45 datasets found
  1. G

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • open.canada.ca
    • datasets.ai
    • +2more
    html
    Updated Oct 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2021
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  2. Geographic Names Information System (GNIS) Feature Layers

    • hub.arcgis.com
    • disasters-geoplatform.hub.arcgis.com
    • +5more
    Updated Apr 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPlatform ArcGIS Online (2024). Geographic Names Information System (GNIS) Feature Layers [Dataset]. https://hub.arcgis.com/maps/5091b822ad3e47f3b6bc5bc275fb3c22
    Explore at:
    Dataset updated
    Apr 16, 2024
    Dataset provided by
    Authors
    GeoPlatform ArcGIS Online
    Area covered
    Pacific Ocean, South Pacific Ocean
    Description

    USGS developed The National Map Gazetteer as the Federal and national standard (ANSI INCITS 446-2008) for geographic nomenclature based on the Geographic Names Information System (GNIS). The National Map Gazetteer contains information about physical and cultural geographic features, geographic areas, and locational entities that are generally recognizable and locatable by name (have achieved some landmark status) and are of interest to any level of government or to the public for any purpose that would lead to the representation of the feature in printed or electronic maps and/or geographic information systems. The dataset includes features of all types in the United States, its associated areas, and Antarctica, current and historical, but not including roads and highways. The dataset holds the federally recognized name of each feature and defines the feature location by state, county, USGS topographic map, and geographic coordinates. Other attributes include names or spellings other than the official name, feature classification, and historical and descriptive information. The dataset assigns a unique, permanent feature identifier, the Feature ID, as a standard Federal key for accessing, integrating, or reconciling feature data from multiple data sets. This dataset is a flat model, establishing no relationships between features, such as hierarchical, spatial, jurisdictional, organizational, administrative, or in any other manner. As an integral part of The National Map, the Gazetteer collects data from a broad program of partnerships with federal, state, and local government agencies and other authorized contributors. The Gazetteer provides data to all levels of government and to the public, as well as to numerous applications through a web query site, web map, feature and XML services, file download services, and customized files upon request. The National Map download client allows free downloads of public domain geographic names data by state in a pipe-delimited text format. For additional information on the GNIS, go to https://www.usgs.gov/tools/geographic-names-information-system-gnis. See https://apps.nationalmap.gov/help/ for assistance with The National Map viewer, download client, services, or metadata. Data Refreshed March, 2025

  3. All Chapters Tutorial Data

    • hub.arcgis.com
    Updated Jun 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Tutorials (2020). All Chapters Tutorial Data [Dataset]. https://hub.arcgis.com/datasets/9f9984c3eadd420689cbeced693292b2
    Explore at:
    Dataset updated
    Jun 14, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Tutorials
    Description

    Total file size: about 367M in zip format and about 600M after extracted. (To download: click the Download button at the upper right area of this page)Alternatively, you can download the data by chapters:- Go to https://go.esri.com/gtkwebgis4- Under Group Categories on the left, click each chapter, you will see the data file to download for that chapter.

  4. D

    Data from: Soil and Land Information

    • data.nsw.gov.au
    • researchdata.edu.au
    html, pdf +1
    Updated Mar 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NSW Department of Climate Change, Energy, the Environment and Water (2024). Soil and Land Information [Dataset]. https://data.nsw.gov.au/data/dataset/soil-and-land-information
    Explore at:
    html, pdf, spatial viewerAvailable download formats
    Dataset updated
    Mar 13, 2024
    Dataset provided by
    Department of Climate Change, Energy, the Environment and Water of New South Waleshttps://www.nsw.gov.au/departments-and-agencies/dcceew
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Statewide soil and land information can be discovered and viewed through eSPADE or SEED. Datasets include soil profiles, soil landscapes, soil and land resources, acid sulfate soil risk mapping, hydrogeological landscapes, land systems and land use. There are also various statewide coverages of specific soil and land characteristics, such as soil type, land and soil capability, soil fertility, soil regolith, soil hydrology and modelled soil properties.

    Both eSPADE and SEED enable soil and land data to be viewed on a map. SEED focuses more on the holistic approach by enabling you to add other environmental layers such as mining boundaries, vegetation or water monitoring points. SEED also provides access to metadata and data quality statements for layers.

    eSPADE provides greater functions and allows you to drill down into soil points or maps to access detailed information such as reports and images. You can navigate to a specific location, then search and select multiple objects and access detailed information about them. You can also export spatial information for use in other applications such as Google Earth™ and GIS software.

    eSPADE is a free Internet information system and works on desktop computers, laptops and mobile devices such as smartphones and tablets and uses a Google maps-based platform familiar to most users. It has over 42,000 soil profile descriptions and approximately 4,000 soil landscape descriptions. This includes the maps and descriptions from the Soil Landscape Mapping program. eSPADE also includes the base maps underpinning Biophysical Strategic Agricultural Land (BSAL).

