https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Discover the Walmart Products Free Dataset, featuring 2,000 records in CSV format. This dataset includes detailed information about various Walmart products, such as names, prices, categories, and descriptions.
It’s perfect for data analysis, e-commerce research, and machine learning projects. Download now and kickstart your insights with accurate, real-world data.
In an effort to help combat COVID-19, we created a COVID-19 Public Datasets program to make data more accessible to researchers, data scientists and analysts. The program will host a repository of public datasets that relate to the COVID-19 crisis and make them free to access and analyze. These include datasets from the New York Times, European Centre for Disease Prevention and Control, Google, Global Health Data from the World Bank, and OpenStreetMap. Free hosting and queries of COVID datasets As with all data in the Google Cloud Public Datasets Program , Google pays for storage of datasets in the program. BigQuery also provides free queries over certain COVID-related datasets to support the response to COVID-19. Queries on COVID datasets will not count against the BigQuery sandbox free tier , where you can query up to 1TB free each month. Limitations and duration Queries of COVID data are free. If, during your analysis, you join COVID datasets with non-COVID datasets, the bytes processed in the non-COVID datasets will be counted against the free tier, then charged accordingly, to prevent abuse. Queries of COVID datasets will remain free until Sept 15, 2021. The contents of these datasets are provided to the public strictly for educational and research purposes only. We are not onboarding or managing PHI or PII data as part of the COVID-19 Public Dataset Program. Google has practices & policies in place to ensure that data is handled in accordance with widely recognized patient privacy and data security policies. See the list of all datasets included in the program
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Transparency in data visualization is an essential ingredient for scientific communication. The traditional approach of visualizing continuous quantitative data solely in the form of summary statistics (i.e., measures of central tendency and dispersion) has repeatedly been criticized for not revealing the underlying raw data distribution. Remarkably, however, systematic and easy-to-use solutions for raw data visualization using the most commonly reported statistical software package for data analysis, IBM SPSS Statistics, are missing. Here, a comprehensive collection of more than 100 SPSS syntax files and an SPSS dataset template is presented and made freely available that allow the creation of transparent graphs for one-sample designs, for one- and two-factorial between-subject designs, for selected one- and two-factorial within-subject designs as well as for selected two-factorial mixed designs and, with some creativity, even beyond (e.g., three-factorial mixed-designs). Depending on graph type (e.g., pure dot plot, box plot, and line plot), raw data can be displayed along with standard measures of central tendency (arithmetic mean and median) and dispersion (95% CI and SD). The free-to-use syntax can also be modified to match with individual needs. A variety of example applications of syntax are illustrated in a tutorial-like fashion along with fictitious datasets accompanying this contribution. The syntax collection is hoped to provide researchers, students, teachers, and others working with SPSS a valuable tool to move towards more transparency in data visualization.
Our NFL Data product offers extensive access to historic and current National Football League statistics and results, available in multiple formats. Whether you're a sports analyst, data scientist, fantasy football enthusiast, or a developer building sports-related apps, this dataset provides everything you need to dive deep into NFL performance insights.
Key Benefits:
Comprehensive Coverage: Includes historic and real-time data on NFL stats, game results, team performance, player metrics, and more.
Multiple Formats: Datasets are available in various formats (CSV, JSON, XML) for easy integration into your tools and applications.
User-Friendly Access: Whether you are an advanced analyst or a beginner, you can easily access and manipulate data to suit your needs.
Free Trial: Explore the full range of data with our free trial before committing, ensuring the product meets your expectations.
Customizable: Filter and download only the data you need, tailored to specific seasons, teams, or players.
API Access: Developers can integrate real-time NFL data into their apps with API support, allowing seamless updates and user engagement.
Use Cases:
Fantasy Football Players: Use the data to analyze player performance, helping to draft winning teams and make better game-day decisions.
Sports Analysts: Dive deep into historical and current NFL stats for research, articles, and game predictions.
Developers: Build custom sports apps and dashboards by integrating NFL data directly through API access.
Betting & Prediction Models: Use data to create accurate predictions for NFL games, helping sportsbooks and bettors alike.
Media Outlets: Enhance game previews, post-game analysis, and highlight reels with accurate, detailed NFL stats.
Our NFL Data product ensures you have the most reliable, up-to-date information to drive your projects, whether it's enhancing user experiences, creating predictive models, or simply enjoying in-depth football analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The complete dataset used in the analysis comprises 36 samples, each described by 11 numeric features and 1 target. The attributes considered were caspase 3/7 activity, Mitotracker red CMXRos area and intensity (3 h and 24 h incubations with both compounds), Mitosox oxidation (3 h incubation with the referred compounds) and oxidation rate, DCFDA fluorescence (3 h and 24 h incubations with either compound) and oxidation rate, and DQ BSA hydrolysis. The target of each instance corresponds to one of the 9 possible classes (4 samples per class): Control, 6.25, 12.5, 25 and 50 µM for 6-OHDA and 0.03, 0.06, 0.125 and 0.25 µM for rotenone. The dataset is balanced, it does not contain any missing values and data was standardized across features. The small number of samples prevented a full and strong statistical analysis of the results. Nevertheless, it allowed the identification of relevant hidden patterns and trends.
