100+ datasets found
  1. Customer Sale Dataset for Data Visualization

    • kaggle.com
    Updated Jun 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Atul (2025). Customer Sale Dataset for Data Visualization [Dataset]. https://www.kaggle.com/datasets/atulkgoyl/customer-sale-dataset-for-visualization
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 6, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Atul
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This synthetic dataset is designed specifically for practicing data visualization and exploratory data analysis (EDA) using popular Python libraries like Seaborn, Matplotlib, and Pandas.

    Unlike most public datasets, this one includes a diverse mix of column types:

    πŸ“… Date columns (for time series and trend plots) πŸ”’ Numerical columns (for histograms, boxplots, scatter plots) 🏷️ Categorical columns (for bar charts, group analysis)

    Whether you are a beginner learning how to visualize data or an intermediate user testing new charting techniques, this dataset offers a versatile playground.

    Feel free to:

    Create EDA notebooks Practice plotting techniques Experiment with filtering, grouping, and aggregations πŸ› οΈ No missing values, no data cleaning needed β€” just download and start exploring!

    Hope you find this helpful. Looking forward to hearing from you all.

  2. Powerful Data for Power BI

    • kaggle.com
    zip
    Updated Aug 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shiv_D24Coder (2023). Powerful Data for Power BI [Dataset]. https://www.kaggle.com/datasets/shivd24coder/powerful-data-for-power-bi
    Explore at:
    zip(907404 bytes)Available download formats
    Dataset updated
    Aug 28, 2023
    Authors
    Shiv_D24Coder
    Description

    Explore the world of data visualization with this Power BI dataset containing HR Analytics and Sales Analytics datasets. Gain insights, create impactful reports, and craft engaging dashboards using real-world data from HR and sales domains. Sharpen your Power BI skills and uncover valuable data-driven insights with this powerful dataset. Happy analyzing!

  3. Top 1000 Kaggle Datasets

    • kaggle.com
    zip
    Updated Jan 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Trrishan (2022). Top 1000 Kaggle Datasets [Dataset]. https://www.kaggle.com/datasets/notkrishna/top-1000-kaggle-datasets
    Explore at:
    zip(34269 bytes)Available download formats
    Dataset updated
    Jan 3, 2022
    Authors
    Trrishan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    From wiki

    Kaggle, a subsidiary of Google LLC, is an online community of data scientists and machine learning practitioners. Kaggle allows users to find and publish data sets, explore and build models in a web-based data-science environment, work with other data scientists and machine learning engineers, and enter competitions to solve data science challenges.

    Kaggle got its start in 2010 by offering machine learning competitions and now also offers a public data platform, a cloud-based workbench for data science, and Artificial Intelligence education. Its key personnel were Anthony Goldbloom and Jeremy Howard. Nicholas Gruen was founding chair succeeded by Max Levchin. Equity was raised in 2011 valuing the company at $25 million. On 8 March 2017, Google announced that they were acquiring Kaggle.[1][2]

    Source: Kaggle

  4. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  5. i

    Data Visualization SVG Illustrations Dataset

    • illuhub.com
    svg
    Updated Sep 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Illuhub (2025). Data Visualization SVG Illustrations Dataset [Dataset]. https://illuhub.com/illustrations/technology-electronics/data-visual
    Explore at:
    svgAvailable download formats
    Dataset updated
    Sep 7, 2025
    Dataset authored and provided by
    Illuhub
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2024 - Present
    Area covered
    Worldwide
    Variables measured
    Category, File Format, Subcategory
    Description

    Specialized collection of 0 free data visualization SVG illustrations from the technology & electronics category. Data visualization illustrations including bar charts, network graphs, and information graphics Examples include: bar chart, network graph.

  6. Human Resources Data Set

    • kaggle.com
    zip
    Updated Oct 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr. Rich (2020). Human Resources Data Set [Dataset]. https://www.kaggle.com/datasets/rhuebner/human-resources-data-set/discussion
    Explore at:
    zip(17041 bytes)Available download formats
    Dataset updated
    Oct 19, 2020
    Authors
    Dr. Rich
    Description

    Updated 30 January 2023

    Version 14 of Dataset

    License Update:

    There has been some confusion around licensing for this data set. Dr. Carla Patalano and Dr. Rich Huebner are the original authors of this dataset.

    We provide a license to anyone who wishes to use this dataset for learning or teaching. For the purposes of sharing, please follow this license:

    CC-BY-NC-ND This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

    Codebook

    https://rpubs.com/rhuebner/hrd_cb_v14

    PLEASE NOTE -- I recently updated the codebook - please use the above link. A few minor discrepancies were identified between the codebook and the dataset. Please feel free to contact me through LinkedIn (www.linkedin.com/in/RichHuebner) to report discrepancies and make requests.

    Context

    HR data can be hard to come by, and HR professionals generally lag behind with respect to analytics and data visualization competency. Thus, Dr. Carla Patalano and I set out to create our own HR-related dataset, which is used in one of our graduate MSHRM courses called HR Metrics and Analytics, at New England College of Business. We created this data set ourselves. We use the data set to teach HR students how to use and analyze the data in Tableau Desktop - a data visualization tool that's easy to learn.

