Company Datasets for valuable business insights!
Discover new business prospects, identify investment opportunities, track competitor performance, and streamline your sales efforts with comprehensive Company Datasets.
These datasets are sourced from top industry providers, ensuring you have access to high-quality information:
We provide fresh and ready-to-use company data, eliminating the need for complex scraping and parsing. Our data includes crucial details such as:
You can choose your preferred data delivery method, including various storage options, delivery frequency, and input/output formats.
Receive datasets in CSV, JSON, and other formats, with storage options like AWS S3 and Google Cloud Storage. Opt for one-time, monthly, quarterly, or bi-annual data delivery.
With Oxylabs Datasets, you can count on:
Pricing Options:
Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.
Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.
Experience a seamless journey with Oxylabs:
Unlock the power of data with Oxylabs' Company Datasets and supercharge your business insights today!
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides a comprehensive overview of online sales transactions across different product categories. Each row represents a single transaction with detailed information such as the order ID, date, category, product name, quantity sold, unit price, total price, region, and payment method.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Orange town household income by gender. The dataset can be utilized to understand the gender-based income distribution of Orange town income.
The dataset will have the following datasets when applicable
Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Explore our comprehensive data analysis and visual representations for a deeper understanding of Orange town income distribution by gender. You can refer the same here
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.
The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:
Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.
Fork this kernel to get started.
Banner Photo by Edho Pratama from Unsplash.
What is the total number of transactions generated per device browser in July 2017?
The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?
What was the average number of product pageviews for users who made a purchase in July 2017?
What was the average number of product pageviews for users who did not make a purchase in July 2017?
What was the average total transactions per user that made a purchase in July 2017?
What is the average amount of money spent per session in July 2017?
What is the sequence of pages viewed?
Note:- Only publicly available data can be worked upon
In today's ever-evolving Ecommerce landscape, success hinges on the ability to harness the power of data. APISCRAPY is your strategic ally, dedicated to providing a comprehensive solution for extracting critical Ecommerce data, including Ecommerce market data, Ecommerce product data, and Ecommerce datasets. With the Ecommerce arena being more competitive than ever, having a data-driven approach is no longer a luxury but a necessity.
APISCRAPY's forte lies in its ability to unearth valuable Ecommerce market data. We recognize that understanding the market dynamics, trends, and fluctuations is essential for making informed decisions.
APISCRAPY's AI-driven ecommerce data scraping service presents several advantages for individuals and businesses seeking comprehensive insights into the ecommerce market. Here are key benefits associated with their advanced data extraction technology:
Ecommerce Product Data: APISCRAPY's AI-driven approach ensures the extraction of detailed Ecommerce Product Data, including product specifications, images, and pricing information. This comprehensive data is valuable for market analysis and strategic decision-making.
Data Customization: APISCRAPY enables users to customize the data extraction process, ensuring that the extracted ecommerce data aligns precisely with their informational needs. This customization option adds versatility to the service.
Efficient Data Extraction: APISCRAPY's technology streamlines the data extraction process, saving users time and effort. The efficiency of the extraction workflow ensures that users can obtain relevant ecommerce data swiftly and consistently.
Realtime Insights: Businesses can gain real-time insights into the dynamic Ecommerce Market by accessing rapidly extracted data. This real-time information is crucial for staying ahead of market trends and making timely adjustments to business strategies.
Scalability: The technology behind APISCRAPY allows scalable extraction of ecommerce data from various sources, accommodating evolving data needs and handling increased volumes effortlessly.
Beyond the broader market, a deeper dive into specific products can provide invaluable insights. APISCRAPY excels in collecting Ecommerce product data, enabling businesses to analyze product performance, pricing strategies, and customer reviews.
To navigate the complexities of the Ecommerce world, you need access to robust datasets. APISCRAPY's commitment to providing comprehensive Ecommerce datasets ensures businesses have the raw materials required for effective decision-making.