Exploratory data analysis, information gain, hierarchical clustering, and supervised predictive modeling were performed using Orange Data Mining version 3.25.1 [41]. Hierarchical clustering was performed using the Euclidean distance metric and weighted linkage. Cluster maps were plotted to relate the features with higher mutual information (in rows) with instances (in columns), with the color of each cell representing the normalized level of a particular feature in a specific instance. The information is grouped both in rows and in columns by a two-way hierarchical clustering method using the Euclidean distances and average linkage. Stratified cross-validation was used to train the supervised decision tree. A set of preliminary empirical experiments were performed to choose the best parameters for each algorithm, and we verified that, within moderate variations, there were no significant changes in the outcome. The following settings were adopted for the decision tree algorithm: minimum number of samples in leaves: 2; minimum number of samples required to split an internal node: 5; stop splitting when majority reaches: 95%; criterion: gain ratio. The performance of the supervised model was assessed using accuracy, precision, recall, F-measure and area under the ROC curve (AUC) metrics.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sample data for exercises in Further Adventures in Data Cleaning.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
SEPAL (https://sepal.io/) is a free and open source cloud computing platform for geo-spatial data access and processing. It empowers users to quickly process large amounts of data on their computer or mobile device. Users can create custom analysis ready data using freely available satellite imagery, generate and improve land use maps, analyze time series, run change detection and perform accuracy assessment and area estimation, among many other functionalities in the platform. Data can be created and analyzed for any place on Earth using SEPAL.
https://data.apps.fao.org/catalog/dataset/9c4d7c45-7620-44c4-b653-fbe13eb34b65/resource/63a3efa0-08ab-4ad6-9d4a-96af7b6a99ec/download/cambodia_mosaic_2020.png" alt="alt text" title="Figure 1: Best pixel mosaic of Landsat 8 data for 2020 over Cambodia">
SEPAL reaches over 5000 users in 180 countries for the creation of custom data products from freely available satellite data. SEPAL was developed as a part of the Open Foris suite, a set of free and open source software platforms and tools that facilitate flexible and efficient data collection, analysis and reporting. SEPAL combines and integrates modern geospatial data infrastructures and supercomputing power available through Google Earth Engine and Amazon Web Services with powerful open-source data processing software, such as R, ORFEO, GDAL, Python and Jupiter Notebooks. Users can easily access the archive of satellite imagery from NASA, the European Space Agency (ESA) as well as high spatial and temporal resolution data from Planet Labs and turn such images into data that can be used for reporting and better decision making.
National Forest Monitoring Systems in many countries have been strengthened by SEPAL, which provides technical government staff with computing resources and cutting edge technology to accurately map and monitor their forests. The platform was originally developed for monitoring forest carbon stock and stock changes for reducing emissions from deforestation and forest degradation (REDD+). The application of the tools on the platform now reach far beyond forest monitoring by providing different stakeholders access to cloud based image processing tools, remote sensing and machine learning for any application. Presently, users work on SEPAL for various applications related to land monitoring, land cover/use, land productivity, ecological zoning, ecosystem restoration monitoring, forest monitoring, near real time alerts for forest disturbances and fire, flood mapping, mapping impact of disasters, peatland rewetting status, and many others.
The Hand-in-Hand initiative enables countries that generate data through SEPAL to disseminate their data widely through the platform and to combine their data with the numerous other datasets available through Hand-in-Hand.
https://data.apps.fao.org/catalog/dataset/9c4d7c45-7620-44c4-b653-fbe13eb34b65/resource/868e59da-47b9-4736-93a9-f8d83f5731aa/download/probability_classification_over_zambia.png" alt="alt text" title="Figure 2: Image classification module for land monitoring and mapping. Probability classification over Zambia">
Altosight | AI Custom Web Scraping Data
✦ Altosight provides global web scraping data services with AI-powered technology that bypasses CAPTCHAs, blocking mechanisms, and handles dynamic content.
We extract data from marketplaces like Amazon, aggregators, e-commerce, and real estate websites, ensuring comprehensive and accurate results.
✦ Our solution offers free unlimited data points across any project, with no additional setup costs.
We deliver data through flexible methods such as API, CSV, JSON, and FTP, all at no extra charge.