    This version provides a variety of features that are useful for both data visualization AND creating machine learning / predictive analytics models. We are working on expanding the data set even further by generating even more records and a few additional features. We will be keeping this as one file/one data set for now. There is a possibility of creating a second file perhaps down the road where you can join the files together to practice SQL/joins, etc.

    Note that this dataset isn't perfect. By design, there are some issues that are present. It is primarily designed as a teaching data set - to teach human resources professionals how to work with data and analytics.

    Content

    We have reduced the complexity of the dataset down to a single data file (v14). The CSV revolves around a fictitious company and the core data set contains names, DOBs, age, gender, marital status, date of hire, reasons for termination, department, whether they are active or terminated, position title, pay rate, manager name, and performance score.

    Recent additions to the data include: - Absences - Most Recent Performance Review Date - Employee Engagement Score

    Acknowledgements

    Dr. Carla Patalano provided the baseline idea for creating this synthetic data set, which has been used now by over 200 Human Resource Management students at the college. Students in the course learn data visualization techniques with Tableau Desktop and use this data set to complete a series of assignments.

    Inspiration

    We've included some open-ended questions that you can explore and try to address through creating Tableau visualizations, or R or Python analyses. Good luck and enjoy the learning!

    • Is there any relationship between who a person works for and their performance score?
    • What is the overall diversity profile of the organization?
    • What are our best recruiting sources if we want to ensure a diverse organization?
    • Can we predict who is going to terminate and who isn't? What level of accuracy can we achieve on this?
    • Are there areas of the company where pay is not equitable?

    There are so many other interesting questions that could be addressed through this interesting data set. Dr. Patalano and I look forward to seeing what we can come up with.

    If you have any questions or comments about the dataset, please do not hesitate to reach out to me on LinkedIn: http://www.linkedin.com/in/RichHuebner

    You can also reach me via email at: Richard.Huebner@go.cambridgecollege.edu

  7. Data Visualization Tools Market Analysis, Size, and Forecast 2025-2029:...

    • technavio.com
    pdf
    Updated Feb 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Data Visualization Tools Market Analysis, Size, and Forecast 2025-2029: North America (Mexico), Europe (France, Germany, and UK), Middle East and Africa (UAE), APAC (Australia, China, India, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/data-visualization-tools-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 6, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Description

    Snapshot img

    Data Visualization Tools Market Size 2025-2029

    The data visualization tools market size is forecast to increase by USD 7.95 billion at a CAGR of 11.2% between 2024 and 2029.

    The market is experiencing significant growth due to the increasing demand for business intelligence and AI-powered insights. Companies are recognizing the value of transforming complex data into easily digestible visual representations to inform strategic decision-making. However, this market faces challenges as data complexity and massive data volumes continue to escalate. Organizations must invest in advanced data visualization tools to effectively manage and analyze their data to gain a competitive edge. The ability to automate data visualization processes and integrate AI capabilities will be crucial for companies to overcome the challenges posed by data complexity and volume. By doing so, they can streamline their business operations, enhance data-driven insights, and ultimately drive growth in their respective industries.

    What will be the Size of the Data Visualization Tools Market during the forecast period?

    Request Free SampleIn today's data-driven business landscape, the market continues to evolve, integrating advanced capabilities to support various sectors in making informed decisions. Data storytelling and preparation are crucial elements, enabling organizations to effectively communicate complex data insights. Real-time data visualization ensures agility, while data security safeguards sensitive information. Data dashboards facilitate data exploration and discovery, offering data-driven finance, strategy, and customer experience. Big data visualization tackles complex datasets, enabling data-driven decision making and innovation. Data blending and filtering streamline data integration and analysis. Data visualization software supports data transformation, cleaning, and aggregation, enhancing data-driven operations and healthcare. On-premises and cloud-based solutions cater to diverse business needs. Data governance, ethics, and literacy are integral components, ensuring data-driven product development, government, and education adhere to best practices. Natural language processing, machine learning, and visual analytics further enrich data-driven insights, enabling interactive charts and data reporting. Data connectivity and data-driven sales fuel business intelligence and marketing, while data discovery and data wrangling simplify data exploration and preparation. The market's continuous dynamism underscores the importance of data culture, data-driven innovation, and data-driven HR, as organizations strive to leverage data to gain a competitive edge.

    How is this Data Visualization Tools Industry segmented?

