The Consumer Demographic database is comprised of over 80 sources and includes over 400 different data points for each individual in a household with complete PII. The fields provided include demographics, psychographic, lifestyle criteria, buying behavior, and real property identification.
Each record is ranked by confidence and only the highest quality data is used. The database is multi-sourced and contains both compiled and originated U.S. data. Additionally, the data goes through intensive cleansing including deceased processing and NCOA.
BIGDBM Privacy Policy: https://bigdbm.com/privacy.html
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Excel population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Excel. The dataset can be utilized to understand the population distribution of Excel by age. For example, using this dataset, we can identify the largest age group in Excel.
Key observations
The largest age group in Excel, AL was for the group of age 45 to 49 years years with a population of 74 (15.64%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in Excel, AL was the 85 years and over years with a population of 2 (0.42%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Excel Population by Age. You can refer the same here
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Federal Superfund sites are some of the most polluted in the United States. This dataset contains a multifaceted view of Superfunds, including free-form text descriptions, geography, demographics and socioeconomics.
The core data was scraped from the National Priorities List (NPL) provided by the U.S. Environmental Protection Agency (EPA). This table provides basic information such as site name, site score, date added, and links to a site description and current status. Apache Tika was used to extract text from the site description pdfs. The addresses were scraped from site status pages, and used to geocode to latitude and longitude and Census block group. The block group assignment was used to join with the Census Bureau's planning database, a rich source of nationwide demographic and socioeconomic data. The full source code used to generate the data can be found here, on github.
I have provided three separate downloads to explore:
Some caveats:
I would like to thank the EPA and the Census Bureau for making such detailed information publicly available. For relevant academic work, please see Burwell-Naney et al. (2013) and references, both to and therein.
Please let me know if you have any suggestions for improving the dataset!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Free Soil by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Free Soil. The dataset can be utilized to understand the population distribution of Free Soil by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Free Soil. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Free Soil.
Key observations
Largest age group (population): Male # 70-74 years (15) | Female # 50-54 years (11). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Free Soil Population by Gender. You can refer the same here
Pursuant to Local Laws 126, 127, and 128 of 2016, certain demographic data is collected voluntarily and anonymously by persons voluntarily seeking social services. This data can be used by agencies and the public to better understand the demographic makeup of client populations and to better understand and serve residents of all backgrounds and identities.
The data presented here has been collected through either electronic form or paper surveys offered at the point of application for services. These surveys are anonymous.
Each record represents an anonymized demographic profile of an individual applicant for social services, disaggregated by response option, agency, and program. Response options include information regarding ancestry, race, primary and secondary languages, English proficiency, gender identity, and sexual orientation.
Idiosyncrasies or Limitations:
Note that while the dataset contains the total number of individuals who have identified their ancestry or languages spoke, because such data is collected anonymously, there may be instances of a single individual completing multiple voluntary surveys. Additionally, the survey being both voluntary and anonymous has advantages as well as disadvantages: it increases the likelihood of full and honest answers, but since it is not connected to the individual case, it does not directly inform delivery of services to the applicant. The paper and online versions of the survey ask the same questions but free-form text is handled differently. Free-form text fields are expected to be entered in English although the form is available in several languages. Surveys are presented in 11 languages.
Paper Surveys
1. Are optional
2. Survey taker is expected to specify agency that provides service
2. Survey taker can skip or elect not to answer questions
3. Invalid/unreadable data may be entered for survey date or date may be skipped
4. OCRing of free-form tet fields may fail.
5. Analytical value of free-form text answers is unclear
Online Survey
1. Are optional
2. Agency is defaulted based on the URL
3. Some questions must be answered
4. Date of survey is automated
Welcome to Apiscrapy, your ultimate destination for comprehensive location-based intelligence. As an AI-driven web scraping and automation platform, Apiscrapy excels in converting raw web data into polished, ready-to-use data APIs. With a unique capability to collect Google Address Data, Google Address API, Google Location API, Google Map, and Google Location Data with 100% accuracy, we redefine possibilities in location intelligence.