Our primary focus is on Amazon data, offering businesses a wealth of information to optimize their Amazon presence. By doing so, we empower our clients to refine their strategies, enhance their products, and make data-backed decisions.
[Tags: Ecommerce data, Ecommerce Data Sample, Ecommerce Product Data, Ecommerce Datasets, Ecommerce market data, Ecommerce Market Datasets, Ecommerce Sales data, Ecommerce Data API, Amazon Ecommerce API, Ecommerce scraper, Ecommerce Web Scraping, Ecommerce Data Extraction, Ecommerce Crawler, Ecommerce data scraping, Amazon Data, Ecommerce web data]
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the median household income in Clay town. It can be utilized to understand the trend in median household income and to analyze the income distribution in Clay town by household type, size, and across various income brackets.
The dataset will have the following datasets when applicable
Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Explore our comprehensive data analysis and visual representations for a deeper understanding of Clay town median household income. You can refer the same here
Our NFL Data product offers extensive access to historic and current National Football League statistics and results, available in multiple formats. Whether you're a sports analyst, data scientist, fantasy football enthusiast, or a developer building sports-related apps, this dataset provides everything you need to dive deep into NFL performance insights.
Key Benefits:
Comprehensive Coverage: Includes historic and real-time data on NFL stats, game results, team performance, player metrics, and more.
Multiple Formats: Datasets are available in various formats (CSV, JSON, XML) for easy integration into your tools and applications.
User-Friendly Access: Whether you are an advanced analyst or a beginner, you can easily access and manipulate data to suit your needs.
Free Trial: Explore the full range of data with our free trial before committing, ensuring the product meets your expectations.
Customizable: Filter and download only the data you need, tailored to specific seasons, teams, or players.
API Access: Developers can integrate real-time NFL data into their apps with API support, allowing seamless updates and user engagement.
Use Cases:
Fantasy Football Players: Use the data to analyze player performance, helping to draft winning teams and make better game-day decisions.
Sports Analysts: Dive deep into historical and current NFL stats for research, articles, and game predictions.
Developers: Build custom sports apps and dashboards by integrating NFL data directly through API access.
Betting & Prediction Models: Use data to create accurate predictions for NFL games, helping sportsbooks and bettors alike.
Media Outlets: Enhance game previews, post-game analysis, and highlight reels with accurate, detailed NFL stats.
Our NFL Data product ensures you have the most reliable, up-to-date information to drive your projects, whether it's enhancing user experiences, creating predictive models, or simply enjoying in-depth football analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Context
The data presented here was obtained in a Kali Machine from University of Cincinnati,Cincinnati,OHIO by carrying out packet captures for 1 hour during the evening on Oct 9th,2023 using Wireshark.This dataset consists of 394137 instances were obtained and stored in a CSV (Comma Separated Values) file.This large dataset could be used utilised for different machine learning applications for instance classification of Network traffic,Network performance monitoring,Network Security Management , Network Traffic Management ,network intrusion detection and anomaly detection.
The dataset can be used for a variety of machine learning tasks, such as network intrusion detection, traffic classification, and anomaly detection.
Content :
This network traffic dataset consists of 7 features.Each instance contains the information of source and destination IP addresses, The majority of the properties are numeric in nature, however there are also nominal and date kinds due to the Timestamp.
The network traffic flow statistics (No. Time Source Destination Protocol Length Info) were obtained using Wireshark (https://www.wireshark.org/).
Dataset Columns:
No : Number of Instance. Timestamp : Timestamp of instance of network traffic Source IP: IP address of Source Destination IP: IP address of Destination Portocol: Protocol used by the instance Length: Length of Instance Info: Information of Traffic Instance
Acknowledgements :
I would like thank University of Cincinnati for giving the infrastructure for generation of network traffic data set.
Ravikumar Gattu , Susmitha Choppadandi
Inspiration : This dataset goes beyond the majority of network traffic classification datasets, which only identify the type of application (WWW, DNS, ICMP,ARP,RARP) that an IP flow contains. Instead, it generates machine learning models that can identify specific applications (like Tiktok,Wikipedia,Instagram,Youtube,Websites,Blogs etc.) from IP flow statistics (there are currently 25 applications in total).