    The data visualization tools industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. DeploymentOn-premisesCloudCustomer TypeLarge enterprisesSMEsComponentSoftwareServicesApplicationHuman resourcesFinanceOthersEnd-userBFSIIT and telecommunicationHealthcareRetailOthersGeographyNorth AmericaUSMexicoEuropeFranceGermanyUKMiddle East and AfricaUAEAPACAustraliaChinaIndiaJapanSouth KoreaSouth AmericaBrazilRest of World (ROW)

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.The market has experienced notable expansion as businesses across diverse sectors acknowledge the significance of data analysis and representation to uncover valuable insights and inform strategic decisions. Data visualization plays a pivotal role in this domain. On-premises deployment, which involves implementing data visualization tools within an organization's physical infrastructure or dedicated data centers, is a popular choice. This approach offers organizations greater control over their data, ensuring data security, privacy, and adherence to data governance policies. It caters to industries dealing with sensitive data, subject to regulatory requirements, or having stringent security protocols that prohibit cloud-based solutions. Data storytelling, data preparation, data-driven product development, data-driven government, real-time data visualization, data security, data dashboards, data-driven finance, data-driven strategy, big data visualization, data-driven decision making, data blending, data filtering, data visualization software, data exploration, data-driven insights, data-driven customer experience, data mapping, data culture, data cleaning, data-driven operations, data aggregation, data transformation, data-driven healthcare, on-premises data visualization, data governance, data ethics, data discovery, natural language processing, data reporting, data visualization platforms, data-driven innovation, data wrangling, data-driven sales, data connectivit

  8. Netflix Data: Cleaning, Analysis and Visualization

    • kaggle.com
    zip
    Updated Aug 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdulrasaq Ariyo (2022). Netflix Data: Cleaning, Analysis and Visualization [Dataset]. https://www.kaggle.com/datasets/ariyoomotade/netflix-data-cleaning-analysis-and-visualization
    Explore at:
    zip(276607 bytes)Available download formats
    Dataset updated
    Aug 26, 2022
    Authors
    Abdulrasaq Ariyo
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Netflix is a popular streaming service that offers a vast catalog of movies, TV shows, and original contents. This dataset is a cleaned version of the original version which can be found here. The data consist of contents added to Netflix from 2008 to 2021. The oldest content is as old as 1925 and the newest as 2021. This dataset will be cleaned with PostgreSQL and visualized with Tableau. The purpose of this dataset is to test my data cleaning and visualization skills. The cleaned data can be found below and the Tableau dashboard can be found here .

    Data Cleaning

    We are going to: 1. Treat the Nulls 2. Treat the duplicates 3. Populate missing rows 4. Drop unneeded columns 5. Split columns Extra steps and more explanation on the process will be explained through the code comments

    --View dataset
    
    SELECT * 
    FROM netflix;
    
    
    --The show_id column is the unique id for the dataset, therefore we are going to check for duplicates
                                      
    SELECT show_id, COUNT(*)                                                                                      
    FROM netflix 
    GROUP BY show_id                                                                                              
    ORDER BY show_id DESC;
    
    --No duplicates
    
    --Check null values across columns
    
    SELECT COUNT(*) FILTER (WHERE show_id IS NULL) AS showid_nulls,
        COUNT(*) FILTER (WHERE type IS NULL) AS type_nulls,
        COUNT(*) FILTER (WHERE title IS NULL) AS title_nulls,
        COUNT(*) FILTER (WHERE director IS NULL) AS director_nulls,
        COUNT(*) FILTER (WHERE movie_cast IS NULL) AS movie_cast_nulls,
        COUNT(*) FILTER (WHERE country IS NULL) AS country_nulls,
        COUNT(*) FILTER (WHERE date_added IS NULL) AS date_addes_nulls,
        COUNT(*) FILTER (WHERE release_year IS NULL) AS release_year_nulls,
        COUNT(*) FILTER (WHERE rating IS NULL) AS rating_nulls,
        COUNT(*) FILTER (WHERE duration IS NULL) AS duration_nulls,
        COUNT(*) FILTER (WHERE listed_in IS NULL) AS listed_in_nulls,
        COUNT(*) FILTER (WHERE description IS NULL) AS description_nulls
    FROM netflix;
    
    We can see that there are NULLS. 
    director_nulls = 2634
    movie_cast_nulls = 825
    country_nulls = 831
    date_added_nulls = 10
    rating_nulls = 4
    duration_nulls = 3 
    

    The director column nulls is about 30% of the whole column, therefore I will not delete them. I will rather find another column to populate it. To populate the director column, we want to find out if there is relationship between movie_cast column and director column

    -- Below, we find out if some directors are likely to work with particular cast
    
    WITH cte AS
    (
    SELECT title, CONCAT(director, '---', movie_cast) AS director_cast 
    FROM netflix
    )
    
    SELECT director_cast, COUNT(*) AS count
    FROM cte
    GROUP BY director_cast
    HAVING COUNT(*) > 1
    ORDER BY COUNT(*) DESC;
    
    With this, we can now populate NULL rows in directors 
    using their record with movie_cast 
    
    UPDATE netflix 
    SET director = 'Alastair Fothergill'
    WHERE movie_cast = 'David Attenborough'
    AND director IS NULL ;
    
    --Repeat this step to populate the rest of the director nulls
    --Populate the rest of the NULL in director as "Not Given"
    
    UPDATE netflix 
    SET director = 'Not Given'
    WHERE director IS NULL;
    
    --When I was doing this, I found a less complex and faster way to populate a column which I will use next
    

    Just like the director column, I will not delete the nulls in country. Since the country column is related to director and movie, we are going to populate the country column with the director column