Key Features:
Unparalleled Data Variety: Apiscrapy offers a diverse range of address-related datasets, including Google Address Data and Google Location Data. Whether you seek B2B address data or detailed insights for various industries, we cover it all.
Integration with Google Address API: Seamlessly integrate our datasets with the powerful Google Address API. This collaboration ensures not just accessibility but a robust combination that amplifies the precision of your location-based insights.
Business Location Precision: Experience a new level of precision in business decision-making with our address data. Apiscrapy delivers accurate and up-to-date business locations, enhancing your strategic planning and expansion efforts.
Tailored B2B Marketing: Customize your B2B marketing strategies with precision using our detailed B2B address data. Target specific geographic areas, refine your approach, and maximize the impact of your marketing efforts.
Use Cases:
Location-Based Services: Companies use Google Address Data to provide location-based services such as navigation, local search, and location-aware advertisements.
Logistics and Transportation: Logistics companies utilize Google Address Data for route optimization, fleet management, and delivery tracking.
E-commerce: Online retailers integrate address autocomplete features powered by Google Address Data to simplify the checkout process and ensure accurate delivery addresses.
Real Estate: Real estate agents and property websites leverage Google Address Data to provide accurate property listings, neighborhood information, and proximity to amenities.
Urban Planning and Development: City planners and developers utilize Google Address Data to analyze population density, traffic patterns, and infrastructure needs for urban planning and development projects.
Market Analysis: Businesses use Google Address Data for market analysis, including identifying target demographics, analyzing competitor locations, and selecting optimal locations for new stores or offices.
Geographic Information Systems (GIS): GIS professionals use Google Address Data as a foundational layer for mapping and spatial analysis in fields such as environmental science, public health, and natural resource management.
Government Services: Government agencies utilize Google Address Data for census enumeration, voter registration, tax assessment, and planning public infrastructure projects.
Tourism and Hospitality: Travel agencies, hotels, and tourism websites incorporate Google Address Data to provide location-based recommendations, itinerary planning, and booking services for travelers.
Discover the difference with Apiscrapy – where accuracy meets diversity in address-related datasets, including Google Address Data, Google Address API, Google Location API, and more. Redefine your approach to location intelligence and make data-driven decisions with confidence. Revolutionize your business strategies today!
Report on Demographic Data in New York City Public Schools, 2020-21Enrollment counts are based on the November 13 Audited Register for 2020. Categories with total enrollment values of zero were omitted. Pre-K data includes students in 3-K. Data on students with disabilities, English language learners, and student poverty status are as of March 19, 2021. Due to missing demographic information in rare cases and suppression rules, demographic categories do not always add up to total enrollment and/or citywide totals. NYC DOE "Eligible for free or reduced-price lunch” counts are based on the number of students with families who have qualified for free or reduced-price lunch or are eligible for Human Resources Administration (HRA) benefits. English Language Arts and Math state assessment results for students in grade 9 are not available for inclusion in this report, as the spring 2020 exams did not take place. Spring 2021 ELA and Math test results are not included in this report for K-8 students in 2020-21. Due to the COVID-19 pandemic’s complete transformation of New York City’s school system during the 2020-21 school year, and in accordance with New York State guidance, the 2021 ELA and Math assessments were optional for students to take. As a result, 21.6% of students in grades 3-8 took the English assessment in 2021 and 20.5% of students in grades 3-8 took the Math assessment. These participation rates are not representative of New York City students and schools and are not comparable to prior years, so results are not included in this report. Dual Language enrollment includes English Language Learners and non-English Language Learners. Dual Language data are based on data from STARS; as a result, school participation and student enrollment in Dual Language programs may differ from the data in this report. STARS course scheduling and grade management software applications provide a dynamic internal data system for school use; while standard course codes exist, data are not always consistent from school to school. This report does not include enrollment at District 75 & 79 programs. Students enrolled at Young Adult Borough Centers are represented in the 9-12 District data but not the 9-12 School data. “Prior Year” data included in Comparison tabs refers to data from 2019-20. “Year-to-Year Change” data included in Comparison tabs indicates whether the demographics of a school or special program have grown more or less similar to its