**Dataset License: ** CC0: Public Domain
Dataset Usages : This dataset can be used for different machine learning applications in the field of cybersecurity such as classification of Network traffic,Network performance monitoring,Network Security Management , Network Traffic Management ,network intrusion detection and anomaly detection.
ML techniques benefits from this Dataset :
This dataset is highly useful because it consists of 394137 instances of network traffic data obtained by using the 25 applications on a public,private and Enterprise networks.Also,the dataset consists of very important features that can be used for most of the applications of Machine learning in cybersecurity.Here are few of the potential machine learning applications that could be benefited from this dataset are :
Network Performance Monitoring : This large network traffic data set can be utilised for analysing the network traffic to identifying the network patterns in the network .This help in designing the network security algorithms for minimise the network probelms.
Anamoly Detection : Large network traffic dataset can be utilised training the machine learning models for finding the irregularitues in the traffic which could help identify the cyber attacks.
3.Network Intrusion Detection : This large dataset could be utilised for machine algorithms training and designing the models for detection of the traffic issues,Malicious traffic network attacks and DOS attacks as well.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Advance population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Advance across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Advance was 505, a 0.40% increase year-by-year from 2022. Previously, in 2022, Advance population was 503, a decline of 0.59% compared to a population of 506 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Advance decreased by 54. In this period, the peak population was 598 in the year 2009. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Advance Population by Year. You can refer the same here
https://data.4tu.nl/info/fileadmin/user_upload/Documenten/4TU.ResearchData_Restricted_Data_2022.pdfhttps://data.4tu.nl/info/fileadmin/user_upload/Documenten/4TU.ResearchData_Restricted_Data_2022.pdf
This dataset comprises five sets of data collected throughout of Alev Sönmez’s PhD Thesis project: Sönmez, A. (2024). Dancing the Vibe: Designerly Exploration of Group Mood in Work Settings. (Doctoral dissertation in review). Delft University of Technology, Delft, the Netherlands.
This thesis aims to contribute to the granular understanding of group mood by achieving three objectives,each representing a key research question in the project: (1) to develop a descriptive overview of nuanced group moods, (2) to develop knowledge and tools to effectively communicate nuanced group moods, and (3) to develop knowledge and insights to facilitate reflection on group mood. The research was guided by the following research questions: (1) What types of group moods are experienced in small work groups? (2) How can nuanced group moods be effectively communicated? (3) How can group mood reflection be facilitated?
This research was supported by VICI grant number 453-16-009 from The Netherlands Organization for Scientific Research (NWO), Division for the Social and Behavioral Sciences, awarded to Pieter M. A. Desmet.
The data is organized into folders corresponding to the chapters of the thesis. Each folder contains a README file with specific information about the dataset.
Capter_2_PhenomenologicalStudy: This dataset conssists of anonymized transcriptions of co-inquiry sessions where 5 small project groups described the group moods they experienced in their eight most recent meetings. Additonaly, we share the observation notes wwe collected in those meetings, the maps filled in during the co-inquiry sessions, the materials used to collect data, and the coding scheme used to analyze the group mood descriptions.
Chapter_3_ImageEvaluationStudy: This dataset consists of anonymized scores from 38 participants indicating the strength of the association between eight group mood–expressing images and 36 group mood qualities, along with their free descriptions of the group moods perceived in those images. Addtioanlly we share the questionnaire design, the eight images, and the data processing files (t-test, correspondence analysis outputs, free description coding, heat map).
Chapter_4_VideoEvaluationStudy: This dataset consists of anonymized scores from 40 participants indicating the strength of the association between eight group mood–expressing videos and 36 group mood qualities, along with their free descriptions of the group moods perceived in those videos. Addtioanlly we share the questionnaire design, and the data processing files (t-test, correspondence analysis outputs, free description coding, heat map) and data processing files to compare the image and video set (PCA output, and image-video HIT rate comparison table).