― Key Use Cases ―
➤ Price Monitoring & Repricing Solutions
🔹 Automatic repricing, AI-driven repricing, and custom repricing rules 🔹 Receive price suggestions via API or CSV to stay competitive 🔹 Track competitors in real-time or at scheduled intervals
➤ E-commerce Optimization
🔹 Extract product prices, reviews, ratings, images, and trends 🔹 Identify trending products and enhance your e-commerce strategy 🔹 Build dropshipping tools or marketplace optimization platforms with our data
➤ Product Assortment Analysis
🔹 Extract the entire product catalog from competitor websites 🔹 Analyze product assortment to refine your own offerings and identify gaps 🔹 Understand competitor strategies and optimize your product lineup
➤ Marketplaces & Aggregators
🔹 Crawl entire product categories and track best-sellers 🔹 Monitor position changes across categories 🔹 Identify which eRetailers sell specific brands and which SKUs for better market analysis
➤ Business Website Data
🔹 Extract detailed company profiles, including financial statements, key personnel, industry reports, and market trends, enabling in-depth competitor and market analysis
🔹 Collect customer reviews and ratings from business websites to analyze brand sentiment and product performance, helping businesses refine their strategies
➤ Domain Name Data
🔹 Access comprehensive data, including domain registration details, ownership information, expiration dates, and contact information. Ideal for market research, brand monitoring, lead generation, and cybersecurity efforts
➤ Real Estate Data
🔹 Access property listings, prices, and availability 🔹 Analyze trends and opportunities for investment or sales strategies
― Data Collection & Quality ―
► Publicly Sourced Data: Altosight collects web scraping data from publicly available websites, online platforms, and industry-specific aggregators
► AI-Powered Scraping: Our technology handles dynamic content, JavaScript-heavy sites, and pagination, ensuring complete data extraction
► High Data Quality: We clean and structure unstructured data, ensuring it is reliable, accurate, and delivered in formats such as API, CSV, JSON, and more
► Industry Coverage: We serve industries including e-commerce, real estate, travel, finance, and more. Our solution supports use cases like market research, competitive analysis, and business intelligence
► Bulk Data Extraction: We support large-scale data extraction from multiple websites, allowing you to gather millions of data points across industries in a single project
► Scalable Infrastructure: Our platform is built to scale with your needs, allowing seamless extraction for projects of any size, from small pilot projects to ongoing, large-scale data extraction
― Why Choose Altosight? ―
✔ Unlimited Data Points: Altosight offers unlimited free attributes, meaning you can extract as many data points from a page as you need without extra charges
✔ Proprietary Anti-Blocking Technology: Altosight utilizes proprietary techniques to bypass blocking mechanisms, including CAPTCHAs, Cloudflare, and other obstacles. This ensures uninterrupted access to data, no matter how complex the target websites are
✔ Flexible Across Industries: Our crawlers easily adapt across industries, including e-commerce, real estate, finance, and more. We offer customized data solutions tailored to specific needs
✔ GDPR & CCPA Compliance: Your data is handled securely and ethically, ensuring compliance with GDPR, CCPA and other regulations
✔ No Setup or Infrastructure Costs: Start scraping without worrying about additional costs. We provide a hassle-free experience with fast project deployment
✔ Free Data Delivery Methods: Receive your data via API, CSV, JSON, or FTP at no extra charge. We ensure seamless integration with your systems
✔ Fast Support: Our team is always available via phone and email, resolving over 90% of support tickets within the same day
― Custom Projects & Real-Time Data ―
✦ Tailored Solutions: Every business has unique needs, which is why Altosight offers custom data projects. Contact us for a feasibility analysis, and we’ll design a solution that fits your goals
✦ Real-Time Data: Whether you need real-time data delivery or scheduled updates, we provide the flexibility to receive data when you need it. Track price changes, monitor product trends, or gather...
Label Free Quantification (LFQ) of shotgun proteomics data is a popular and robust method for the characterization of relative protein abundance between samples. Many analytical pipelines exist for the automation of this analysis and some tools exist for the subsequent representation and inspection of the results of these pipelines. Mass Dynamics 1.0 (MD 1.0) is a web-based analysis environment that can analyse and visualize LFQ data produced by software such as MaxQuant. Unlike other tools, MD 1.0 utilizes cloud-based architecture to enable researchers to store their data, enabling researchers to not only automatically process and visualize their LFQ data but annotate and share their findings with collaborators and, if chosen, to easily publish results to the community. With a view toward increased reproducibility and standardisation in proteomics data analysis and streamlining collaboration between researchers, MD 1.0 requires minimal parameter choices and automatically generates quality control reports to verify experiment integrity. Here, we demonstrate that MD 1.0 provides reliable results for protein expression quantification, emulating Perseus on benchmark datasets over a wide dynamic range.
Financial Analytics Market Size 2025-2029
The financial analytics market size is forecast to increase by USD 9.09 billion at a CAGR of 12.7% between 2024 and 2029.
The market is experiencing significant growth, driven primarily by the increasing demand for advanced risk management tools in today's complex financial landscape. With the exponential rise in data generation across various industries, financial institutions are seeking to leverage analytics to gain valuable insights and make informed decisions. However, this data-driven approach comes with its own challenges. Data privacy and security concerns are becoming increasingly prominent as financial institutions grapple with the responsibility of safeguarding sensitive financial information. Ensuring data security and maintaining regulatory compliance are essential for businesses looking to capitalize on the opportunities presented by financial analytics.
As the market continues to evolve, companies must navigate these challenges while staying abreast of the latest trends and technologies to remain competitive. Effective implementation of robust data security measures, adherence to regulatory requirements, and continuous innovation will be key to success in the market. Data visualization tools enable effective communication of complex financial data, while financial advisory services offer expert guidance on financial modeling and regulatory compliance.
What will be the Size of the Financial Analytics Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
In the dynamic market, sensitivity analysis plays a crucial role in assessing the impact of various factors on financial models. Data lakes serve as vast repositories for storing and processing large volumes of financial data, enabling advanced quantitative analysis. Financial regulations mandate strict data compliance regulations, ensuring data privacy and security. Data analytics platforms integrate statistical software, machine learning libraries, and prescriptive analytics to deliver actionable insights. Financial reporting software and business intelligence tools facilitate descriptive analytics, while diagnostic analytics uncovers hidden trends and anomalies. On-premise analytics and cloud-based analytics cater to diverse business needs, with data warehouses and data pipelines ensuring seamless data flow.
Scenario analysis and stress testing help financial institutions assess risks and make informed decisions. Data engineering and data governance frameworks ensure data accuracy, consistency, and availability. Data architecture, data compliance regulations, and auditing standards maintain transparency and trust in financial reporting. Predictive modeling and financial modeling software provide valuable insights into future financial performance. Data security measures protect sensitive financial data, safeguarding against potential breaches.
