Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.
Facebook
TwitterThis resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about
In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.
Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This seminar discusses the five common business patterns of GIS implementation (asset management, planning and analyis, field mobility, operational awareness, and citizen engagement), and how to address these patterns with the ArcGIS system and free applications on the Resource Center.
Facebook
TwitterThis survey is intended to solicit feedback from the general public for developing free training sessions utilizing data and maps in the EBRGIS Portal.
Facebook
TwitterThis is a full-day training, developed by UNEP CMB, to introduce participants to the basics of GIS, how to import points from Excel to a GIS, and how to make maps with QGIS, MapX and Tableau. It prioritizes the use of free and open software.
Facebook
TwitterSARX[1] is a free ground search and rescue search planning and management tool designed to quickly plan and execute a search for a lost subject. SARX is a suite of custom tools built upon ESRI's ArcGIS Desktop Explorer (AGX)[2], with the goal of providing fast and effective search management, particularly within the first operational period of a search. It is easy to use and integrates well with other mapping and GIS software.
For complete installation instructions and updates of the SARX suite, see this website.
This course will show you where to download the free app and walk you through a hands-on tutorial, preparing you for your first incident regardless of your skill level.
Developed by Alix Bosniere-Vezina – GIS Student, and Paul James Doherty - National Alliance for Public Safety GIS Foundation
Special thanks to Norman Deschamps - Search Manager and GIS Analysis, Tri-County Ground Search and Rescue Association, New Brunswick
[1] To know more: SAR Explorer (SARX)
[2] To know more: ArcGIS Desktop Explorer (AGX)
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Background: Malaria continues to pose a major public health challenge in tropical regions. Despite significant efforts to control malaria in Tanzania, there are still residual transmission cases. Unfortunately, little is known about where these residual malaria transmission cases occur and how they spread. In Tanzania, for example, the transmission is heterogeneously distributed. In order to effectively control and prevent the spread of malaria, it is essential to understand the spatial distribution and transmission patterns of the disease. This study seeks to predict areas that are at high risk of malaria transmission so that intervention measures can be developed to accelerate malaria elimination efforts.
Methods: This study employs a geospatial-based model to predict and map out malaria risk area in Kilombero Valley. Environmental factors related to malaria transmission were considered and assigned valuable weights in the Analytic Hierarchy Process (AHP), an online system using a pairwise comparison technique. The malaria hazard map was generated by a weighted overlay of the altitude, slope, curvature, aspect, rainfall distribution, and distance to streams in Geographic Information Systems (GIS). Finally, the risk map was created by overlaying components of malaria risk including hazards, elements at risk, and vulnerability.
Results: The study demonstrates that the majority of the study area falls under the moderate-risk level (61%), followed by the low-risk level (31%), while the high-malaria risk area covers a small area, which occupies only 8% of the total area.
Conclusion: The findings of this study are crucial for developing spatially targeted interventions against malaria transmission in residual transmission settings. Predicted areas prone to malaria risk provide information that will inform decision-makers and policymakers for proper planning, monitoring, and deployment of interventions.
Methods
Data acquisition and description
The study employed both primary and secondary data, which were collected from numerous sources based on the input required for the implementation of the predictive model. Data collected includes the locations of all public and private health centers that were downloaded free from the health portal of the United Republic of Tanzania, Ministry of Health, Community Development, Gender, Elderly, and Children, through the universal resource locator (URL) (http://moh.go.tz/hfrportal/). Human population data was collected from the 2012 population housing census (PHC) for the United Republic of Tanzania report.
Rainfall data were obtained from two local offices; Kilombero Agricultural Training and Research Institute (KATRIN) and Kilombero Valley Teak Company (KVTC). These offices collect meteorological data for agricultural purposes. Monthly data from 2012 to 2017 provided from thirteen (13) weather stations. Road and stream network shapefiles were downloaded free from the MapCruzin website via URL (https://mapcruzin.com/free-tanzania-arcgis-maps-shapefiles.htm).