    --Populate the country using the director column
    
    SELECT COALESCE(nt.country,nt2.country) 
    FROM netflix AS nt
    JOIN netflix AS nt2 
    ON nt.director = nt2.director 
    AND nt.show_id <> nt2.show_id
    WHERE nt.country IS NULL;
    UPDATE netflix
    SET country = nt2.country
    FROM netflix AS nt2
    WHERE netflix.director = nt2.director and netflix.show_id <> nt2.show_id 
    AND netflix.country IS NULL;
    
    
    --To confirm if there are still directors linked to country that refuse to update
    
    SELECT director, country, date_added
    FROM netflix
    WHERE country IS NULL;
    
    --Populate the rest of the NULL in director as "Not Given"
    
    UPDATE netflix 
    SET country = 'Not Given'
    WHERE country IS NULL;
    

    The date_added rows nulls is just 10 out of over 8000 rows, deleting them cannot affect our analysis or visualization

    --Show date_added nulls
    
    SELECT show_id, date_added
    FROM netflix_clean
    WHERE date_added IS NULL;
    
    --DELETE nulls
    
    DELETE F...
    
  9. From Static to Interactive: Transforming Data Visualization to Improve...

    • plos.figshare.com
    xml
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tracey L. Weissgerber; Vesna D. Garovic; Marko Savic; Stacey J. Winham; Natasa M. Milic (2023). From Static to Interactive: Transforming Data Visualization to Improve Transparency [Dataset]. http://doi.org/10.1371/journal.pbio.1002484
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Tracey L. Weissgerber; Vesna D. Garovic; Marko Savic; Stacey J. Winham; Natasa M. Milic
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data presentation for scientific publications in small sample size studies has not changed substantially in decades. It relies on static figures and tables that may not provide sufficient information for critical evaluation, particularly of the results from small sample size studies. Interactive graphics have the potential to transform scientific publications from static reports of experiments into interactive datasets. We designed an interactive line graph that demonstrates how dynamic alternatives to static graphics for small sample size studies allow for additional exploration of empirical datasets. This simple, free, web-based tool (http://statistika.mfub.bg.ac.rs/interactive-graph/) demonstrates the overall concept and may promote widespread use of interactive graphics.

  10. Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Feb 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, Japan), South America (Brazil), and Middle East and Africa (UAE) [Dataset]. https://www.technavio.com/report/data-science-platform-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 8, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    United States
    Description

    Snapshot img

    Data Science Platform Market Size 2025-2029

    The data science platform market size is valued to increase USD 763.9 million, at a CAGR of 40.2% from 2024 to 2029. Integration of AI and ML technologies with data science platforms will drive the data science platform market.

    Major Market Trends & Insights

    North America dominated the market and accounted for a 48% growth during the forecast period.
    By Deployment - On-premises segment was valued at USD 38.70 million in 2023
    By Component - Platform segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 1.00 million
    Market Future Opportunities: USD 763.90 million
    CAGR : 40.2%
    North America: Largest market in 2023
    

    Market Summary

    The market represents a dynamic and continually evolving landscape, underpinned by advancements in core technologies and applications. Key technologies, such as machine learning and artificial intelligence, are increasingly integrated into data science platforms to enhance predictive analytics and automate data processing. Additionally, the emergence of containerization and microservices in data science platforms enables greater flexibility and scalability. However, the market also faces challenges, including data privacy and security risks, which necessitate robust compliance with regulations.
    According to recent estimates, the market is expected to account for over 30% of the overall big data analytics market by 2025, underscoring its growing importance in the data-driven business landscape.
    

    What will be the Size of the Data Science Platform Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    How is the Data Science Platform Market Segmented and what are the key trends of market segmentation?

    The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Deployment
    
      On-premises
      Cloud
    
    
    Component
    
      Platform
      Services
    
    
    End-user
    
      BFSI
      Retail and e-commerce
      Manufacturing
      Media and entertainment
      Others
    
    
    Sector
    
      Large enterprises
      SMEs
    
    
    Application
    
      Data Preparation
      Data Visualization
      Machine Learning
      Predictive Analytics
      Data Governance
      Others
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      Middle East and Africa
    
        UAE
    
    
      APAC
    
        China
        India
        Japan
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.

    In the dynamic and evolving the market, big data processing is a key focus, enabling advanced model accuracy metrics through various data mining methods. Distributed computing and algorithm optimization are integral components, ensuring efficient handling of large datasets. Data governance policies are crucial for managing data security protocols and ensuring data lineage tracking. Software development kits, model versioning, and anomaly detection systems facilitate seamless development, deployment, and monitoring of predictive modeling techniques, including machine learning algorithms, regression analysis, and statistical modeling. Real-time data streaming and parallelized algorithms enable real-time insights, while predictive modeling techniques and machine learning algorithms drive business intelligence and decision-making.

    Cloud computing infrastructure, data visualization tools, high-performance computing, and database management systems support scalable data solutions and efficient data warehousing. ETL processes and data integration pipelines ensure data quality assessment and feature engineering techniques. Clustering techniques and natural language processing are essential for advanced data analysis. The market is witnessing significant growth, with adoption increasing by 18.7% in the past year, and industry experts anticipate a further expansion of 21.6% in the upcoming period. Companies across various sectors are recognizing the potential of data science platforms, leading to a surge in demand for scalable, secure, and efficient solutions.

