapshot img

    The visual analytics market has the potential to grow by USD 4.39 billion during 2021-2025, and the market’s growth momentum will accelerate at a CAGR of 11.32%.

    This visual analytics market research report provides valuable insights on the post COVID-19 impact on the market, which will help companies evaluate their business approaches. Furthermore, this report extensively covers market segmentation by end-user (BFSI, CPG and retail, healthcare, manufacturing, and others) and geography (North America, APAC, Europe, MEA, and South America). The visual analytics market report also offers information on several market vendors, including Altair Engineering Inc., Alteryx Inc., Arcadia Data Inc., Datameer Inc., International Business Machines Corp., Microsoft Corp., QlikTech international AB, SAP SE, SAS Institute Inc., and Tableau Software LLC among others.

    What will the Visual Analytics Market Size be in 2021?

    Browse TOC and LoE with selected illustrations and example pages of Visual Analytics Market

    Get Your FREE Sample Now!

    Visual Analytics Market: Key Drivers and Trends

    The growing availability and complexity of data are notably driving the visual analytics market growth, although factors such as data privacy and security concerns may impede market growth. Our research analysts have studied the historical data and deduced the key market drivers and the COVID-19 pandemic impact on the visual analytics industry. The holistic analysis of the drivers will help in deducing end goals and refining marketing strategies to gain a competitive edge.

          The growing availability and complexity of data will fuel the growth of the visual analytics market size.
          The availability of a large volume of data and rapidly growing data complexity in organizations are the major drivers for the development of various intelligence-based data analysis techniques.
          Intelligent techniques involving technologies such as ML and AI can help companies retrieve the huge amount of complex data in a useful manner and use that data to enhance their services and business processes. This, in turn, is expected to drive the growth of the market for visual analytics.
    
    
    
    
          The increased dependency on Internet for critical operations will drive the visual analytics market growth during the forecast period.
          E-commerce vendors are posting advertisements on search engines and other websites to attract several customers. This will increase the demand for visual analytics to help e-commerce vendors track customers, analyze customer behavior, and ensure proper decision-making.
          With the rising popularity and use of e-commerce, the number of digital media advertisements by e-commerce vendors is expected to increase, which will drive the growth of the market during the forecast period.
    

    This visual analytics market analysis report also provides detailed information on other upcoming trends and challenges that will have a far-reaching effect on the market growth. The actionable insights on the trends and challenges will help companies evaluate and develop growth strategies for 2021-2025.

    Who are the Major Visual Analytics Market Vendors?

    The report analyzes the market’s competitive landscape and offers information on several market vendors, including:

    Altair Engineering Inc.
    Alteryx Inc.
    Arcadia Data Inc.
    Datameer Inc.
    International Business Machines Corp.
    Microsoft Corp.
    QlikTech international AB
    SAP SE
    SAS Institute Inc.
    Tableau Software LLC
    

    This statistical study of the visual analytics market encompasses successful business strategies deployed by the key vendors. The visual analytics market is fragmented and the vendors are deploying growth strategies such as providing customized solutions to compete in the market.

    To make the most of the opportunities and recover from post COVID-19 impact, market vendors should focus more on the growth prospects in the fast-growing segments, while maintaining their positions in the slow-growing segments.

    The visual analytics market forecast report offers in-depth insights into key vendor profiles. The profiles include information on the production, sustainability, and prospects of the leading companies.

    Which are the Key Regions for Visual Analytics Market?

    For more insights on the market share of various regions Request for a FREE sample now!

    35% of the market’s growth will originate from North America during the forecast period. The US is a key market for visual analytics in North America. Market growth in this region will be faster than the growth of the market in Europe, MEA, and South America.

    This market research report entails detailed information on the competitive intelligence, marketing gaps, and regional opportunities in store for vendors, which will assist in creating efficient business plans.

    What are the Revenue-generating End-user Segments

  6. g

    IP Australia - [Superseded] Intellectual Property Government Open Data 2019...