Chapter_5_CardsetInterventionStudy: This dataset consists of anonymized written responses from each of the 12 project teams, along with notes taken during a plenary session with these teams, evaluating the efficacy of the intervention on their group mood management.
Chapter_6_WorkshopEvaluationStudy: This dataset consists of Anonymized transcriptions of five small work teams reflecting on their lived group mood experiences following the steps of an embodiment workshop we designed, including their takeaways from the workshop and discussions evaluating the workshop's efficacy in stimulating reflection and the overall experience of the workshop.
All the data is anonymized by removing the names of individuals and institutions. However, the interviews contain details where participants shared personal information about themselves, colleagues, and company dynamics. Therefore, the data should be handled with extra care to ensure that participant privacy is not put in danger. Contact N.A.Romero@tudelft.nl (Natalia Romero Herrera) to request access to the dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the North Manchester population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of North Manchester. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 2,925 (59.65% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for North Manchester Population by Age. You can refer the same here
Product Review Datasets: Uncover user sentiment
Harness the power of Product Review Datasets to understand user sentiment and insights deeply. These datasets are designed to elevate your brand and product feature analysis, help you evaluate your competitive stance, and assess investment risks.
Data sources:
Leave the data collection challenges to us and dive straight into market insights with clean, structured, and actionable data, including:
Choose from multiple data delivery options to suit your needs:
Why choose Oxylabs?
Fresh and accurate data: Access organized, structured, and comprehensive data collected by our leading web scraping professionals.
Time and resource savings: Concentrate on your core business goals while we efficiently handle the data extraction process at an affordable cost.
Adaptable solutions: Share your specific data requirements, and we'll craft a customized data collection approach to meet your objectives.
Legal compliance: Partner with a trusted leader in ethical data collection. Oxylabs is a founding member of the Ethical Web Data Collection Initiative, aligning with GDPR and CCPA standards.
Pricing Options:
Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.
Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.
Experience a seamless journey with Oxylabs:
Join the ranks of satisfied customers who appreciate our meticulous attention to detail and personalized support. Experience the power of Product Review Datasets today to uncover valuable insights and enhance decision-making.
analyze the health and retirement study (hrs) with r the hrs is the one and only longitudinal survey of american seniors. with a panel starting its third decade, the current pool of respondents includes older folks who have been interviewed every two years as far back as 1992. unlike cross-sectional or shorter panel surveys, respondents keep responding until, well, death d o us part. paid for by the national institute on aging and administered by the university of michigan's institute for social research, if you apply for an interviewer job with them, i hope you like werther's original. figuring out how to analyze this data set might trigger your fight-or-flight synapses if you just start clicking arou nd on michigan's website. instead, read pages numbered 10-17 (pdf pages 12-19) of this introduction pdf and don't touch the data until you understand figure a-3 on that last page. if you start enjoying yourself, here's the whole book. after that, it's time to register for access to the (free) data. keep your username and password handy, you'll need it for the top of the download automation r script. next, look at this data flowchart to get an idea of why the data download page is such a righteous jungle. but wait, good news: umich recently farmed out its data management to the rand corporation, who promptly constructed a giant consolidated file with one record per respondent across the whole panel. oh so beautiful. the rand hrs files make much of the older data and syntax examples obsolete, so when you come across stuff like instructions on how to merge years, you can happily ignore them - rand has done it for you. the health and retirement study only includes noninstitutionalized adults when new respondents get added to the panel (as they were in 1992, 1993, 1998, 2004, and 2010) but once they're in, they're in - respondents have a weight of zero for interview waves when they were nursing home residents; but they're still responding and will continue to contribute to your statistics so long as you're generalizing about a population from a previous wave (for example: it's possible to compute "among all americans who were 50+ years old in 1998, x% lived in nursing homes by 2010"). my source for that 411? page 13 of the design doc. wicked. this new github repository contains five scripts: 1992 - 2010 download HRS microdata.R loop through every year and every file, download, then unzip everything in one big party impor t longitudinal RAND contributed files.R create a SQLite database (.db) on the local disk load the rand, rand-cams, and both rand-family files into the database (.db) in chunks (to prevent overloading ram) longitudinal RAND - analysis examples.