    API integration services and deep learning frameworks are gaining traction, offering advanced capabilities and seamless integration with existing systems. Data security protocols and model explainability methods are becoming increasingly important, ensuring transparency and trust in data-driven decision-making. The market is expected to continue unfolding, with ongoing advancements in technology and evolving business needs shaping its future trajectory.

    Request Free Sample

    The On-premises segment was valued at USD 38.70 million in 2019 and showed

  11. G

    Data Visualization Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Data Visualization Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/data-visualization-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Aug 4, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Visualization Market Outlook



    As per our latest research, the global data visualization market size reached USD 12.8 billion in 2024, reflecting robust adoption across diverse industries. The market is projected to expand at a strong CAGR of 10.4% from 2025 to 2033, reaching an estimated USD 31.2 billion by 2033. This remarkable growth is primarily driven by the increasing need for actionable insights from big data, the proliferation of advanced analytics tools, and the growing emphasis on real-time decision-making within enterprises worldwide.




    One of the primary growth factors propelling the data visualization market is the exponential increase in data generation across all sectors. Organizations are now inundated with structured and unstructured data from multiple sources such as IoT devices, social media platforms, enterprise applications, and transactional systems. The sheer volume and complexity of this data make traditional reporting tools inadequate for deriving meaningful insights. As a result, businesses are turning to advanced data visualization solutions that enable them to quickly interpret complex datasets, identify trends, and make informed decisions. The integration of artificial intelligence and machine learning into visualization platforms further enhances their capability to deliver predictive analytics and automated insights, which is fueling market expansion.




    Another significant driver is the growing adoption of business intelligence (BI) and analytics platforms across organizations of all sizes. Companies are increasingly recognizing the value of data-driven decision-making, which has led to the widespread implementation of BI tools that rely heavily on effective data visualization. These platforms not only facilitate the exploration of large datasets but also enable users to create interactive dashboards and reports that can be easily shared across departments. The democratization of data analytics, where non-technical users can generate their own visualizations without relying on IT teams, has further accelerated market growth. Additionally, the shift towards cloud-based deployment models is making these solutions more accessible and cost-effective for small and medium enterprises (SMEs), broadening the market’s reach.




    The rapid digital transformation initiatives undertaken by enterprises, particularly in emerging economies, are also contributing to the robust growth of the data visualization market. Digitalization efforts have led to the modernization of legacy IT infrastructure, the adoption of cloud computing, and the implementation of advanced analytics solutions. Governments and regulatory bodies are also encouraging the use of data analytics for transparency and efficiency, especially in sectors such as healthcare, public services, and finance. The increasing focus on customer experience, operational efficiency, and competitive differentiation is compelling organizations to invest in visualization tools that provide real-time insights and facilitate agile business processes. These factors collectively underpin the sustained growth trajectory of the global data visualization market.




    From a regional perspective, North America continues to dominate the data visualization market, accounting for the largest revenue share in 2024, followed closely by Europe and Asia Pacific. The region’s leadership is attributed to the high adoption rate of advanced analytics solutions, the presence of major technology providers, and a mature digital ecosystem. Meanwhile, Asia Pacific is witnessing the fastest growth, driven by rapid industrialization, increasing IT investments, and the proliferation of cloud computing across countries like China, India, and Japan. Latin America and the Middle East & Africa are also experiencing steady growth, fueled by digital transformation initiatives and the rising demand for data-driven decision-making in both public and private sectors.





    Component Analysis



    The data visualization market is segmented by component into software

  12. m

    Data from: Juicebox provides a visualization system for Hi-C contact maps...

    • data.mendeley.com
    Updated Jul 1, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aiden Lab (2016). Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom [Dataset]. http://doi.org/10.17632/dj4nrsc552.1
    Explore at:
    Dataset updated
    Jul 1, 2016
    Authors
    Aiden Lab
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Source code for Juicebox sent to reviewers

  13. D

    Learning Data Visualization Tools Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Learning Data Visualization Tools Market Research Report 2033 [Dataset]. https://dataintelo.com/report/learning-data-visualization-tools-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Sep 30, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Learning Data Visualization Tools Market Outlook



    According to our latest research, the global Learning Data Visualization Tools Market size reached USD 2.8 billion in 2024, demonstrating robust growth driven by the increasing demand for data literacy and analytics skills across various sectors. The market is expected to grow at a CAGR of 13.7% from 2025 to 2033, projecting a value of USD 8.8 billion by 2033. This surge is primarily attributed to the rapid digitization of education and corporate learning environments, the proliferation of big data, and the critical need for interactive, accessible analytical tools to foster effective data comprehension and decision-making.




    One of the most significant growth factors for the Learning Data Visualization Tools Market is the widespread integration of data-driven decision-making processes within organizations and educational institutions. As businesses and academic settings increasingly rely on data to guide strategies, there is a parallel surge in the demand for professionals who possess strong data visualization skills. This has led to a marked increase in the adoption of user-friendly data visualization tools such as Tableau, Power BI, and Google Data Studio in both formal education and corporate training programs. The ability of these tools to simplify complex datasets into intuitive visual representations is a key driver, enabling learners to grasp intricate concepts more efficiently and apply them in real-world scenarios.