With respect to the size of the study area, five neighboring scenes of the Landsat 8 OLI/TIRS images (path/row: 167/65, 167/66, 167/67, 168/66 and 168/67) were downloaded freely from the United States Geological Survey (USGS) website via URL: http://earthexplorer.usgs.gov. From July to November 2017, the images were selected and downloaded from the USGS Earth Explorer archive based on the lowest amount of cloud cover coverage as viewed from the archive before downloading. Finally, the digital elevation data with a spatial resolution of three arc-seconds (90m by 90m) using WGS 84 datum and the Geographic Coordinate System were downloaded free from the Shuttle Radar Topography Mission (SRTM) via URL (https://dds.cr.usgs.gov/srtm/version2_1/SRTM3/Africa/). Only six tiles that fall in the study area were downloaded, coded tiles as S08E035, S09E035, S10E035, S08E036, S09E036, S10E036, S08E037, S09E037 and S10E037.
Preparation and Creation of Model Factor Parameters
Creation of Elevation Factor
All six coded tiles were imported into the GIS environment for further analysis. Data management tools, with raster/raster data set/mosaic to new raster feature, were used to join the tiles and form an elevation map layer. Using the spatial analyst tool/reclassify feature, the generated elevation map was then classified into five classes as 109–358, 359–530, 531–747, 748–1017 and >1018 m.a.s.l. and new values were assigned for each class as 1, 2, 3, 4 and 5, respectively, with regards to the relationship with mosquito distribution and malaria risk. Finally, the elevation map based on malaria risk level is levelled as very high, high, moderate, low and very low respectively.
Creation of Slope Factor
A slope map was created from the generated elevation map layer, using a spatial analysis tool/surface/slope feature. Also, the slope raster layer was further reclassified into five subgroups based on predefined slope classes using standard classification schemes, namely quantiles as 0–0.58, 0.59–2.90, 2.91–6.40, 6.41–14.54 and >14.54. This classification scheme divides the range of attribute values into equal-sized sub-ranges, which allow specifying the number of the intervals while the system determines where the breaks should be. The reclassified slope raster layer subgroups were ranked 1, 2, 3, 4 and 5 according to the degree of suitability for malaria incidence in the locality. To elaborate, the steeper slope values are related to lesser malaria hazards, and the gentler slopes are highly susceptible to malaria incidences. Finally, the slope map based on malaria risk level is leveled as very high, high, moderate, low and very low respectively.
Creation of Curvature Factor
Curvature is another topographical factor that was created from the generated elevation map using the spatial analysis tool/surface/curvature feature. The curvature raster layer was further reclassified into five subgroups based on predefined curvature class. The reclassified curvature raster layer subgroups were ranked to 1, 2, 3, 4 and 5 according to their degree of suitability for malaria occurrence. To explain, this affects the acceleration and deceleration of flow across the surface. A negative value indicates that the surface is upwardly convex, and flow will be decelerated, which is related to being highly susceptible to malaria incidences. A positive profile indicates that the surface is upwardly concave and the flow will be accelerated which is related to a lesser malaria hazard, while a value of zero indicates that the surface is linear and related to a moderate malaria hazard. Lastly, the curvature map based on malaria risk level is leveled as very high, high, moderate, low, and very low respectively.
Creation of Aspect Factor
As a topographic factor associated with mosquito larval habitat formation, aspect determines the amount of sunlight an area receives. The more sunlight received the stronger the influence on temperature, which may affect mosquito larval survival. The aspect of the study area also was generated from the elevation map using spatial analyst tools/ raster /surface /aspect feature. The aspect raster layer was further reclassified into five subgroups based on predefined aspect class. The reclassified aspect raster layer subgroups were ranked as 1, 2, 3, 4 and 5 according to the degree of suitability for malaria incidence, and new values were re-assigned in order of malaria hazard rating. Finally, the aspect map based on malaria risk level is leveled as very high, high, moderate, low, and very low, respectively.
Creation of Human Population Distribution Factor
Human population data was used to generate a population distribution map related to malaria occurrence. Kilombero Valley has a total of 42 wards, the data was organized in Ms excel 2016 and imported into the GIS environment for the analysis, Inverse Distance Weighted (IDW) interpolation in the spatial analyst tool was applied to interpolate the population distribution map. The population distribution map was further reclassified into five subgroups based on potential to malaria risk. The reclassified map layer subgroups were ranked according to the vulnerability to malaria incidence in the locality such as areas having high population having the highest vulnerability and the less population having less vulnerable, and the new value was assigned as 1, 2, 3, 4 and 5, and then leveled as very high, high, moderate, low and very low malaria risk level, respectively.