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create tw o database-backed complex sample survey object, using a taylor-series linearization design perform a mountain of analysis examples with wave weights from two different points in the panel import example HRS file.R load a fixed-width file using only the sas importation script directly into ram with < a href="http://blog.revolutionanalytics.com/2012/07/importing-public-data-with-sas-instructions-into-r.html">SAScii parse through the IF block at the bottom of the sas importation script, blank out a number of variables save the file as an R data file (.rda) for fast loading later replicate 2002 regression.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create a database-backed complex sample survey object, using a taylor-series linearization design exactly match the final regression shown in this document provided by analysts at RAND as an update of the regression on pdf page B76 of this document . click here to view these five scripts for more detail about the health and retirement study (hrs), visit: michigan's hrs homepage rand's hrs homepage the hrs wikipedia page a running list of publications using hrs notes: exemplary work making it this far. as a reward, here's the detailed codebook for the main rand hrs file. note that rand also creates 'flat files' for every survey wave, but really, most every analysis you c an think of is possible using just the four files imported with the rand importation script above. if you must work with the non-rand files, there's an example of how to import a single hrs (umich-created) file, but if you wish to import more than one, you'll have to write some for loops yourself. confidential to sas, spss, stata, and sudaan users: a tidal wave is coming. you can get water up your nose and be dragged out to sea, or you can grab a surf board. time to transition to r. :D
This repository contains the data and code necessary to replicate all figures and tables in the working paper: "Does the disclosure of gun ownership affect crime? Evidence from New York" by Daniel Tannenbaum
There are four folders in this repository:(1) Build: contains all the .do files required to produce the analysis datasets, using the raw data (i.e. datasets in the RawData folder).(2) Analysis: contains all the .do files required to produce all the figures and tables in the paper, using the analysis datasets (i.e. datasets in the AnalysisData folder).(3) RawData: contains all the raw datasets used to produce the AnalysisData datasets. The only raw dataset used in the paper that is excluded from this folder is the proprietary housing assessor and sales transaction data from DataQuick, owned by Corelogic. If I receive approval to include this raw data in this repository I will do so in future versions of this repository.(4) AnalysisData: contains all the analysis datasets that are created using the Build and are used to produce the tables and figures in the paper.
Running the file Master_analysis.do in the Analysis folder will produce, in one script, all the tables and figures in the paper.
https://brightdata.com/licensehttps://brightdata.com/license
Use our constantly updated Walmart products dataset to get a complete snapshot of new products, categories, pricing, and consumer reviews. You may purchase the entire dataset or a customized subset, depending on your needs. Popular use cases: Identify product inventory gaps and increased demand for certain products, analyze consumer sentiment and define a pricing strategy by locating similar products and categories among your competitors. The dataset includes all major data points: product, SKU, GTIN, currency,timestamp, price,a nd more. Get your Walmart dataset today!
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Airline data holds immense importance as it offers insights into the functioning and efficiency of the aviation industry. It provides valuable information about flight routes, schedules, passenger demographics, and preferences, which airlines can leverage to optimize their operations and enhance customer experiences. By analyzing data on delays, cancellations, and on-time performance, airlines can identify trends and implement strategies to improve punctuality and mitigate disruptions. Moreover, regulatory bodies and policymakers rely on this data to ensure safety standards, enforce regulations, and make informed decisions regarding aviation policies. Researchers and analysts use airline data to study market trends, assess environmental impacts, and develop strategies for sustainable growth within the industry. In essence, airline data serves as a foundation for informed decision-making, operational efficiency, and the overall advancement of the aviation sector.