    Technological advancements and the evolution of cloud-based learning platforms have further propelled the market. The shift toward digital and remote learning, especially post-pandemic, has accelerated the adoption of cloud-based data visualization tools, which offer scalability, accessibility, and seamless integration with other e-learning resources. Cloud deployment eliminates geographical barriers, allowing learners and organizations from diverse regions to access advanced visualization tools and resources at any time. Additionally, the increasing availability of free and open-source visualization libraries such as D3.js has democratized access to these technologies, further expanding the market’s reach across different socioeconomic segments.




    Another crucial growth driver is the rising emphasis on upskilling and reskilling initiatives across industries. As automation and artificial intelligence reshape job requirements, data literacy has become a fundamental skill for both students and working professionals. Enterprises are investing heavily in learning platforms that incorporate data visualization tools to train their workforce, ensuring they remain competitive in the digital economy. The trend is mirrored in higher education, where curricula are being revamped to include data visualization modules, reflecting the growing recognition of its importance in fostering analytical and critical thinking skills among learners.




    From a regional perspective, North America dominates the Learning Data Visualization Tools Market, accounting for the largest revenue share in 2024. This can be attributed to the presence of leading technology providers, a mature e-learning ecosystem, and high levels of digital adoption in both educational and corporate sectors. However, Asia Pacific is emerging as the fastest-growing region, driven by rapid digital transformation, government initiatives to enhance digital literacy, and the increasing penetration of internet and mobile devices. Europe also contributes significantly, with a strong focus on educational innovation and enterprise training. These regional dynamics are shaping the competitive landscape and driving the global expansion of learning data visualization tools.



    Tool Type Analysis



    The Tool Type segment of the Learning Data Visualization Tools Market is highly diverse, encompassing established platforms like Tableau, Power BI, and Qlik, as well as newer entrants such as Google Data Studio and open-source solutions like D3.js. Tableau remains a market leader due to its intuitive drag-and-drop interface, robust analytics capabilities, and widespread adoption in both academic and corporate settings. Its ability to handle large datasets and integrate seamlessly with various data sources makes it a preferred choice for institutions aiming to provide hands-on, practical training in data visualization. Power BI, backed by Microsoft’s ecosystem, is gaining significant traction, particularly among enterpr

  14. Data Visualization Cheat sheets and Resources

    • kaggle.com
    zip
    Updated May 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kash (2022). Data Visualization Cheat sheets and Resources [Dataset]. https://www.kaggle.com/kaushiksuresh147/data-visualization-cheat-cheats-and-resources
    Explore at:
    zip(133638507 bytes)Available download formats
    Dataset updated
    May 31, 2022
    Authors
    Kash
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The Data Visualization Corpus

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1430847%2F29f7950c3b7daf11175aab404725542c%2FGettyImages-1187621904-600x360.jpg?generation=1601115151722854&alt=media" alt="">

    Data Visualization

    Data visualization is the graphical representation of information and data. By using visual elements like charts, graphs, and maps, data visualization tools provide an accessible way to see and understand trends, outliers, and patterns in data.

    In the world of Big Data, data visualization tools and technologies are essential to analyze massive amounts of information and make data-driven decisions

    The Data Visualizaion Copus

    The Data Visualization corpus consists:

    • 32 cheat sheets: This includes A-Z about the techniques and tricks that can be used for visualization, Python and R visualization cheat sheets, Types of charts, and their significance, Storytelling with data, etc..

    • 32 Charts: The corpus also consists of a significant amount of data visualization charts information along with their python code, d3.js codes, and presentations relation to the respective charts explaining in a clear manner!

    • Some recommended books for data visualization every data scientist's should read:

      1. Beautiful Visualization by Julie Steele and Noah Iliinsky
      2. Information Dashboard Design by Stephen Few
      3. Knowledge is beautiful by David McCandless (Short abstract)
      4. The Functional Art: An Introduction to Information Graphics and Visualization by Alberto Cairo
      5. The Visual Display of Quantitative Information by Edward R. Tufte
      6. storytelling with data: a data visualization guide for business professionals by cole Nussbaumer knaflic
      7. Research paper - Cheat Sheets for Data Visualization Techniques by Zezhong Wang, Lovisa Sundin, Dave Murray-Rust, Benjamin Bach

    Suggestions:

    In case, if you find any books, cheat sheets, or charts missing and if you would like to suggest some new documents please let me know in the discussion sections!

    Resources:

    Request to kaggle users:

    • A kind request to kaggle users to create notebooks on different visualization charts as per their interest by choosing a dataset of their own as many beginners and other experts could find it useful!

    • To create interactive EDA using animation with a combination of data visualization charts to give an idea about how to tackle data and extract the insights from the data

    Suggestion and queries:

    Feel free to use the discussion platform of this data set to ask questions or any queries related to the data visualization corpus and data visualization techniques

    Kindly upvote the dataset if you find it useful or if you wish to appreciate the effort taken to gather this corpus! Thank you and have a great day!