How is this Financial Analytics Industry segmented?
The financial analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Component
Solution
Services
Deployment
On-premises
Cloud
Sector
Large enterprises
Small and medium-sized enterprises (SMEs)
Geography
North America
US
Canada
Mexico
Europe
France
Germany
Italy
UK
APAC
China
India
Japan
Rest of World (ROW)
By Component Insights
The solution segment is estimated to witness significant growth during the forecast period. Financial analytics solutions play a pivotal role in assessing and managing various financial risks for organizations. These tools help identify potential risks, such as credit risks, market risks, and operational risks, and enable proactive risk mitigation measures. Compliance with stringent regulations, including Basel III, Dodd-Frank, and GDPR, necessitates robust data analytics and reporting capabilities. Data visualization, machine learning, statistical modeling, and predictive analytics are integral components of financial analytics solutions. Machine learning and statistical modeling enable automated risk analysis and prediction, while predictive analytics offers insights into future trends and potential risks.
Data governance and data compliance help organizations maintain data security and privacy. Data integration and ETL processes facilitate seamless data flow between various systems, ensuring data consistency and accuracy. Time series analysis and ratio analysis offer insights into historical financial trends and performance. Customer segmentation and sensitivity analysis provide val
Big Data Market Size 2025-2029
The big data market size is forecast to increase by USD 193.2 billion at a CAGR of 13.3% between 2024 and 2029.
The market is experiencing a significant rise due to the increasing volume of data being generated across industries. This data deluge is driving the need for advanced analytics and processing capabilities to gain valuable insights and make informed business decisions. A notable trend in this market is the rising adoption of blockchain solutions to enhance big data implementation. Blockchain's decentralized and secure nature offers an effective solution to address data security concerns, a growing challenge in the market. However, the increasing adoption of big data also brings forth new challenges. Data security issues persist as organizations grapple with protecting sensitive information from cyber threats and data breaches.
Companies must navigate these challenges by investing in robust security measures and implementing best practices to mitigate risks and maintain trust with their customers. To capitalize on the market opportunities and stay competitive, businesses must focus on harnessing the power of big data while addressing these challenges effectively. Deep learning frameworks and machine learning algorithms are transforming data science, from data literacy assessments to computer vision models.
What will be the Size of the Big Data Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
In today's data-driven business landscape, the demand for advanced data management solutions continues to grow. Companies are investing in business intelligence dashboards and data analytics tools to gain insights from their data and make informed decisions. However, with this increased reliance on data comes the need for robust data governance policies and regular data compliance audits. Data visualization software enables businesses to effectively communicate complex data insights, while data engineering ensures data is accessible and processed in real-time. Data-driven product development and data architecture are essential for creating agile and responsive business strategies. Data management encompasses data accessibility standards, data privacy policies, and data quality metrics.
Data usability guidelines, prescriptive modeling, and predictive modeling are critical for deriving actionable insights from data. Data integrity checks and data agility assessments are crucial components of a data-driven business strategy. As data becomes an increasingly valuable asset, businesses must prioritize data security and privacy. Prescriptive and predictive modeling, data-driven marketing, and data culture surveys are key trends shaping the future of data-driven businesses. Data engineering, data management, and data accessibility standards are interconnected, with data privacy policies and data compliance audits ensuring regulatory compliance.
Data engineering and data architecture are crucial for ensuring data accessibility and enabling real-time data processing. The data market is dynamic and evolving, with businesses increasingly relying on data to drive growth and inform decision-making. Data engineering, data management, and data analytics tools are essential components of a data-driven business strategy, with trends such as data privacy, data security, and data storytelling shaping the future of data-driven businesses.
How is this Big Data Industry segmented?
The big data industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Deployment
On-premises
Cloud-based
Hybrid
Type
Services
Software
End-user
BFSI
Healthcare
Retail and e-commerce
IT and telecom
Others
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
Australia
China
India
Japan
South Korea
Rest of World (ROW)
By Deployment Insights
The on-premises segment is estimated to witness significant growth during the forecast period.
In the realm of big data, on-premise and cloud-based deployment models cater to varying business needs. On-premise deployment allows for complete control over hardware and software, making it an attractive option for some organizations. However, this model comes with a significant upfront investment and ongoing maintenance costs. In contrast, cloud-based deployment offers flexibility and scalability, with service providers handling infrastructure and maintenance. Yet, it introduces potential security risks, as data is accessed through multiple points and stored on external servers. Data
Envestnet®| Yodlee®'s Consumer Transaction Data (Aggregate/Row) Panels consist of de-identified, near-real time (T+1) USA credit/debit/ACH transaction level data – offering a wide view of the consumer activity ecosystem. The underlying data is sourced from end users leveraging the aggregation portion of the Envestnet®| Yodlee®'s financial technology platform.
Envestnet | Yodlee Consumer Panels (Aggregate/Row) include data relating to millions of transactions, including ticket size and merchant location. The dataset includes de-identified credit/debit card and bank transactions (such as a payroll deposit, account transfer, or mortgage payment). Our coverage offers insights into areas such as consumer, TMT, energy, REITs, internet, utilities, ecommerce, MBS, CMBS, equities, credit, commodities, FX, and corporate activity. We apply rigorous data science practices to deliver key KPIs daily that are focused, relevant, and ready to put into production.