This dataset comprises diverse parameters relating to airline operations on a global scale. The dataset prominently incorporates fields such as Passenger ID, First Name, Last Name, Gender, Age, Nationality, Airport Name, Airport Country Code, Country Name, Airport Continent, Continents, Departure Date, Arrival Airport, Pilot Name, and Flight Status. These columns collectively provide comprehensive insights into passenger demographics, travel details, flight routes, crew information, and flight statuses. Researchers and industry experts can leverage this dataset to analyze trends in passenger behavior, optimize travel experiences, evaluate pilot performance, and enhance overall flight operations.
https://i.imgur.com/cUFuMeU.png" alt="">
The dataset provided here is a simulated example and was generated using the online platform found at Mockaroo. This web-based tool offers a service that enables the creation of customizable Synthetic datasets that closely resemble real data. It is primarily intended for use by developers, testers, and data experts who require sample data for a range of uses, including testing databases, filling applications with demonstration data, and crafting lifelike illustrations for presentations and tutorials. To explore further details, you can visit their website.
Cover Photo by: Kevin Woblick on Unsplash
Thumbnail by: Airplane icons created by Freepik - Flaticon
The main objective of the HEIS survey is to obtain detailed data on household expenditure and income, linked to various demographic and socio-economic variables, to enable computation of poverty indices and determine the characteristics of the poor and prepare poverty maps. Therefore, to achieve these goals, the sample had to be representative on the sub-district level. The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality.
Data collected through the survey helped in achieving the following objectives: 1. Provide data weights that reflect the relative importance of consumer expenditure items used in the preparation of the consumer price index 2. Study the consumer expenditure pattern prevailing in the society and the impact of demographic and socio-economic variables on those patterns 3. Calculate the average annual income of the household and the individual, and assess the relationship between income and different economic and social factors, such as profession and educational level of the head of the household and other indicators 4. Study the distribution of individuals and households by income and expenditure categories and analyze the factors associated with it 5. Provide the necessary data for the national accounts related to overall consumption and income of the household sector 6. Provide the necessary income data to serve in calculating poverty indices and identifying the poor characteristics as well as drawing poverty maps 7. Provide the data necessary for the formulation, follow-up and evaluation of economic and social development programs, including those addressed to eradicate poverty
National
Sample survey data [ssd]
The Household Expenditure and Income survey sample for 2010, was designed to serve the basic objectives of the survey through providing a relatively large sample in each sub-district to enable drawing a poverty map in Jordan. The General Census of Population and Housing in 2004 provided a detailed framework for housing and households for different administrative levels in the country. Jordan is administratively divided into 12 governorates, each governorate is composed of a number of districts, each district (Liwa) includes one or more sub-district (Qada). In each sub-district, there are a number of communities (cities and villages). Each community was divided into a number of blocks. Where in each block, the number of houses ranged between 60 and 100 houses. Nomads, persons living in collective dwellings such as hotels, hospitals and prison were excluded from the survey framework.
A two stage stratified cluster sampling technique was used. In the first stage, a cluster sample proportional to the size was uniformly selected, where the number of households in each cluster was considered the weight of the cluster. At the second stage, a sample of 8 households was selected from each cluster, in addition to another 4 households selected as a backup for the basic sample, using a systematic sampling technique. Those 4 households were sampled to be used during the first visit to the block in case the visit to the original household selected is not possible for any reason. For the purposes of this survey, each sub-district was considered a separate stratum to ensure the possibility of producing results on the sub-district level. In this respect, the survey framework adopted that provided by the General Census of Population and Housing Census in dividing the sample strata. To estimate the sample size, the coefficient of variation and the design effect of the expenditure variable provided in the Household Expenditure and Income Survey for the year 2008 was calculated for each sub-district. These results were used to estimate the sample size on the sub-district level so that the coefficient of variation for the expenditure variable in each sub-district is less than 10%, at a minimum, of the number of clusters in the same sub-district (6 clusters). This is to ensure adequate presentation of clusters in different administrative areas to enable drawing an indicative poverty map.