district or attendance zone (or school, for special programs) since 2019-20. Year-to-year changes must have been at least 1 percentage point to qualify as “More Similar” or “Less Similar”; changes less than 1 percentage point are categorized as “No Change”. The admissions method tab contains information on the admissions methods used for elementary, middle, and high school programs during the Fall 2020 admissions process. Fall 2020 selection criteria are included for all programs with academic screens, including middle and high school programs. Selection criteria data is based on school-reported information. Fall 2020 Diversity in Admissions priorities is included for applicable middle and high school programs. Note that the data on each school’s demographics and performance includes all students of the given subgroup who were enrolled in the school on November 13, 2020. Some of these students may not have been admitted under the admissions method(s) shown, as some students may have enrolled in the school outside the centralized admissions process (via waitlist, over-the-counter, or transfer), and schools may have changed admissions methods over the past few years. Admissions methods are only reported for grades K-12. "3K and Pre-Kindergarten data are reported at the site level. See below for definitions of site types included in this report. Additionally, please note that this report excludes all students at District 75 sites, reflecting slightly lower enrollment than our total of 60,265 students
The American Community Survey (ACS) is an ongoing survey that provides vital information on a yearly basis about our nation and its people by contacting over 3.5 million households across the country. The resulting data provides incredibly detailed demographic information across the US aggregated at various geographic levels which helps determine how more than $675 billion in federal and state funding are distributed each year. Businesses use ACS data to inform strategic decision-making. ACS data can be used as a component of market research, provide information about concentrations of potential employees with a specific education or occupation, and which communities could be good places to build offices or facilities. For example, someone scouting a new location for an assisted-living center might look for an area with a large proportion of seniors and a large proportion of people employed in nursing occupations. Through the ACS, we know more about jobs and occupations, educational attainment, veterans, whether people own or rent their homes, and other topics. Public officials, planners, and entrepreneurs use this information to assess the past and plan the future. For more information, see the Census Bureau's ACS Information Guide . This public dataset is hosted in Google BigQuery as part of the Google Cloud Public Datasets Program , with Carto providing cleaning and onboarding support. It is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
GapMaps Live is an easy-to-use location intelligence platform available across 25 countries globally that allows you to visualise your own store data, combined with the latest demographic, economic and population movement intel right down to the micro level so you can make faster, smarter and surer decisions when planning your network growth strategy.
With one single login, you can access the latest estimates on resident and worker populations, census metrics (eg. age, income, ethnicity), consuming class, retail spend insights and point-of-interest data across a range of categories including fast food, cafe, fitness, supermarket/grocery and more.
Some of the world's biggest brands including McDonalds, Subway, Burger King, Anytime Fitness and Dominos use GapMaps Live as a vital strategic tool where business success relies on up-to-date, easy to understand, location intel that can power business case validation and drive rapid decision making.
Primary Use Cases for GapMaps Live includes:
Some of features our clients love about GapMaps Live include: - View business locations, competitor locations, demographic, economic and social data around your business or selected location - Understand consumer visitation patterns (“where from” and “where to”), frequency of visits, dwell time of visits, profiles of consumers and much more. - Save searched locations and drop pins - Turn on/off all location listings by category - View and filter data by metadata tags, for example hours of operation, contact details, services provided - Combine public data in GapMaps with views of private data Layers - View data in layers to understand impact of different data Sources - Share maps with teams - Generate demographic reports and comparative analyses on different locations based on drive time, walk time or radius. - Access multiple countries and brands with a single logon - Access multiple brands under a parent login - Capture field data such as photos, notes and documents using GapMaps Connect and integrate with GapMaps Live to get detailed insights on existing and proposed store locations.