    • gimi9.com
    Updated Jul 20, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). IP Australia - [Superseded] Intellectual Property Government Open Data 2019 | gimi9.com [Dataset]. https://gimi9.com/dataset/au_intellectual-property-government-open-data-2019
    Explore at:
    Dataset updated
    Jul 20, 2018
    Area covered
    Australia
    Description

    What is IPGOD? The Intellectual Property Government Open Data (IPGOD) includes over 100 years of registry data on all intellectual property (IP) rights administered by IP Australia. It also has derived information about the applicants who filed these IP rights, to allow for research and analysis at the regional, business and individual level. This is the 2019 release of IPGOD. # How do I use IPGOD? IPGOD is large, with millions of data points across up to 40 tables, making them too large to open with Microsoft Excel. Furthermore, analysis often requires information from separate tables which would need specialised software for merging. We recommend that advanced users interact with the IPGOD data using the right tools with enough memory and compute power. This includes a wide range of programming and statistical software such as Tableau, Power BI, Stata, SAS, R, Python, and Scalar. # IP Data Platform IP Australia is also providing free trials to a cloud-based analytics platform with the capabilities to enable working with large intellectual property datasets, such as the IPGOD, through the web browser, without any installation of software. IP Data Platform # References The following pages can help you gain the understanding of the intellectual property administration and processes in Australia to help your analysis on the dataset. * Patents * Trade Marks * Designs * Plant Breeder’s Rights # Updates ### Tables and columns Due to the changes in our systems, some tables have been affected. * We have added IPGOD 225 and IPGOD 325 to the dataset! * The IPGOD 206 table is not available this year. * Many tables have been re-built, and as a result may have different columns or different possible values. Please check the data dictionary for each table before use. ### Data quality improvements Data quality has been improved across all tables. * Null values are simply empty rather than '31/12/9999'. * All date columns are now in ISO format 'yyyy-mm-dd'. * All indicator columns have been converted to Boolean data type (True/False) rather than Yes/No, Y/N, or 1/0. * All tables are encoded in UTF-8. * All tables use the backslash \ as the escape character. * The applicant name cleaning and matching algorithms have been updated. We believe that this year's method improves the accuracy of the matches. Please note that the "ipa_id" generated in IPGOD 2019 will not match with those in previous releases of IPGOD.

  7. g

    The Health and Social Care Information Centre (HSCIC) - Health and Wellbeing...

    • gimi9.com
    Updated Aug 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). The Health and Social Care Information Centre (HSCIC) - Health and Wellbeing of 15-year-olds (What About Youth Survey), Borough | gimi9.com [Dataset]. https://gimi9.com/dataset/london_health-and-wellbeing-of-15-year-olds--what-about-youth-survey---borough/
    Explore at:
    Dataset updated
    Aug 4, 2024
    Description

    Health and Wellbeing of 15-year-olds in England - results from What About Youth Survey. Data has been collected on general health, diet, use of free time, physical activity, smoking, drinking, emotional wellbeing, drugs and bullying. What About YOUth? 2014 (WAY 2014) is a newly-established survey designed to collect robust local authority (LA) level data on a range of health behaviours amongst 15 year-olds.WAY 2014 is the first survey to be conducted of its kind and it is hoped that the survey will be repeated in order to form a time series of comparable data on a range of indicators for 15 year-olds across England. Questionnaire packs were sent to 295,245 young people in England and 120,115 of these responded with usable data, giving an unadjusted response rate of 40 per cent (based on the issued sample) and an adjusted response rate of 41 per cent.Participants for WAY 2014 were sampled from the Department for Education’s National Pupil Database (NPD). The NPD is a near full population database (with the exception that independent schools are not included). See this data visualised in this Tableau report. More Information from The Health and Social Care Information Centre (HSCIC) website and data downloads available from PHE Fingertips.

  8. 2023 Annual Technology Baseline (ATB) Cost and Performance Data for...