    For more information on eSPADE visit: https://www.environment.nsw.gov.au/topics/land-and-soil/soil-data/espade

  5. Land cover of Indonesia - Globcover (22 classes)

    • data.amerigeoss.org
    html, http, png, zip
    Updated Mar 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). Land cover of Indonesia - Globcover (22 classes) [Dataset]. https://data.amerigeoss.org/dataset/f3f61bb2-78bf-4aba-a5ba-e708183336ec
    Explore at:
    html, http, png, zipAvailable download formats
    Dataset updated
    Mar 14, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    Indonesia
    Description

    This land cover data set is derived from the original raster based Globcover global archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (22 classes worldwide). The database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.

    The data set is intended for free public access.

    The shape file's attributes contain the following fields: -Area (sqm) -Perimeter (m) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)

    You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend table (.xls)

    Supplemental Information:

    This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Antonio Martucci

    Data lineage:

    This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based global archive, Globcover. Globcover database has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (24 classes globally); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).

    Online resources:

    Download Land cover of Indonesia - Shape file format

    GLOBCOVER on the ESA Web site

    Global Land Cover Network - GLCN

  6. a

    Heat Severity - USA 2023

    • hub.arcgis.com
    • community-climatesolutions.hub.arcgis.com
    • +1more
    Updated Apr 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2024). Heat Severity - USA 2023 [Dataset]. https://hub.arcgis.com/datasets/db5bdb0f0c8c4b85b8270ec67448a0b6
    Explore at:
    Dataset updated
    Apr 23, 2024
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Heat Severity - USA 2022Heat Severity - USA 2021Heat Severity - USA 2020Heat Severity - USA 2019Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  7. Sentinel-2 10m Land Use/Land Cover Time Series

    • pacificgeoportal.com
    • climat.esri.ca
    • +11more
    Updated Oct 18, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10m Land Use/Land Cover Time Series [Dataset]. https://www.pacificgeoportal.com/datasets/cfcb7609de5f478eb7666240902d4d3d
    Explore at:
    Dataset updated
    Oct 18, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer displays a global map of land use/land cover (LULC) derived from ESA Sentinel-2 imagery at 10m resolution. Each year is generated with Impact Observatory’s deep learning AI land classification model, trained using billions of human-labeled image pixels from the National Geographic Society. The global maps are produced by applying this model to the Sentinel-2 Level-2A image collection on Microsoft’s Planetary Computer, processing over 400,000 Earth observations per year.The algorithm generates LULC predictions for nine classes, described in detail below. The year 2017 has a land cover class assigned for every pixel, but its class is based upon fewer images than the other years. The years 2018-2023 are based upon a more complete set of imagery. For this reason, the year 2017 may have less accurate land cover class assignments than the years 2018-2023.Variable mapped: Land use/land cover in 2017, 2018, 2019, 2020, 2021, 2022, 2023Source Data Coordinate System: Universal Transverse Mercator (UTM) WGS84Service Coordinate System: Web Mercator Auxiliary Sphere WGS84 (EPSG:3857)Extent: GlobalSource imagery: Sentinel-2 L2ACell Size: 10-metersType: ThematicAttribution: Esri, Impact ObservatoryWhat can you do with this layer?Global land use/land cover maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land use/land cover anywhere on Earth. This layer can also be used in analyses that require land use/land cover input. For example, the Zonal toolset allows a user to understand the composition of a specified area by reporting the total estimates for each of the classes. NOTE: Land use focus does not provide the spatial detail of a land cover map. As such, for the built area classification, yards, parks, and groves will appear as built area rather than trees or rangeland classes.Class definitionsValueNameDescription1WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2TreesAny significant clustering of tall (~15 feet or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields.10CloudsNo land cover information due to persistent cloud cover.11RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.Classification ProcessThese maps include Version 003 of the global Sentinel-2 land use/land cover data product. It is produced by a deep learning model trained using over five billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world.The underlying deep learning model uses 6-bands of Sentinel-2 L2A surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map for each year.The input Sentinel-2 L2A data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.