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Both dispersal and local demographic processes determine a population's distribution among habitats of varying quality, yet most theory, experiments, and field studies have focused on the former. We use a generic model to show how both processes contribute to a population's distribution, and how the relative importance of each mechanism depends on scale. In contrast to studies only considering habitat-dependent dispersal, we show that predictions of ideal free distribution (IFD) theory are relevant even at landscape scales, where the assumptions of IFD theory are violated. This is because scales that inhibit one process, promote the other's ability to drive populations to the IFD. Furthermore, because multiple processes can generate IFDs, the pattern alone does not specify a causal mechanism. This is important because populations with IFDs generated by dispersal or demography respond much differently to shifts in resource distributions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Free Soil population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Free Soil across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Free Soil was 153, a 0.66% increase year-by-year from 2021. Previously, in 2021, Free Soil population was 152, an increase of 0.66% compared to a population of 151 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Free Soil decreased by 23. In this period, the peak population was 179 in the year 2004. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Free Soil Population by Year. You can refer the same here
"Enrollment counts are based on the October 31 Audited Register for the 2017-18 to 2019-20 school years. To account for the delay in the start of the school year, enrollment counts are based on the November 13 Audited Register for 2020-21 and the November 12 Audited Register for 2021-22. * Please note that October 31 (and November 12-13) enrollment is not audited for charter schools or Pre-K Early Education Centers (NYCEECs). Charter schools are required to submit enrollment as of BEDS Day, the first Wednesday in October, to the New York State Department of Education." Enrollment counts in the Demographic Snapshot will likely exceed operational enrollment counts due to the fact that long-term absence (LTA) students are excluded for funding purposes. Data on students with disabilities, English Language Learners, students' povery status, and students' Economic Need Value are as of the June 30 for each school year except in 2021-22. Data on SWDs, ELLs, Poverty, and ENI in the 2021-22 school year are as of March 7, 2022. 3-K and Pre-K enrollment totals include students in both full-day and half-day programs. Four-year-old students enrolled in Family Childcare Centers are categorized as 3K students for the purposes of this report. All schools listed are as of the 2021-22 school year. Schools closed before 2021-22 are not included in the school level tab but are included in the data for citywide, borough, and district. Programs and Pre-K NYC Early Education Centers (NYCEECs) are not included on the school-level tab. Due to missing demographic information in rare cases at the time of the enrollment snapshot, demographic categories do not always add up to citywide totals. Students with disabilities are defined as any child receiving an Individualized Education Program (IEP) as of the end of the school year (or March 7 for 2021-22). NYC DOE "Poverty" counts are based on the number of students with families who have qualified for free or reduced price lunch, or are eligible for Human Resources Administration (HRA) benefits. In previous years, the poverty indicator also included students enrolled in a Universal Meal School (USM), where all students automatically qualified, with the exception of middle schools, D75 schools and Pre-K centers. In 2017-18, all students in NYC schools became eligible for free lunch. In order to better reflect free and reduced price lunch status, the poverty indicator does not include student USM status, and retroactively applies this rule to previous years. "The school’s Economic Need Index is the average of its students’ Economic Need Values. The Economic Need Index (ENI) estimates the percentage of students facing economic hardship. The 2014-15 school year is the first year we provide ENI estimates. The metric is calculated as follows: * The student’s Economic Need Value is 1.0 if: o The student is eligible for public assistance from the NYC Human Resources Administration (HRA); o The student lived in temporary housing in the past four years; or o The student is in high school, has a home language other than English, and entered the NYC DOE for the first time within the last four years. * Otherwise, the student’s Economic Need Value is based on the percentage of families (with school-age children) in the student’s census tract whose income is below the poverty level, as estimated by the American Community Survey 5-Year estimate (2020 ACS estimates were used in calculations for 2021-22 ENI). The student’s Economic Need Value equals this percentage divided by 100.
Due to differences in the timing of when student demographic, address and census data were pulled, ENI values may vary, slightly, from the ENI values reported in the School Quality Reports.
In previous years, student census tract data was based on students’ addresses at the time of ENI calculation. Beginning in 2018-19, census tract data is based on students’ addresses as of the Audited Register date of the given school year.
In previous years, the most recent new entry date was used for students with multiple entry dates into the NYCDOE. Beginning in 2018-19, students’ earliest entry date is used in ENI calculations.