  15. Datasets used in "Bonsai: Tree representations for distortion-free...

    • zenodo.org
    zip
    Updated Sep 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daan de Groot; Daan de Groot; Erik van Nimwegen; Erik van Nimwegen; Sarah X Morillo Leonardo; Sarah X Morillo Leonardo (2025). Datasets used in "Bonsai: Tree representations for distortion-free visualization and exploratory analysis of single-cell omics data" [Dataset]. http://doi.org/10.5281/zenodo.17121400
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 15, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Daan de Groot; Daan de Groot; Erik van Nimwegen; Erik van Nimwegen; Sarah X Morillo Leonardo; Sarah X Morillo Leonardo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All datasets that are created or used in the publication introducing Bonsai tree-representations: "Bonsai: Tree representations for distortion-free visualization and exploratory analysis of single-cell omics data".

  16. ThermoData Engine free public version

    • data.nist.gov
    • datasets.ai
    • +1more
    Updated Feb 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Standards and Technology (2024). ThermoData Engine free public version [Dataset]. http://doi.org/10.18434/mds2-3179
    Explore at:
    Dataset updated
    Feb 23, 2024
    Dataset provided by
    National Institute of Standards and Technologyhttp://www.nist.gov/
    License

    https://www.nist.gov/open/licensehttps://www.nist.gov/open/license

    Description

    A computer program for accessing and visualization of thermodynamic and transport property data for chemical compounds and mixtures available at the TRC/NIST ThermoML archive https://data.nist.gov/od/id/mds2-2422. The data collection contains 2.2 million distinct property values (the whole archive can also be downloaded from that link, stored, and accessed from a local storage). The program has been compiled for Windows OS and tested under Windows 10. The operation procedures are described in the embedded Help.

  17. T

    open_images_v4

    • tensorflow.org
    • opendatalab.com
    Updated Jun 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). open_images_v4 [Dataset]. https://www.tensorflow.org/datasets/catalog/open_images_v4
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    Open Images is a dataset of ~9M images that have been annotated with image-level labels and object bounding boxes.

    The training set of V4 contains 14.6M bounding boxes for 600 object classes on 1.74M images, making it the largest existing dataset with object location annotations. The boxes have been largely manually drawn by professional annotators to ensure accuracy and consistency. The images are very diverse and often contain complex scenes with several objects (8.4 per image on average). Moreover, the dataset is annotated with image-level labels spanning thousands of classes.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('open_images_v4', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/open_images_v4-original-2.0.0.png" alt="Visualization" width="500px">

  18. πŸ›’ Online Shopping Dataset πŸ“ŠπŸ“‰πŸ“ˆ

    • kaggle.com
    zip
    Updated Nov 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jackson Divakar R (2023). πŸ›’ Online Shopping Dataset πŸ“ŠπŸ“‰πŸ“ˆ [Dataset]. https://www.kaggle.com/datasets/jacksondivakarr/online-shopping-dataset
    Explore at:
    zip(5404165 bytes)Available download formats
    Dataset updated
    Nov 12, 2023
    Authors
    Jackson Divakar R
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset: Online Shopping Dataset;

    CustomerID

    Description: Unique identifier for each customer. Data Type: Numeric;

    Gender:

    Description: Gender of the customer (e.g., Male, Female). Data Type: Categorical;

    Location:

    Description: Location or address information of the customer. Data Type: Text;

    Tenure_Months:

    Description: Number of months the customer has been associated with the platform. Data Type: Numeric;

    Transaction_ID:

    Description: Unique identifier for each transaction. Data Type: Numeric;

    Transaction_Date:

    Description: Date of the transaction. Data Type: Date;

    Product_SKU:

    Description: Stock Keeping Unit (SKU) identifier for the product. Data Type: Text;

    Product_Description:

    Description: Description of the product. Data Type: Text;

    Product_Category:

    Description: Category to which the product belongs. Data Type: Categorical;

    Quantity:

    Description: Quantity of the product purchased in the transaction. Data Type: Numeric;

    Avg_Price:

    Description: Average price of the product. Data Type: Numeric;

    Delivery_Charges:

    Description: Charges associated with the delivery of the product. Data Type: Numeric;

    Coupon_Status:

    Description: Status of the coupon associated with the transaction. Data Type: Categorical;

    GST:

    Description: Goods and Services Tax associated with the transaction. Data Type: Numeric;

    Date:

    Description: Date of the transaction (potentially redundant with Transaction_Date). Data Type: Date;

    Offline_Spend:

    Description: Amount spent offline by the customer. Data Type: Numeric;

    Online_Spend:

    Description: Amount spent online by the customer. Data Type: Numeric;

    Month:

    Description: Month of the transaction. Data Type: Categorical;

    Coupon_Code:

    Description: Code associated with a coupon, if applicable. Data Type: Text;

    Discount_pct:

    Description: Percentage of discount applied to the transaction. Data Type: Numeric;

  19. The New York Times US Coronavirus Database

    • console.cloud.google.com
    Updated Apr 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:The%20New%20York%20Times&hl=ko (2023). The New York Times US Coronavirus Database [Dataset]. https://console.cloud.google.com/marketplace/product/the-new-york-times/covid19_us_cases?hl=ko
    Explore at:
    Dataset updated
    Apr 21, 2023
    Dataset provided by
    Googlehttp://google.com/
    Area covered
    United States
    Description