It should be noted that in addition to the standard non response rate assumed, higher rates were expected in areas where poor households are concentrated in major cities. Therefore, those were taken into consideration during the sampling design phase, and a higher number of households were selected from those areas, aiming at well covering all regions where poverty spreads.
Face-to-face [f2f]
Raw Data: - Organizing forms/questionnaires: A compatible archive system was used to classify the forms according to different rounds throughout the year. A registry was prepared to indicate different stages of the process of data checking, coding and entry till forms were back to the archive system. - Data office checking: This phase was achieved concurrently with the data collection phase in the field where questionnaires completed in the field were immediately sent to data office checking phase. - Data coding: A team was trained to work on the data coding phase, which in this survey is only limited to education specialization, profession and economic activity. In this respect, international classifications were used, while for the rest of the questions, coding was predefined during the design phase. - Data entry/validation: A team consisting of system analysts, programmers and data entry personnel were working on the data at this stage. System analysts and programmers started by identifying the survey framework and questionnaire fields to help build computerized data entry forms. A set of validation rules were added to the entry form to ensure accuracy of data entered. A team was then trained to complete the data entry process. Forms prepared for data entry were provided by the archive department to ensure forms are correctly extracted and put back in the archive system. A data validation process was run on the data to ensure the data entered is free of errors. - Results tabulation and dissemination: After the completion of all data processing operations, ORACLE was used to tabulate the survey final results. Those results were further checked using similar outputs from SPSS to ensure that tabulations produced were correct. A check was also run on each table to guarantee consistency of figures presented, together with required editing for tables' titles and report formatting.
Harmonized Data: - The Statistical Package for Social Science (SPSS) was used to clean and harmonize the datasets. - The harmonization process started with cleaning all raw data files received from the Statistical Office. - Cleaned data files were then merged to produce one data file on the individual level containing all variables subject to harmonization. - A country-specific program was generated for each dataset to generate/compute/recode/rename/format/label harmonized variables. - A post-harmonization cleaning process was run on the data. - Harmonized data was saved on the household as well as the individual level, in SPSS and converted to STATA format.
Prescriptive Analytics Market Size 2025-2029
The prescriptive analytics market size is forecast to increase by USD 10.96 billion at a CAGR of 23.3% between 2024 and 2029.
The market is experiencing significant growth, driven by the increasing demand for predictive analytics and the integration of machine learning technologies. Prescriptive analytics, which builds upon descriptive and predictive analytics, offers actionable insights to help businesses make informed decisions. Additionally, data security, causal inference, and data governance are becoming increasingly important considerations in the implementation of prescriptive analytics. This advanced form of analytics goes beyond predicting future outcomes and provides recommendations for optimal actions, making it an essential tool for organizations seeking to gain a competitive edge. However, the market faces challenges as well.
Ensuring data privacy and security while leveraging prescriptive analytics will be a critical challenge for businesses. Additionally, the complexity of implementing prescriptive analytics solutions may deter some organizations, requiring significant investment in resources and expertise. Artificial intelligence (AI) and decision support systems are driving the adoption of hybrid analytics, enabling businesses to gain insights from diverse data sources. Navigating these challenges will be essential for companies looking to capitalize on the opportunities presented by this dynamic and evolving market. Data privacy and regulations are becoming increasingly stringent, necessitating robust security measures and compliance with industry standards.
What will be the Size of the Prescriptive Analytics Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
The market is experiencing significant advancements, with technologies such as sensitivity analysis, sentiment analysis, and social media analytics playing pivotal roles. Data visualization tools and what-if analysis facilitate better understanding of complex data sets, while data integration and ETL processes ensure data consistency. Data lakes and data warehouses provide the foundation for advanced analytics, enabling on-premise and cloud-based solutions to deliver real-time insights. Scenario planning and web analytics enable businesses to anticipate market trends and customer behavior, while algorithmic trading and high-frequency trading optimize financial transactions.