Beginning in 2018-19, students missing ENI data are imputed with the average ENI at their school. " In order to maintain student privacy, schools with % Poverty and ENI values below 5% or above 95% have had their exact values for each category replaced with "Below 5%" and "Above 95%", respectively. Before the start of the 2017-18 school year, the New York State Education Department implemented a new data matching process that refined the methods to identify families eligible for free lunch. This new matching system provides a more efficient and accurate process for matching students across a range of forms that families already complete. This new matching process yielded an increase in the number of students directly certified for free lunch (in other words, matched to another government program) and therefore increased the direct certification rate. As such, the increase in the percent of students in poverty and the Economic Need Index for the 2017-18 school year and later reflects this new matching process, which allows the City to better identify students eligible for free lunch. Approximately 25% of charter schools in NYC do not use NYC DOE School Food to provide meal services. The NYC DOE Office of School Food does not collect documentation on students’ eligibility for Free or Reduced Price Lunch from schools that do not utilize NYC DOE School Food. As a result, the Poverty figures may be understated for approximately 25% of charter schools. New York State Education Department begins administering assessments to be identified as an English Language Learner (ELL) in Kindergarten, but students in Pre-K are still included in the denominator for the ELL calculations. Also, Pre-K NYC Early Education Centers do not use NYC DOE School Food to provide meal services, but are included in the denominator for Poverty calculations.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Free Soil township population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Free Soil township across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Free Soil township was 848, a 0.24% decrease year-by-year from 2022. Previously, in 2022, Free Soil township population was 850, a decline of 0% compared to a population of 850 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Free Soil township decreased by 103. In this period, the peak population was 995 in the year 2004. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Free Soil township Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
South Africa Population: Mid Year: Free State: Female: 0 to 4 Years data was reported at 146,028.000 Person in 2018. This records an increase from the previous number of 145,500.027 Person for 2017. South Africa Population: Mid Year: Free State: Female: 0 to 4 Years data is updated yearly, averaging 145,764.014 Person from Jun 2001 (Median) to 2018, with 18 observations. The data reached an all-time high of 151,824.167 Person in 2011 and a record low of 129,364.377 Person in 2002. South Africa Population: Mid Year: Free State: Female: 0 to 4 Years data remains active status in CEIC and is reported by Statistics South Africa. The data is categorized under Global Database’s South Africa – Table ZA.G004: Population: Mid Year: by Province, Age and Sex.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Lake View population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Lake View. The dataset can be utilized to understand the population distribution of Lake View by age. For example, using this dataset, we can identify the largest age group in Lake View.
Key observations
The largest age group in Lake View, AR was for the group of age 50-54 years with a population of 53 (11.57%), according to the 2021 American Community Survey. At the same time, the smallest age group in Lake View, AR was the 35-39 years with a population of 7 (1.53%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lake View Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the East Lansing population by age. The dataset can be utilized to understand the age distribution and demographics of East Lansing.
The dataset constitues the following three datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Gratis by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Gratis across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 50.0% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Gratis Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Muskego population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Muskego. The dataset can be utilized to understand the population distribution of Muskego by age. For example, using this dataset, we can identify the largest age group in Muskego.
Key observations
The largest age group in Muskego, WI was for the group of age 60 to 64 years years with a population of 2,089 (8.30%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Muskego, WI was the 85 years and over years with a population of 473 (1.88%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Muskego Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Putnam County population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Putnam County. The dataset can be utilized to understand the population distribution of Putnam County by age. For example, using this dataset, we can identify the largest age group in Putnam County.
Key observations
The largest age group in Putnam County, NY was for the group of age 55 to 59 years years with a population of 7,947 (8.11%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Putnam County, NY was the 85 years and over years with a population of 1,850 (1.89%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Putnam County Population by Age. You can refer the same here
The Consumer Demographic database is comprised of over 80 sources and includes over 400 different data points for each individual in a household with complete PII. The fields provided include demographics, psychographic, lifestyle criteria, buying behavior, and real property identification.
Each record is ranked by confidence and only the highest quality data is used. The database is multi-sourced and contains both compiled and originated U.S. data. Additionally, the data goes through intensive cleansing including deceased processing and NCOA.
BIGDBM Privacy Policy: https://bigdbm.com/privacy.html