    • data.openei.org
    • datasets.ai
    • +2more
    archive, code, data +1
    Updated Jun 9, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brian Mirletz; Laura Vimmerstedt; Tyler Stehly; Sertac Akar; Dana Stright; Chad Augustine; Philipp Beiter; Stuart Cohen; Wesley Cole; Patrick Duffy; David Feldman; Pieter Gagnon; Parthiv Kurup; Caitlin Murphy; Vignesh Ramasamy; Jarett Zuboy; Gbadebo Oladosu; Jeffrey Hoffmann; Annika Eberle; Owen Roberts; Daniel Mulas Hernando; Greg Avery; Evan Rosenlieb; Anna Schleifer; Dayo Akindipe; Eric Witter; Brian Mirletz; Laura Vimmerstedt; Tyler Stehly; Sertac Akar; Dana Stright; Chad Augustine; Philipp Beiter; Stuart Cohen; Wesley Cole; Patrick Duffy; David Feldman; Pieter Gagnon; Parthiv Kurup; Caitlin Murphy; Vignesh Ramasamy; Jarett Zuboy; Gbadebo Oladosu; Jeffrey Hoffmann; Annika Eberle; Owen Roberts; Daniel Mulas Hernando; Greg Avery; Evan Rosenlieb; Anna Schleifer; Dayo Akindipe; Eric Witter (2023). 2023 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies [Dataset]. http://doi.org/10.25984/1987306
    Explore at:
    data, code, website, archiveAvailable download formats
    Dataset updated
    Jun 9, 2023
    Dataset provided by
    United States Department of Energyhttp://energy.gov/
    Open Energy Data Initiative (OEDI)
    National Renewable Energy Laboratory (NREL)
    Authors
    Brian Mirletz; Laura Vimmerstedt; Tyler Stehly; Sertac Akar; Dana Stright; Chad Augustine; Philipp Beiter; Stuart Cohen; Wesley Cole; Patrick Duffy; David Feldman; Pieter Gagnon; Parthiv Kurup; Caitlin Murphy; Vignesh Ramasamy; Jarett Zuboy; Gbadebo Oladosu; Jeffrey Hoffmann; Annika Eberle; Owen Roberts; Daniel Mulas Hernando; Greg Avery; Evan Rosenlieb; Anna Schleifer; Dayo Akindipe; Eric Witter; Brian Mirletz; Laura Vimmerstedt; Tyler Stehly; Sertac Akar; Dana Stright; Chad Augustine; Philipp Beiter; Stuart Cohen; Wesley Cole; Patrick Duffy; David Feldman; Pieter Gagnon; Parthiv Kurup; Caitlin Murphy; Vignesh Ramasamy; Jarett Zuboy; Gbadebo Oladosu; Jeffrey Hoffmann; Annika Eberle; Owen Roberts; Daniel Mulas Hernando; Greg Avery; Evan Rosenlieb; Anna Schleifer; Dayo Akindipe; Eric Witter
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These data provide the 2023 update of the Electricity Annual Technology Baseline (ATB). Starting in 2015 NREL has presented the ATB, consisting of detailed cost and performance data, both current and projected, for electricity generation and storage technologies. The ATB products now include data (Excel workbook, Tableau workbooks, and structured summary csv files), as well as documentation and user engagement via a website, presentation, and webinar. Starting in 2021, the data are cloud optimized and provided in the OEDI data lake. The data for 2015 - 2020 are can be found on the NREL Data Search Page. The website documentation can be found on the ATB Website.

  9. s

    Tableau bord du New Deal mobile

    • data.smartidf.services
    • smartregionidf.outscale-euw2.opendatasoft.com
    csv, excel, json
    Updated Jul 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Tableau bord du New Deal mobile [Dataset]. https://data.smartidf.services/explore/dataset/tableau-bord-du-new-deal-mobile/
    Explore at:
    csv, json, excelAvailable download formats
    Dataset updated
    Jul 21, 2025
    Description

    ⚠️ Cet open data n'est plus mis à jour. Pour trouver les données relatives au New Deal mobile, consultez la page open data de Mon réseau mobile. - les données de sites (AAAA_TX_Metropole_Sites) y sont publiées dans le même format - les indicateurs (AAAA_TX_indicateurs_couverture_4g) peuvent être reconstitués à partir des cartes de couverture théorique et des données sur le Dispositif couverture ciblée.