Creation of Proximity to Health Facilities Factor
The distribution of health facilities has a significant impact on the malaria vulnerability of the population dwellings in the Kilombero Valley. The health facility layer was created by computing distance analysis using proximity multiple ring buffer features in spatial analyst tool/multiple ring buffer. Then the map layer was reclassified into five sub-layers such as within (0–5) km, (5.1–10) km, (10.1–20) km, (20.1–50) km and >50km. According to a WHO report, it is indicated that the human population who live nearby or easily accessible to health facilities is less vulnerable to malaria incidence than the ones who are very far from the health facilities due to the distance limitation for the health services. Later on, the new values were assigned as 1, 2, 3, 4 and 5, and then reclassified as very high, high, moderate, low and very low malaria risk levels, respectively.
Creation of Proximity to Road Network Factor
The distance to the road network is also a significant factor, as it can be used as an estimation of the access to present healthcare facilities in the area. Buffer zones were calculated on the path of the road to determine the effect of the road on malaria prevalence. The road shapefile of the study area was inputted into GIS environment and spatial analyst tools / multiple ring buffer feature were used to generate five buffer zones with the
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT Drawing on the vagueness of what digital humanities are, and the view that sharing concrete experiences enriches that debate, the article offers an account of initiatives undertaken within the History Department of the Federal University of São Paulo (Unifesp). To give greater diversity to the material presented, projects were chosen from a research group and an undergraduate course. With centers of gravity in research and teaching, the projects analyzed propose greater recognition of the student’s role in digital humanities. The analysis also reinforces the paradox that digital humanities projects are institutionally undervalued, while facilitating the collaboration and the free circulation of knowledge.
Facebook
Twitterhttps://data.dhsgis.wi.gov/pages/gis-data-disclaimerhttps://data.dhsgis.wi.gov/pages/gis-data-disclaimer
This dataset contains boundaries for the FoodShare Employment and Training regions. The FoodShare Employment and Training (FSET) program is a free program that helps FoodShare members build their job skills and find jobs. There are eleven FSET regions. Each FSET region coordinates FSET services for the residents of counties located in that region.For more information please visit the Wisconsin Department of Health Services website: https://www.dhs.wisconsin.gov/fset/fset-regions.htm
Facebook
TwitterThis layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years since 1992. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2019Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: AnnualWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
CanVec contains more than 60 topographic features classes organized into 8 themes: Transport Features, Administrative Features, Hydro Features, Land Features, Manmade Features, Elevation Features, Resource Management Features and Toponymic Features. This multiscale product originates from the best available geospatial data sources covering Canadian territory. It offers quality topographic information in vector format complying with international geomatics standards. CanVec can be used in Web Map Services (WMS) and geographic information systems (GIS) applications and used to produce thematic maps. Because of its many attributes, CanVec allows for extensive spatial analysis. Related Products: Constructions and Land Use in Canada - CanVec Series - Manmade Features Lakes, Rivers and Glaciers in Canada - CanVec Series - Hydrographic Features Administrative Boundaries in Canada - CanVec Series - Administrative Features Mines, Energy and Communication Networks in Canada - CanVec Series - Resources Management Features Wooded Areas, Saturated Soils and Landscape in Canada - CanVec Series - Land Features Transport Networks in Canada - CanVec Series - Transport Features Elevation in Canada - CanVec Series - Elevation Features Map Labels - CanVec Series - Toponymic Features
Facebook
Twitter18 holes * Par 54 * Crandall Park, 576 Glen Street, Glens Falls, NY * Free to PlayCrandall Park's 18-hole disc golf course was designed and constructed in 2020 by professional disc golfers Jaimen Hume and Jon Hotmer, with the assistance of dozens of local volunteers under the direction of Elizabeth Hogan and the Crandall Park Beautification Committee. It is a primarily wooded course and all holes are Par 3. Walks between holes are short. It is perfect for beginners and families, but challenging enough for experienced players to enjoy. The course is free to play.Discs can be checked out for free from Crandall Public Library or purchased inexpensively at local Glens Falls course sponsors Fountain Square Outfitters, 42 Degrees, and Inside Edge.