We offer free trials. Our team is available to provide support for loading, validation, sample scripts, or other services you may need to generate insights from our data.
Investors, corporate researchers, and corporates can use our data to answer some key business questions such as: - How much are consumers spending with specific merchants/brands and how is that changing over time? - Is the share of consumer spend at a specific merchant increasing or decreasing? - How are consumers reacting to new products or services launched by merchants? - For loyal customers, how is the share of spend changing over time? - What is the company’s market share in a region for similar customers? - Is the company’s loyal user base increasing or decreasing? - Is the lifetime customer value increasing or decreasing?
Additional Use Cases: - Use spending data to analyze sales/revenue broadly (sector-wide) or granular (company-specific). Historically, our tracked consumer spend has correlated above 85% with company-reported data from thousands of firms. Users can sort and filter by many metrics and KPIs, such as sales and transaction growth rates and online or offline transactions, as well as view customer behavior within a geographic market at a state or city level. - Reveal cohort consumer behavior to decipher long-term behavioral consumer spending shifts. Measure market share, wallet share, loyalty, consumer lifetime value, retention, demographics, and more.) - Study the effects of inflation rates via such metrics as increased total spend, ticket size, and number of transactions. - Seek out alpha-generating signals or manage your business strategically with essential, aggregated transaction and spending data analytics.
Use Cases Categories (Our data provides an innumerable amount of use cases, and we look forward to working with new ones): 1. Market Research: Company Analysis, Company Valuation, Competitive Intelligence, Competitor Analysis, Competitor Analytics, Competitor Insights, Customer Data Enrichment, Customer Data Insights, Customer Data Intelligence, Demand Forecasting, Ecommerce Intelligence, Employee Pay Strategy, Employment Analytics, Job Income Analysis, Job Market Pricing, Marketing, Marketing Data Enrichment, Marketing Intelligence, Marketing Strategy, Payment History Analytics, Price Analysis, Pricing Analytics, Retail, Retail Analytics, Retail Intelligence, Retail POS Data Analysis, and Salary Benchmarking
Investment Research: Financial Services, Hedge Funds, Investing, Mergers & Acquisitions (M&A), Stock Picking, Venture Capital (VC)
Consumer Analysis: Consumer Data Enrichment, Consumer Intelligence
Market Data: AnalyticsB2C Data Enrichment, Bank Data Enrichment, Behavioral Analytics, Benchmarking, Customer Insights, Customer Intelligence, Data Enhancement, Data Enrichment, Data Intelligence, Data Modeling, Ecommerce Analysis, Ecommerce Data Enrichment, Economic Analysis, Financial Data Enrichment, Financial Intelligence, Local Economic Forecasting, Location-based Analytics, Market Analysis, Market Analytics, Market Intelligence, Market Potential Analysis, Market Research, Market Share Analysis, Sales, Sales Data Enrichment, Sales Enablement, Sales Insights, Sales Intelligence, Spending Analytics, Stock Market Predictions, and Trend Analysis
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Students Covered Under Tobacco-Free School Policy’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/1b29909b-75e8-4f9f-af32-23fc957e6723 on 26 January 2022.
--- Dataset description provided by original source is as follows ---
Increase the percentage of students covered under a 24/7 tobacco-free school policy from 74% in 2012 to 86% by 2018.
--- Original source retains full ownership of the source dataset ---
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This artifact accompanies the SEET@ICSE article "Assessing the impact of hints in learning formal specification", which reports on a user study to investigate the impact of different types of automated hints while learning a formal specification language, both in terms of immediate performance and learning retention, but also in the emotional response of the students. This research artifact provides all the material required to replicate this study (except for the proprietary questionnaires passed to assess the emotional response and user experience), as well as the collected data and data analysis scripts used for the discussion in the paper.
Dataset
The artifact contains the resources described below.
Experiment resources
The resources needed for replicating the experiment, namely in directory experiment:
alloy_sheet_pt.pdf: the 1-page Alloy sheet that participants had access to during the 2 sessions of the experiment. The sheet was passed in Portuguese due to the population of the experiment.
alloy_sheet_en.pdf: a version the 1-page Alloy sheet that participants had access to during the 2 sessions of the experiment translated into English.
docker-compose.yml: a Docker Compose configuration file to launch Alloy4Fun populated with the tasks in directory data/experiment for the 2 sessions of the experiment.
api and meteor: directories with source files for building and launching the Alloy4Fun platform for the study.
Experiment data
The task database used in our application of the experiment, namely in directory data/experiment:
Model.json, Instance.json, and Link.json: JSON files with to populate Alloy4Fun with the tasks for the 2 sessions of the experiment.
identifiers.txt: the list of all (104) available participant identifiers that can participate in the experiment.