    Les informations sont par ailleurs consultables dans le suivi du New Deal mobile et sur Mon réseau mobile

    En janvier 2018, l’Arcep et le Gouvernement annonçaient des engagements des opérateurs pour accélérer la couverture mobile des territoires. Ces engagements ont été retranscrits dans leurs licences actuelles en juillet 2018 afin de les rendre juridiquement opposables. Par ailleurs, l'Arcep a adopté le 15 novembre 2018 la décision relative au résultat de la procédure d’attribution des fréquences dans les bandes 900 MHz, 1800 MHz et 2,1 GHz ainsi que 4 décisions d'autorisations d'utilisation de fréquences à Bouygues Telecom, Free Mobile, Orange et SFR.

    L’Arcep dispose d’un pouvoir de sanction en cas de manquement au respect des obligations inscrites dans les autorisations de fréquences : Elle s’assure de la bonne exécution et mise en œuvre du New Deal par les opérateurs dans ce cadre.

    Comme annoncé par le président de la République à Bastia le 7 février 2018, ce contrôle s’accompagne d’un tableau de bord de l’Arcep mesurant la bonne application des engagements.

    Cet outil regroupe un ensemble de six indicateurs présentant de manière transparente, la progression des opérateurs sur chacun des axes du New Deal mobile : - La 4G pour tous - La couverture ciblée - La couverture indoor - La 4G en voiture - L’état des réseaux mobiles - La 4G fixe

    Il s’agit d’offrir aux élus et à tous les observateurs une information permettant d’avoir une vision à la fois nationale et territoriale de l’avancée des engagements. Ainsi, l’outil présente-t-il des cartes interactives permettant par exemple, pour un territoire donné, de visualiser le déploiement de nouveaux sites (dont ceux qui auront été demandés par les collectivités dans le cadre du New Deal mobile).

    Afin de permettre leur réutilisation large, en particulier par les territoires, les données (nationales et locales) sont disponibles en open data.

    Vous trouverez plus de détails quant aux données, formats et systèmes de projection dans les descriptifs des ressources.

    Retrouvez le calendrier des publications de l'Arcep.

    En savoir plus

  10. e

    Statistieken openbaar vervoer Viljandi County

    • data.europa.eu
    *.twbx
    Updated Dec 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MTÜ Viljandimaa Ühistranspordikeskus (2024). Statistieken openbaar vervoer Viljandi County [Dataset]. https://data.europa.eu/data/datasets/oai-avaandmed-eesti-ee-ff0c2698-7190-4264-ad5a-6010832a3e31?locale=nl
    Explore at:
    *.twbxAvailable download formats
    Dataset updated
    Dec 14, 2024
    Dataset authored and provided by
    MTÜ Viljandimaa Ühistranspordikeskus
    Area covered
    Viljandi, Viljandimaa
    Description

    Käesolaev dataset toont de passagiersstatistieken van de openbare geregelde diensten in Viljandi County (bus bezettingsgraad, aantal passagiers afkomstig van haltes, enz.). Om de gegevens te bekijken, moet de gratis software Tableau Reader – https://www.tableau.com/products/reader op uw computer worden geïnstalleerd.