    This is the US Coronavirus data repository from The New York Times . This data includes COVID-19 cases and deaths reported by state and county. The New York Times compiled this data based on reports from state and local health agencies. More information on the data repository is available here . For additional reporting and data visualizations, see The New York Times’ U.S. coronavirus interactive site . This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery . This dataset has significant public interest in light of the COVID-19 crisis. All bytes processed in queries against this dataset will be zeroed out, making this part of the query free. Data joined with the dataset will be billed at the normal rate to prevent abuse. After September 15, queries over these datasets will revert to the normal billing rate. Users of The New York Times public-use data files must comply with data use restrictions to ensure that the information will be used solely for noncommercial purposes.

  20. G

    Set Visualization Tools Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Set Visualization Tools Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/set-visualization-tools-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Aug 23, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Set Visualization Tools Market Outlook



    According to our latest research, the global set visualization tools market size reached USD 3.2 billion in 2024, driven by the increasing demand for advanced data analytics and visual representation across diverse industries. The market is expected to grow at a robust CAGR of 12.8% from 2025 to 2033, reaching a forecasted value of USD 9.1 billion by 2033. This significant growth is primarily attributed to the proliferation of big data, the rising importance of data-driven decision-making, and the expansion of digital transformation initiatives worldwide.




    One of the primary growth factors fueling the set visualization tools market is the exponential surge in data generation from numerous sources, including IoT devices, enterprise applications, and digital platforms. Organizations are increasingly seeking efficient ways to interpret complex and voluminous datasets, making advanced visualization tools indispensable for extracting actionable insights. The integration of artificial intelligence (AI) and machine learning (ML) into these tools further enhances their capability to identify patterns, trends, and anomalies, thus supporting more informed strategic decisions. As businesses across sectors recognize the value of data visualization in driving operational efficiency and innovation, the adoption of set visualization tools continues to accelerate.




    Another key driver is the growing emphasis on business intelligence (BI) and analytics within enterprises of all sizes. Modern set visualization tools are evolving to offer intuitive interfaces, real-time analytics, and seamless integration with existing IT infrastructure, making them accessible to non-technical users as well. This democratization of data analytics empowers a broader range of stakeholders to participate in data-driven processes, fostering a culture of collaboration and agility. Additionally, the increasing complexity of datasets, especially in sectors like healthcare, finance, and scientific research, necessitates sophisticated visualization solutions capable of handling multidimensional and hierarchical data structures.




    The rapid adoption of cloud computing and the shift towards remote and hybrid work environments have also played a pivotal role in the expansion of the set visualization tools market. Cloud-based deployment models offer unparalleled scalability, flexibility, and cost-effectiveness, enabling organizations to access visualization capabilities without significant upfront investments in hardware or infrastructure. Furthermore, the emergence of mobile and web-based visualization platforms ensures that users can interact with data visualizations anytime, anywhere, thereby enhancing productivity and decision-making speed. As digital transformation initiatives gain momentum globally, the demand for advanced, user-friendly, and scalable set visualization tools is expected to remain strong.




    From a regional perspective, North America currently dominates the set visualization tools market, accounting for the largest share in 2024, followed closely by Europe and the Asia Pacific. The presence of leading technology companies, a mature IT infrastructure, and high investment in analytics and business intelligence solutions contribute to North America's leadership position. However, the Asia Pacific region is witnessing the fastest growth, propelled by rapid digitalization, expanding enterprise IT budgets, and increasing awareness about the benefits of data visualization. As emerging economies in Latin America and the Middle East & Africa continue to invest in digital transformation, these regions are also expected to offer lucrative growth opportunities for market players over the forecast period.





    Component Analysis



    The set visualization tools market by component is primarily segmented into software and services, each playing a crucial role in the overall ecosystem. The software segment holds the majority share, driven by the continuous evolution of visualization platforms

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Atul (2025). Customer Sale Dataset for Data Visualization [Dataset]. https://www.kaggle.com/datasets/atulkgoyl/customer-sale-dataset-for-visualization
Organization logo

Customer Sale Dataset for Data Visualization

A clean, beginner-friendly dataset with date, numeric, and categorical features

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jun 6, 2025
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Atul
License

Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically

Description

This synthetic dataset is designed specifically for practicing data visualization and exploratory data analysis (EDA) using popular Python libraries like Seaborn, Matplotlib, and Pandas.

Unlike most public datasets, this one includes a diverse mix of column types:

πŸ“… Date columns (for time series and trend plots) πŸ”’ Numerical columns (for histograms, boxplots, scatter plots) 🏷️ Categorical columns (for bar charts, group analysis)

Whether you are a beginner learning how to visualize data or an intermediate user testing new charting techniques, this dataset offers a versatile playground.

Feel free to:

Create EDA notebooks Practice plotting techniques Experiment with filtering, grouping, and aggregations πŸ› οΈ No missing values, no data cleaning needed β€” just download and start exploring!

Hope you find this helpful. Looking forward to hearing from you all.

Search
Clear search
Close search
Google apps
Main menu