Facebook
TwitterAbstract: Quality of life information is one of the factors taken into consideration when a business is deciding where to expand or relocate. The Virginia Economic Development Partnership has developed a golf course data layer to use while assisting businesses during this decision making process. The list Citation_Information: Originator: Virginia Economic Development Partnership Publication_Date: 20021001 Title: Golf Courses in Virginia Geospatial_Data_Presentation_Form: vector digital data Other_Citation_Details: None Online_Linkage: Online_Linkage: of golf courses originally came from the 2001 Virginia Golf Course directory published by the Virginia Tourism Corporation in association with the Virginia State Golf Association (VSGA). Since that time, the list of courses has been updated using new directories as well as various websites including , , , and . The final product includes boundaries (polygons) and points for public, private, semi-private, resort, and military golf courses in Virginia. The boundaries and points were originally located by geocoding street addresses and verifying and correcting the result using USGS DOQs (1994-1998) and SPOT satellite imagery (2001). Other sources for boundaries included the Virginia Atlas and Gazetteer and ADC street map books. The golf course locations were corrected in 2003 to match the Virginia Base Mapping Program imagery (VBMP), and all updates since that time have been based on the VBMP as well. Purpose: The purpose of this data is to provide a geographic representation of the location of each golf course for tourism and economic development. This data is also used in landuse classification projects. Accessed through: http://gis.vedp.org/data_search.aspx Access to metadata: http://gis.vedp.org/meta/golf_meta.htm Accessed On January 24, 2008.
Facebook
TwitterThis series of three-period land use land cover (LULC) datasets (1975, 2000, and 2013) aids in monitoring change in West Africa’s land resources (exception is Tchad at 4 kilometers). To monitor and map these changes, a 26 general LULC class system was used. The classification system that was developed was primarily inspired by the “Yangambi Classification” (Trochain, 1957). This fairly broad class system for LULC was used because the classes can be readily identified on Landsat satellite imagery. A visual photo-interpretation approach was used to identify and map the LULC classes represented on Landsat images. The Rapid Land Cover Mapper (RLCM) was used to facilitate the photo-interpretation using Esri’s ArcGIS Desktop ArcMap software. Citation: Trochain, J.-L., 1957, Accord interafricain sur la définition des types de végétation de l’Afrique tropicale: Institut d’études centrafricaines.
Facebook
Twitter
According to our latest research, the global conservation biology field courses market size in 2024 stands at USD 1.42 billion, reflecting the expanding emphasis on environmental education and field-based learning worldwide. The market is experiencing a robust growth trajectory, with a compound annual growth rate (CAGR) of 7.3% projected from 2025 to 2033. By the end of 2033, the market is expected to reach USD 2.68 billion. This notable growth is primarily driven by increasing demand for experiential learning, the critical need for biodiversity conservation, and the integration of technology in field education.
One of the primary growth factors for the conservation biology field courses market is the rising global awareness about biodiversity loss and climate change. As environmental challenges become more complex and urgent, educational institutions, NGOs, and governmental agencies are prioritizing hands-on learning experiences that equip participants with practical conservation skills. This shift toward field-based education is further supported by international frameworks such as the United Nations’ Sustainable Development Goals (SDGs), which emphasize the importance of education in achieving environmental sustainability. Consequently, both undergraduate and graduate programs are increasingly incorporating field courses into their curricula, resulting in heightened enrollment rates and expanding market opportunities.
Another significant driver is the evolution of pedagogical approaches in conservation science. There is a growing recognition that classroom-based theoretical instruction alone is insufficient to address real-world conservation challenges. Field courses provide immersive experiences that foster critical thinking, problem-solving, and collaboration among participants. This educational transformation is not limited to universities; professional development programs and short-term workshops are also gaining traction among early-career scientists, conservation practitioners, and policy makers. The adoption of hybrid and online delivery modes has further democratized access, enabling participants from remote or underserved regions to engage in high-quality field-based learning.
Technological advancements also play a pivotal role in shaping the conservation biology field courses market. The integration of digital tools such as GIS mapping, remote sensing, and mobile data collection platforms has revolutionized fieldwork, making it more efficient and data-driven. These innovations enhance the learning experience, allowing students and professionals to analyze complex ecological data in real time and contribute meaningfully to ongoing conservation projects. Moreover, partnerships between academic institutions, research organizations, and technology providers are fostering the development of cutting-edge curricula that address current and emerging conservation issues, further fueling market growth.
From a regional perspective, North America and Europe currently dominate the conservation biology field courses market, accounting for over 60% of the global market share in 2024. These regions benefit from well-established educational infrastructures, strong funding support, and a mature ecosystem of conservation organizations. However, the Asia Pacific region is emerging as a significant growth engine, driven by rapid biodiversity loss, increasing governmental investment in environmental education, and the expansion of international collaborations. Latin America and the Middle East & Africa are also witnessing rising interest, particularly in areas with high conservation value and pressing ecological challenges. This regional diversity presents unique opportunities for market players to tailor their offerings to local needs and contexts.