  11. g

    Tableau bord du New Deal mobile | gimi9.com

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tableau bord du New Deal mobile | gimi9.com [Dataset]. https://gimi9.com/dataset/fr_5b2b6715c751df6acaf0c2ee/
    Explore at:
    Description

    ⚠️ Cet open data n'est plus mis à jour. Pour trouver les données relatives au New Deal mobile, consultez la page open data de Mon réseau mobile. - les données de sites (AAAA_TX_Metropole_Sites) y sont publiées dans le même format - les indicateurs (AAAA_TX_indicateurs_couverture_4g) peuvent être reconstitués à partir des cartes de couverture théorique et des données sur le Dispositif couverture ciblée. Les informations sont par ailleurs consultables dans le suivi du New Deal mobile et sur Mon réseau mobile ---- En janvier 2018, l’Arcep et le Gouvernement annonçaient des engagements des opérateurs pour accélérer la couverture mobile des territoires. Ces engagements ont été retranscrits dans leurs licences actuelles en juillet 2018 afin de les rendre juridiquement opposables. Par ailleurs, l'Arcep a adopté le 15 novembre 2018 la décision relative au résultat de la procédure d’attribution des fréquences dans les bandes 900 MHz, 1800 MHz et 2,1 GHz ainsi que 4 décisions d'autorisations d'utilisation de fréquences à Bouygues Telecom, Free Mobile, Orange et SFR. L’Arcep dispose d’un pouvoir de sanction en cas de manquement au respect des obligations inscrites dans les autorisations de fréquences : Elle s’assure de la bonne exécution et mise en œuvre du New Deal par les opérateurs dans ce cadre. Comme annoncé par le président de la République à Bastia le 7 février 2018, ce contrôle s’accompagne d’un tableau de bord de l’Arcep mesurant la bonne application des engagements. Cet outil regroupe un ensemble de six indicateurs présentant de manière transparente, la progression des opérateurs sur chacun des axes du New Deal mobile : - La 4G pour tous - La couverture ciblée - La couverture indoor - La 4G en voiture - L’état des réseaux mobiles - La 4G fixe Il s’agit d’offrir aux élus et à tous les observateurs une information permettant d’avoir une vision à la fois nationale et territoriale de l’avancée des engagements. Ainsi, l’outil présente-t-il des cartes interactives permettant par exemple, pour un territoire donné, de visualiser le déploiement de nouveaux sites (dont ceux qui auront été demandés par les collectivités dans le cadre du New Deal mobile). Afin de permettre leur réutilisation large, en particulier par les territoires, les données (nationales et locales) sont disponibles en open data. Vous trouverez plus de détails quant aux données, formats et systèmes de projection dans les descriptifs des ressources. Retrouvez le calendrier des publications de l'Arcep. En savoir plus

  12. e

    Statistik over offentlig transport i Viljandi amt

    • data.europa.eu
    *.twbx
    Updated Dec 31, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MTÜ Viljandimaa Ühistranspordikeskus (2019). Statistik over offentlig transport i Viljandi amt [Dataset]. https://data.europa.eu/data/datasets/oai-avaandmed-eesti-ee-ff0c2698-7190-4264-ad5a-6010832a3e31?locale=da
    Explore at:
    *.twbxAvailable download formats
    Dataset updated
    Dec 31, 2019
    Dataset authored and provided by
    MTÜ Viljandimaa Ühistranspordikeskus
    Description

    Käesolaev-datasættet viser passagerstatistikkerne for offentlig rutekørsel i Viljandi amt (busbelægningsgrad, antal passagerer, der kommer fra stoppesteder osv.). For at se dataene skal du installere den gratis software Tableau Reader – https://www.tableau.com/products/reader på din computer.

  13. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
William Hyde (2016). 2014 ACS Dashboard [Dataset]. https://www.kaggle.com/wjhyde1/2014-acs-dashboard
Organization logo

2014 ACS Dashboard

Example of a Dashboard made with 2014 ACS Survey Data

Explore at:
zip(0 bytes)Available download formats
Dataset updated
Nov 21, 2016
Authors
William Hyde
Description

Here are the files to download the example Visualization Using the 2014 American Community Survey Data. Users will need to download Tableau Reader (http://www.tableau.com/products/reader) to view the Dashboard, but it is Free to Download and allows users the interactivity that dashboards provide.

Search
Clear search
Close search
Google apps
Main menu