The market is experiencing significant growth, driven by the increasing demand for predictive analytics and the integration of machine learning technologies. Fraud detection and executive dashboards provide actionable insights, enhancing operational efficiency and risk management. Process automation and data mart solutions streamline analytics workflows, enabling businesses to make informed decisions in a timely manner. Overall, the market is transforming the way businesses make decisions, leveraging advanced analytics technologies to gain a competitive edge.
How is this Prescriptive Analytics Industry segmented?
The prescriptive analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Solution
Services
Product
Deployment
Cloud-based
On-premises
Sector
Large enterprises
Small and medium-sized enterprises (SMEs)
Geography
North America
US
Canada
Mexico
Europe
France
Germany
Italy
UK
APAC
China
India
Japan
Rest of World (ROW)
By Solution Insights
The services segment is estimated to witness significant growth during the forecast period. In 2024, the market continues to gain traction as a vital tool for data-driven decision-making in various industries. Machine learning algorithms, gradient boosting, time series analysis, decision trees, financial modeling, and simulation software are integral components of prescriptive analytics, enabling organizations to make informed decisions based on real-time data. These advanced technologies offer statistical power and support complex decision-making scenarios, from optimizing inventory management and sales forecasting to implementing pricing strategies and risk management. Industries like healthcare, retail, manufacturing, and logistics are harnessing the power of prescriptive analytics for customized applications. Advanced optimization engines, AI-driven models, and statistical techniques such as regression analysis, regression modeling, and data mining are being used to analyze vast decision variables, constraints, and trade-offs.
Moreover, the integration of cloud computing, dynamic progra
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Missing values in proteomic data sets have real consequences on downstream data analysis and reproducibility. Although several imputation methods exist to handle missing values, no single imputation method is best suited for a diverse range of data sets, and no clear strategy exists for evaluating imputation methods for clinical DIA-MS data sets, especially at different levels of protein quantification. To navigate through the different imputation strategies available in the literature, we have established a strategy to assess imputation methods on clinical label-free DIA-MS data sets. We used three DIA-MS data sets with real missing values to evaluate eight imputation methods with multiple parameters at different levels of protein quantification: a dilution series data set, a small pilot data set, and a clinical proteomic data set comparing paired tumor and stroma tissue. We found that imputation methods based on local structures within the data, like local least-squares (LLS) and random forest (RF), worked well in our dilution series data set, whereas imputation methods based on global structures within the data, like BPCA, performed well in the other two data sets. We also found that imputation at the most basic protein quantification levelfragment levelimproved accuracy and the number of proteins quantified. With this analytical framework, we quickly and cost-effectively evaluated different imputation methods using two smaller complementary data sets to narrow down to the larger proteomic data set’s most accurate methods. This acquisition strategy allowed us to provide reproducible evidence of the accuracy of the imputation method, even in the absence of a ground truth. Overall, this study indicates that the most suitable imputation method relies on the overall structure of the data set and provides an example of an analytic framework that may assist in identifying the most appropriate imputation strategies for the differential analysis of proteins.
Company Datasets for valuable business insights!
Discover new business prospects, identify investment opportunities, track competitor performance, and streamline your sales efforts with comprehensive Company Datasets.
These datasets are sourced from top industry providers, ensuring you have access to high-quality information:
We provide fresh and ready-to-use company data, eliminating the need for complex scraping and parsing. Our data includes crucial details such as:
You can choose your preferred data delivery method, including various storage options, delivery frequency, and input/output formats.
Receive datasets in CSV, JSON, and other formats, with storage options like AWS S3 and Google Cloud Storage. Opt for one-time, monthly, quarterly, or bi-annual data delivery.
With Oxylabs Datasets, you can count on:
Pricing Options:
Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.
Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.
Experience a seamless journey with Oxylabs:
Unlock the power of data with Oxylabs' Company Datasets and supercharge your business insights today!