The course type segment in the conservation biology field courses market is broadly categorized into undergraduate, graduate, professional development, and short-te
Facebook
TwitterGoal 4Ensure inclusive and equitable quality education and promote lifelong learning opportunities for allTarget 4.1: By 2030, ensure that all girls and boys complete free, equitable and quality primary and secondary education leading to relevant and effective learning outcomesIndicator 4.1.1: Proportion of children and young people (a) in grades 2/3; (b) at the end of primary; and (c) at the end of lower secondary achieving at least a minimum proficiency level in (i) reading and (ii) mathematics, by sexSE_TOT_PRFL: Proportion of children and young people achieving a minimum proficiency level in reading and mathematics (%)Indicator 4.1.2: Completion rate (primary education, lower secondary education, upper secondary education)SE_TOT_CPLR: Completion rate, by sex, location, wealth quintile and education level (%)Target 4.2: By 2030, ensure that all girls and boys have access to quality early childhood development, care and pre-primary education so that they are ready for primary educationIndicator 4.2.1: Proportion of children aged 24-59 months who are developmentally on track in health, learning and psychosocial well-being, by sexiSE_DEV_ONTRK: Proportion of children aged 36−59 months who are developmentally on track in at least three of the following domains: literacy-numeracy, physical development, social-emotional development, and learning (% of children aged 36-59 months)Indicator 4.2.2: Participation rate in organized learning (one year before the official primary entry age), by sexSE_PRE_PARTN: Participation rate in organized learning (one year before the official primary entry age), by sex (%)Target 4.3: By 2030, ensure equal access for all women and men to affordable and quality technical, vocational and tertiary education, including universityIndicator 4.3.1: Participation rate of youth and adults in formal and non-formal education and training in the previous 12 months, by sexSE_ADT_EDUCTRN: Participation rate in formal and non-formal education and training, by sex (%)Target 4.4: By 2030, substantially increase the number of youth and adults who have relevant skills, including technical and vocational skills, for employment, decent jobs and entrepreneurshipIndicator 4.4.1: Proportion of youth and adults with information and communications technology (ICT) skills, by type of skillSE_ADT_ACTS: Proportion of youth and adults with information and communications technology (ICT) skills, by sex and type of skill (%)Target 4.5: By 2030, eliminate gender disparities in education and ensure equal access to all levels of education and vocational training for the vulnerable, including persons with disabilities, indigenous peoples and children in vulnerable situationsIndicator 4.5.1: Parity indices (female/male, rural/urban, bottom/top wealth quintile and others such as disability status, indigenous peoples and conflict-affected, as data become available) for all education indicators on this list that can be disaggregatedSE_GPI_PTNPRE: Gender parity index for participation rate in organized learning (one year before the official primary entry age), (ratio)SE_GPI_TCAQ: Gender parity index of trained teachers, by education level (ratio)SE_GPI_PART: Gender parity index for participation rate in formal and non-formal education and training (ratio)SE_GPI_ICTS: Gender parity index for youth/adults with information and communications technology (ICT) skills, by type of skill (ratio)SE_IMP_FPOF: Immigration status parity index for achieving at least a fixed level of proficiency in functional skills, by numeracy/literacy skills (ratio)SE_NAP_ACHI: Native parity index for achievement (ratio)SE_LGP_ACHI: Language test parity index for achievement (ratio)SE_TOT_GPI: Gender parity index for achievement (ratio)SE_TOT_SESPI: Low to high socio-economic parity status index for achievement (ratio)SE_TOT_RUPI: Rural to urban parity index for achievement (ratio)SE_ALP_CPLR: Adjusted location parity index for completion rate, by sex, location, wealth quintile and education levelSE_AWP_CPRA: Adjusted wealth parity index for completion rate, by sex, location, wealth quintile and education levelSE_AGP_CPRA: Adjusted gender parity index for completion rate, by sex, location, wealth quintile and education levelTarget 4.6: By 2030, ensure that all youth and a substantial proportion of adults, both men and women, achieve literacy and numeracyIndicator 4.6.1: Proportion of population in a given age group achieving at least a fixed level of proficiency in functional (a) literacy and (b) numeracy skills, by sexSE_ADT_FUNS: Proportion of population achieving at least a fixed level of proficiency in functional skills, by sex, age and type of skill (%)Target 4.7: By 2030, ensure that all learners acquire the knowledge and skills needed to promote sustainable development, including, among others, through education for sustainable development and sustainable lifestyles, human rights, gender equality, promotion of a culture of peace and non-violence, global citizenship and appreciation of cultural diversity and of culture’s contribution to sustainable developmentIndicator 4.7.1: Extent to which (i) global citizenship education and (ii) education for sustainable development are mainstreamed in (a) national education policies; (b) curricula; (c) teacher education; and (d) student assessmentTarget 4.a: Build and upgrade education facilities that are child, disability and gender sensitive and provide safe, non-violent, inclusive and effective learning environments for allIndicator 4.a.1: Proportion of schools offering basic services, by type of serviceSE_ACS_CMPTR: Schools with access to computers for pedagogical purposes, by education level (%)SE_ACS_H2O: Schools with access to basic drinking water, by education level (%)SE_ACS_ELECT: Schools with access to electricity, by education level (%)SE_ACC_HNDWSH: Schools with basic handwashing facilities, by education level (%)SE_ACS_INTNT: Schools with access to the internet for pedagogical purposes, by education level (%)SE_ACS_SANIT: Schools with access to access to single-sex basic sanitation, by education level (%)SE_INF_DSBL: Proportion of schools with access to adapted infrastructure and materials for students with disabilities, by education level (%)Target 4.b: By 2020, substantially expand globally the number of scholarships available to developing countries, in particular least developed countries, small island developing States and African countries, for enrolment in higher education, including vocational training and information and communications technology, technical, engineering and scientific programmes, in developed countries and other developing countriesIndicator 4.b.1: Volume of official development assistance flows for scholarships by sector and type of studyDC_TOF_SCHIPSL: Total official flows for scholarships, by recipient countries (millions of constant 2018 United States dollars)Target 4.c: By 2030, substantially increase the supply of qualified teachers, including through international cooperation for teacher training in developing countries, especially least developed countries and small island developing StatesIndicator 4.c.1: Proportion of teachers with the minimum required qualifications, by education leveliSE_TRA_GRDL: Proportion of teachers who have received at least the minimum organized teacher training (e.g. pedagogical training) pre-service or in-service required for teaching at the relevant level in a given country, by sex and education level (%)
Facebook
TwitterThese DEMs were produced from digitized contours at a cell resolution of 100 meters. Vector contours of the area were used as input to a software package that interpolates between contours to create a DEM representing the terrain surface. The vector contours had a contour interval of 25 feet. The data cover the BOREAS MSAs of the SSA and NSA and are given in a UTM map projection.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Please note that this dataset is not an official City of Toronto land use dataset. It was created for personal and academic use using City of Toronto Land Use Maps (2019) found on the City of Toronto Official Plan website at https://www.toronto.ca/city-government/planning-development/official-plan-guidelines/official-plan/official-plan-maps-copy, along with the City of Toronto parcel fabric (Property Boundaries) found at https://open.toronto.ca/dataset/property-boundaries/ and Statistics Canada Census Dissemination Blocks level boundary files (2016). The property boundaries used were dated November 11, 2021. Further detail about the City of Toronto's Official Plan, consolidation of the information presented in its online form, and considerations for its interpretation can be found at https://www.toronto.ca/city-government/planning-development/official-plan-guidelines/official-plan/ Data Creation Documentation and Procedures Software Used The spatial vector data were created using ArcGIS Pro 2.9.0 in December 2021. PDF File Conversions Using Adobe Acrobat Pro DC software, the following downloaded PDF map images were converted to TIF format. 