Collected data
Data collected in the application of the experiment as a simple one-factor randomised experiment in 2 sessions involving 85 undergraduate students majoring in CSE. The experiment was validated by the Ethics Committee for Research in Social and Human Sciences of the Ethics Council of the University of Minho, where the experiment took place. Data is shared the shape of JSON and CSV files with a header row, namely in directory data/results:
data_sessions.json: data collected from task-solving in the 2 sessions of the experiment, used to calculate variables productivity (PROD1 and PROD2, between 0 and 12 solved tasks) and efficiency (EFF1 and EFF2, between 0 and 1).
data_socio.csv: data collected from socio-demographic questionnaire in the 1st session of the experiment, namely:
participant identification: participant's unique identifier (ID);
socio-demographic information: participant's age (AGE), sex (SEX, 1 through 4 for female, male, prefer not to disclosure, and other, respectively), and average academic grade (GRADE, from 0 to 20, NA denotes preference to not disclosure).
data_emo.csv: detailed data collected from the emotional questionnaire in the 2 sessions of the experiment, namely:
participant identification: participant's unique identifier (ID) and the assigned treatment (column HINT, either N, L, E or D);
detailed emotional response data: the differential in the 5-point Likert scale for each of the 14 measured emotions in the 2 sessions, ranging from -5 to -1 if decreased, 0 if maintained, from 1 to 5 if increased, or NA denoting failure to submit the questionnaire. Half of the emotions are positive (Admiration1 and Admiration2, Desire1 and Desire2, Hope1 and Hope2, Fascination1 and Fascination2, Joy1 and Joy2, Satisfaction1 and Satisfaction2, and Pride1 and Pride2), and half are negative (Anger1 and Anger2, Boredom1 and Boredom2, Contempt1 and Contempt2, Disgust1 and Disgust2, Fear1 and Fear2, Sadness1 and Sadness2, and Shame1 and Shame2). This detailed data was used to compute the aggregate data in data_emo_aggregate.csv and in the detailed discussion in Section 6 of the paper.
data_umux.csv: data collected from the user experience questionnaires in the 2 sessions of the experiment, namely:
participant identification: participant's unique identifier (ID);
user experience data: summarised user experience data from the UMUX surveys (UMUX1 and UMUX2, as a usability metric ranging from 0 to 100).
participants.txt: the list of participant identifiers that have registered for the experiment.
Analysis scripts
The analysis scripts required to replicate the analysis of the results of the experiment as reported in the paper, namely in directory analysis:
analysis.r: An R script to analyse the data in the provided CSV files; each performed analysis is documented within the file itself.
requirements.r: An R script to install the required libraries for the analysis script.
normalize_task.r: A Python script to normalize the task JSON data from file data_sessions.json into the CSV format required by the analysis script.
normalize_emo.r: A Python script to compute the aggregate emotional response in the CSV format required by the analysis script from the detailed emotional response data in the CSV format of data_emo.csv.
Dockerfile: Docker script to automate the analysis script from the collected data.
Setup
To replicate the experiment and the analysis of the results, only Docker is required.
If you wish to manually replicate the experiment and collect your own data, you'll need to install:
A modified version of the Alloy4Fun platform, which is built in the Meteor web framework. This version of Alloy4Fun is publicly available in branch study of its repository at https://github.com/haslab/Alloy4Fun/tree/study.
If you wish to manually replicate the analysis of the data collected in our experiment, you'll need to install:
Python to manipulate the JSON data collected in the experiment. Python is freely available for download at https://www.python.org/downloads/, with distributions for most platforms.
R software for the analysis scripts. R is freely available for download at https://cran.r-project.org/mirrors.html, with binary distributions available for Windows, Linux and Mac.
Usage
Experiment replication
This section describes how to replicate our user study experiment, and collect data about how different hints impact the performance of participants.
To launch the Alloy4Fun platform populated with tasks for each session, just run the following commands from the root directory of the artifact. The Meteor server may take a few minutes to launch, wait for the "Started your app" message to show.
cd experimentdocker-compose up
This will launch Alloy4Fun at http://localhost:3000. The tasks are accessed through permalinks assigned to each participant. The experiment allows for up to 104 participants, and the list of available identifiers is given in file identifiers.txt. The group of each participant is determined by the last character of the identifier, either N, L, E or D. The task database can be consulted in directory data/experiment, in Alloy4Fun JSON files.
In the 1st session, each participant was given one permalink that gives access to 12 sequential tasks. The permalink is simply the participant's identifier, so participant 0CAN would just access http://localhost:3000/0CAN. The next task is available after a correct submission to the current task or when a time-out occurs (5mins). Each participant was assigned to a different treatment group, so depending on the permalink different kinds of hints are provided. Below are 4 permalinks, each for each hint group:
Group N (no hints): http://localhost:3000/0CAN
Group L (error locations): http://localhost:3000/CA0L
Group E (counter-example): http://localhost:3000/350E
Group D (error description): http://localhost:3000/27AD
In the 2nd session, likewise the 1st session, each permalink gave access to 12 sequential tasks, and the next task is available after a correct submission or a time-out (5mins). The permalink is constructed by prepending the participant's identifier with P-. So participant 0CAN would just access http://localhost:3000/P-0CAN. In the 2nd sessions all participants were expected to solve the tasks without any hints provided, so the permalinks from different groups are undifferentiated.
Before the 1st session the participants should answer the socio-demographic questionnaire, that should ask the following information: unique identifier, age, sex, familiarity with the Alloy language, and average academic grade.
Before and after both sessions the participants should answer the standard PrEmo 2 questionnaire. PrEmo 2 is published under an Attribution-NonCommercial-NoDerivatives 4.0 International Creative Commons licence (CC BY-NC-ND 4.0). This means that you are free to use the tool for non-commercial purposes as long as you give appropriate credit, provide a link to the license, and do not modify the original material. The original material, namely the depictions of the diferent emotions, can be downloaded from https://diopd.org/premo/. The questionnaire should ask for the unique user identifier, and for the attachment with each of the depicted 14 emotions, expressed in a 5-point Likert scale.
After both sessions the participants should also answer the standard UMUX questionnaire. This questionnaire can be used freely, and should ask for the user unique identifier and answers for the standard 4 questions in a 7-point Likert scale. For information about the questions, how to implement the questionnaire, and how to compute the usability metric ranging from 0 to 100 score from the answers, please see the original paper:
Kraig Finstad. 2010. The usability metric for user experience. Interacting with computers 22, 5 (2010), 323–327.
Analysis of other applications of the experiment
This section describes how to replicate the analysis of the data collected in an application of the experiment described in Experiment replication.
The analysis script expects data in 4 CSV files,
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Hands-Free Barcode Scanner market has emerged as a crucial component of inventory management and point-of-sale systems across various industries, such as retail, logistics, and healthcare. These scanners enhance operational efficiency by allowing users to scan barcodes without needing to hold the device, thus st
Big Data as a Service Market Size 2024-2028
The big data as a service market size is forecast to increase by USD 41.20 billion at a CAGR of 28.45% between 2023 and 2028.
The market is experiencing significant growth due to the increasing volume of data and the rising demand for advanced data insights. Machine learning algorithms and artificial intelligence are driving product quality and innovation in this sector. Hybrid cloud solutions are gaining popularity, offering the benefits of both private and public cloud platforms for optimal data storage and scalability. Industry standards for data privacy and security are increasingly important, as large amounts of data pose unique risks. The BDaaS market is expected to continue its expansion, providing valuable data insights to businesses across various industries.
What will be the Big Data as a Service Market Size During the Forecast Period?
Request Free Sample
Big Data as a Service (BDaaS) has emerged as a game-changer in the business world, enabling organizations to harness the power of big data without the need for extensive infrastructure and expertise. This service model offers various components such as data management, analytics, and visualization tools, enabling businesses to derive valuable insights from their data. BDaaS encompasses several key components that drive market growth. These include Business Intelligence (BI), Data Science, Data Quality, and Data Security. BI provides organizations with the ability to analyze data and gain insights to make informed decisions.
Data Science, on the other hand, focuses on extracting meaningful patterns and trends from large datasets using advanced algorithms. Data Quality is a critical component of BDaaS, ensuring that the data being analyzed is accurate, complete, and consistent. Data Security is another essential aspect, safeguarding sensitive data from cybersecurity threats and data breaches. Moreover, BDaaS offers various data pipelines, enabling seamless data integration and data lifecycle management. Network Analysis, Real-time Analytics, and Predictive Analytics are other essential components, providing businesses with actionable insights in real-time and enabling them to anticipate future trends. Data Mining, Machine Learning Algorithms, and Data Visualization Tools are other essential components of BDaaS.
How is this market segmented and which is the largest segment?
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
Type
Data analytics-as-a-Service
Hadoop-as-a-service
Data-as-a-service
Deployment
Public cloud
Hybrid cloud
Private cloud
Geography
North America
Canada
US
APAC
China
Europe
Germany
UK
South America
Middle East and Africa
By Type Insights
The data analytics-as-a-service segment is estimated to witness significant growth during the forecast period.
Big Data as a Service (BDaaS) is a significant market segment, highlighted by the availability of Hadoop-as-a-Service solutions. These offerings enable businesses to access essential datasets on-demand without the burden of expensive infrastructure. DAaaS solutions facilitate real-time data analysis, empowering organizations to make informed decisions. The DAaaS landscape is expanding rapidly as companies acknowledge its value in enhancing internal data. Integrating DAaaS with big data systems amplifies analytics capabilities, creating a vibrant market landscape. Organizations can leverage diverse datasets to gain a competitive edge, driving the growth of the global BDaaS market. In the context of digital transformation, cloud computing, IoT, and 5G technologies, BDaaS solutions offer optimal resource utilization.
However, regulatory scrutiny poses challenges, necessitating stringent data security measures. Retail and other industries stand to benefit significantly from BDaaS, particularly with distributed computing solutions. DAaaS adoption is a strategic investment for businesses seeking to capitalize on the power of external data for valuable insights.
Get a glance at the market report of share of various segments Request Free Sample
The Data analytics-as-a-Service segment was valued at USD 2.59 billion in 2018 and showed a gradual increase during the forecast period.
Regional Analysis
North America is estimated to contribute 35% to the growth of the global market during the forecast period.
Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
For more insights on the market share of various regions Request Free Sample
Big Data as a Service Market analysis, North America is experiencing signif
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
Market Analysis of Internet Financial Data Terminal Services The global market for Internet financial data terminal services is projected to reach a valuation of XXX million by 2033, expanding at a CAGR of XX%. The surge in demand for real-time financial data, the proliferation of online trading platforms, and the growing adoption of cloud-based solutions drive market growth. The segment of institutional investors holds a dominant market share due to their need for comprehensive data for investment decision-making. Mobile versions of financial data terminals are gaining traction, providing investors with access to market information on the go. Key trends shaping the market include the integration of artificial intelligence (AI) for data analysis and visualization, the increasing adoption of open-source platforms, and the growing focus on data security. Major players in the market include Bloomberg, Refinitiv, FactSet, S&P, and Moody's Analytics. The Asia-Pacific region is expected to experience the fastest growth due to the rapid expansion of the financial industry in emerging economies like China and India. However, stringent data privacy regulations and competition from free data sources pose challenges to market players.