9028-cp-official-plan-Map-14_LandUse_AODA.pdf 9042-cp-official-plan-Map-22_LandUse_AODA.pdf 9070-cp-official-plan-Map-20_LandUse_AODA.pdf 908a-cp-official-plan-Map-13_LandUse_AODA.pdf 978e-cp-official-plan-Map-17_LandUse_AODA.pdf 97cc-cp-official-plan-Map-15_LandUse_AODA.pdf 97d4-cp-official-plan-Map-23_LandUse_AODA.pdf 97f2-cp-official-plan-Map-19_LandUse_AODA.pdf 97fe-cp-official-plan-Map-18_LandUse_AODA.pdf 9811-cp-official-plan-Map-16_LandUse_AODA.pdf 982d-cp-official-plan-Map-21_LandUse_AODA.pdf Georeferencing and Reprojecting Data Files The original projection of the PDF maps is unknown but were most likely published using MTM Zone 10 EPSG 2019 as per many of the City of Toronto's many datasets. They could also have possibly been published in UTM Zone 17 EPSG 26917 The TIF images were georeferenced in ArcGIS Pro using this projection with very good results. The images were matched against the City of Toronto's Centreline dataset found here The resulting TIF files and their supporting spatial files include: TOLandUseMap13.tfwx TOLandUseMap13.tif TOLandUseMap13.tif.aux.xml TOLandUseMap13.tif.ovr TOLandUseMap14.tfwx TOLandUseMap14.tif TOLandUseMap14.tif.aux.xml TOLandUseMap14.tif.ovr TOLandUseMap15.tfwx TOLandUseMap15.tif TOLandUseMap15.tif.aux.xml TOLandUseMap15.tif.ovr TOLandUseMap16.tfwx TOLandUseMap16.tif TOLandUseMap16.tif.aux.xml TOLandUseMap16.tif.ovr TOLandUseMap17.tfwx TOLandUseMap17.tif TOLandUseMap17.tif.aux.xml TOLandUseMap17.tif.ovr TOLandUseMap18.tfwx TOLandUseMap18.tif TOLandUseMap18.tif.aux.xml TOLandUseMap18.tif.ovr TOLandUseMap19.tif TOLandUseMap19.tif.aux.xml TOLandUseMap19.tif.ovr TOLandUseMap20.tfwx TOLandUseMap20.tif TOLandUseMap20.tif.aux.xml TOLandUseMap20.tif.ovr TOLandUseMap21.tfwx TOLandUseMap21.tif TOLandUseMap21.tif.aux.xml TOLandUseMap21.tif.ovr TOLandUseMap22.tfwx TOLandUseMap22.tif TOLandUseMap22.tif.aux.xml TOLandUseMap22.tif.ovr TOLandUseMap23.tfwx TOLandUseMap23.tif TOLandUseMap23.tif.aux.xml TOLandUseMap23.tif.ov Ground control points were saved for all georeferenced images. The files are the following: map13.txt map14.txt map15.txt map16.txt map17.txt map18.txt map19.txt map21.txt map22.txt map23.txt The City of Toronto's Property Boundaries shapefile, "property_bnds_gcc_wgs84.zip" were unzipped and also reprojected to EPSG 26917 (UTM Zone 17) into a new shapefile, "Property_Boundaries_UTM.shp" Mosaicing Images Once georeferenced, all images were then mosaiced into one image file, "LandUseMosaic20211220v01", within the project-generated Geodatabase, "Landuse.gdb" and exported TIF, "LandUseMosaic20211220.tif" Reclassifying Images Because the original images were of low quality and the conversion to TIF made the image colours even more inconsistent, a method was required to reclassify the images so that different land use classes could be identified. Using Deep learning Objects, the images were re-classified into useful consistent colours. Deep Learning Objects and Training The resulting mosaic was then prepared for reclassification using the Label Objects for Deep Learning tool in ArcGIS Pro. A training sample, "LandUseTrainingSamples20211220", was created in the geodatabase for all land use types as follows: Neighbourhoods Insitutional Natural Areas Core Employment Areas Mixed Use Areas Apartment Neighbourhoods Parks Roads Utility Corridors Other Open Spaces General Employment Areas Regeneration Areas Lettering (not a land use type, but an image colour (black), used to label streets). By identifying the letters, it then made the reclassification and vectorization results easier to clean up of unnecessary clutter caused by the labels of streets. Reclassification Once the training samples were created and saved, the raster was then reclassified using the Image Classification Wizard tool in ArcGIS Pro, using the Support...
Facebook
TwitterThis data set is a condensed forest cover type digital map of Saskatchewan and is a product of the Saskatchewan Environment and Resource Management, Forestry Branch - Inventory Unit (SERM-FBIU). This map was generalized from SERM township maps of vegetation cover at an approximate scale of 1:63,000 (1 in. = 1 mile). The cover information was iteratively generalized until it was compiled on a 1:1,000,000 scale map base. This data set was prepared by SERM-FBIU. The data is a condensed forest cover type map of Saskatchewan at a scale of 1:1,000,000.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.