Streaming Analytics Market Size 2024-2028
The streaming analytics market size is forecast to increase by USD 39.7 at a CAGR of 34.63% between 2023 and 2028.
The market is experiencing significant growth due to the increasing need to improve business efficiency in various industries. The integration of Artificial Intelligence (AI) and Machine Learning (ML) technologies is a key trend driving market growth. These technologies enable real-time data processing and analysis, leading to faster decision-making and improved operational performance. However, the integration of streaming analytics solutions with legacy systems poses a challenge. IoT platforms play a crucial role In the market, as IoT-driven devices generate vast amounts of data that require real-time analysis. Predictive analytics is another area of focus, as it allows businesses to anticipate future trends and customer behavior, leading to proactive decision-making.Overall, the market is expected to continue growing, driven by the need for real-time data processing and analysis in various sectors.
What will be the Size of the Streaming Analytics Market During the Forecast Period?
Request Free Sample
The market is experiencing significant growth due to the increasing demand for real-time insights from big data generated by emerging technologies such as IoT and API-driven applications. This market is driven by the strategic shift towards digitization and cloud solutions among large enterprises and small to medium-sized businesses (SMEs) across various industries, including retail. Legacy systems are being replaced with modern streaming analytics platforms to enhance data connectivity and improve production and demand response. The financial impact of real-time analytics is substantial, with applications in fraud detection, predictive maintenance, and operational efficiency. The integration of artificial intelligence (AI) and machine learning algorithms further enhances the market's potential, enabling businesses to gain valuable insights from their data streams.Overall, the market is poised for continued expansion as more organizations recognize the value of real-time data processing and analysis.
How is this Streaming Analytics Industry segmented and which is the largest segment?
The streaming analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments. DeploymentCloudOn premisesTypeSoftwareServicesGeographyNorth AmericaCanadaUSAPACChinaJapanEuropeUKMiddle East and AfricaSouth America
By Deployment Insights
The cloud segment is estimated to witness significant growth during the forecast period.
Cloud-deployed streaming analytics solutions enable businesses to analyze data in real time using remote computing resources, such as the cloud. This deployment model streamlines business intelligence processes by collecting, integrating, and presenting derived insights instantaneously, enhancing decision-making efficiency. The cloud segment's growth is driven by benefits like quick deployment, flexibility, scalability, and real-time data visibility. Service providers offer these capabilities with flexible payment structures, including pay-as-you-go. Advanced solutions integrate AI, API, and event-streaming analytics capabilities, ensuring compliance with regulations, optimizing business processes, and providing valuable data accessibility. Cloud adoption in various sectors, including finance, healthcare, retail, and telecom, is increasing due to the need for real-time predictive modeling and fraud detection.SMEs and startups also benefit from these solutions due to their ease of use and cost-effectiveness. In conclusion, cloud-based streaming analytics solutions offer significant advantages, making them an essential tool for organizations seeking to digitize and modernize their IT infrastructure.
Get a glance at the Streaming Analytics Industry report of share of various segments Request Free Sample
The Cloud segment was valued at USD 4.40 in 2018 and showed a gradual increase during the forecast period.
Regional Analysis
APAC is estimated to contribute 34% to the growth of the global market during the forecast period.
Technavio’s analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
For more insights on the market share of various regions, Request Free Sample
In North America, the region's early adoption of advanced technology and high data generation make it a significant market for streaming analytics. The vast amounts of data produced in this tech-mature region necessitate intelligent analysis to uncover valuable relationships and insights. Advanced software solutions, including AI, virtualiza
TagX has a curated dataset of jobs available in the market which can be used for various applications like Machine learning, Artificial Intelligence, and Data Science.
The dataset can be used to predict demand, forecast predictions, current market analysis, and historical data analysis can also be performed.
Some of the job categories that can be found are :
Management Occupations
Business and Financial Operations Occupations
Computer and Mathematical Occupations
Architecture and Engineering Occupations
Life, Physical, and Social Science Occupations
Community and Social Service Occupations
Legal Occupations
Educational Instruction and Library Occupations
Arts, Design, Entertainment, Sports, and Media Occupations
Healthcare Practitioners and Technical Occupations
Healthcare Support Occupations
Protective Service Occupations
Food Preparation and Serving Related Occupations
Building and Grounds Cleaning and Maintenance Occupations
Personal Care and Service Occupations
Sales and Related Occupations
Office and Administrative Support Occupations
Farming, Fishing, and Forestry Occupations
Construction and Extraction Occupations
Installation, Maintenance, and Repair Occupations
Production Occupations
Transportation and Material Moving Occupations
Military Specific Occupations
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The deposited experimental data and code for the publication Ivan Terterov, Daniel Nettels, Tanya Lastiza-Male, Kim Bartels, Christian Loew, Renee Vancraenenbroeck, Itay Carmel, Gabriel Rosenblum, and Hagen Hofmann "Model-free photon analysis of diffusion-based single-molecule FRET experiments"
Contains folders with Demonstation code and experimental data used for Fig. 6,7,8
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Discover the Walmart Products Free Dataset, featuring 2,000 records in CSV format. This dataset includes detailed information about various Walmart products, such as names, prices, categories, and descriptions.
It’s perfect for data analysis, e-commerce research, and machine learning projects. Download now and kickstart your insights with accurate, real-world data.