  8. B

    Toronto Land Use Spatial Data - parcel-level - (2019-2021)

    • borealisdata.ca
    • search.dataone.org
    Updated Feb 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marcel Fortin (2023). Toronto Land Use Spatial Data - parcel-level - (2019-2021) [Dataset]. http://doi.org/10.5683/SP3/1VMJAG
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 23, 2023
    Dataset provided by
    Borealis
    Authors
    Marcel Fortin
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    Toronto
    Description

    Please note that this dataset is not an official City of Toronto land use dataset. It was created for personal and academic use using City of Toronto Land Use Maps (2019) found on the City of Toronto Official Plan website at https://www.toronto.ca/city-government/planning-development/official-plan-guidelines/official-plan/official-plan-maps-copy, along with the City of Toronto parcel fabric (Property Boundaries) found at https://open.toronto.ca/dataset/property-boundaries/ and Statistics Canada Census Dissemination Blocks level boundary files (2016). The property boundaries used were dated November 11, 2021. Further detail about the City of Toronto's Official Plan, consolidation of the information presented in its online form, and considerations for its interpretation can be found at https://www.toronto.ca/city-government/planning-development/official-plan-guidelines/official-plan/ Data Creation Documentation and Procedures Software Used The spatial vector data were created using ArcGIS Pro 2.9.0 in December 2021. PDF File Conversions Using Adobe Acrobat Pro DC software, the following downloaded PDF map images were converted to TIF format. 9028-cp-official-plan-Map-14_LandUse_AODA.pdf 9042-cp-official-plan-Map-22_LandUse_AODA.pdf 9070-cp-official-plan-Map-20_LandUse_AODA.pdf 908a-cp-official-plan-Map-13_LandUse_AODA.pdf 978e-cp-official-plan-Map-17_LandUse_AODA.pdf 97cc-cp-official-plan-Map-15_LandUse_AODA.pdf 97d4-cp-official-plan-Map-23_LandUse_AODA.pdf 97f2-cp-official-plan-Map-19_LandUse_AODA.pdf 97fe-cp-official-plan-Map-18_LandUse_AODA.pdf 9811-cp-official-plan-Map-16_LandUse_AODA.pdf 982d-cp-official-plan-Map-21_LandUse_AODA.pdf Georeferencing and Reprojecting Data Files The original projection of the PDF maps is unknown but were most likely published using MTM Zone 10 EPSG 2019 as per many of the City of Toronto's many datasets. They could also have possibly been published in UTM Zone 17 EPSG 26917 The TIF images were georeferenced in ArcGIS Pro using this projection with very good results. The images were matched against the City of Toronto's Centreline dataset found here The resulting TIF files and their supporting spatial files include: TOLandUseMap13.tfwx TOLandUseMap13.tif TOLandUseMap13.tif.aux.xml TOLandUseMap13.tif.ovr TOLandUseMap14.tfwx TOLandUseMap14.tif TOLandUseMap14.tif.aux.xml TOLandUseMap14.tif.ovr TOLandUseMap15.tfwx TOLandUseMap15.tif TOLandUseMap15.tif.aux.xml TOLandUseMap15.tif.ovr TOLandUseMap16.tfwx TOLandUseMap16.tif TOLandUseMap16.tif.aux.xml TOLandUseMap16.tif.ovr TOLandUseMap17.tfwx TOLandUseMap17.tif TOLandUseMap17.tif.aux.xml TOLandUseMap17.tif.ovr TOLandUseMap18.tfwx TOLandUseMap18.tif TOLandUseMap18.tif.aux.xml TOLandUseMap18.tif.ovr TOLandUseMap19.tif TOLandUseMap19.tif.aux.xml TOLandUseMap19.tif.ovr TOLandUseMap20.tfwx TOLandUseMap20.tif TOLandUseMap20.tif.aux.xml TOLandUseMap20.tif.ovr TOLandUseMap21.tfwx TOLandUseMap21.tif TOLandUseMap21.tif.aux.xml TOLandUseMap21.tif.ovr TOLandUseMap22.tfwx TOLandUseMap22.tif TOLandUseMap22.tif.aux.xml TOLandUseMap22.tif.ovr TOLandUseMap23.tfwx TOLandUseMap23.tif TOLandUseMap23.tif.aux.xml TOLandUseMap23.tif.ov Ground control points were saved for all georeferenced images. The files are the following: map13.txt map14.txt map15.txt map16.txt map17.txt map18.txt map19.txt map21.txt map22.txt map23.txt The City of Toronto's Property Boundaries shapefile, "property_bnds_gcc_wgs84.zip" were unzipped and also reprojected to EPSG 26917 (UTM Zone 17) into a new shapefile, "Property_Boundaries_UTM.shp" Mosaicing Images Once georeferenced, all images were then mosaiced into one image file, "LandUseMosaic20211220v01", within the project-generated Geodatabase, "Landuse.gdb" and exported TIF, "LandUseMosaic20211220.tif" Reclassifying Images Because the original images were of low quality and the conversion to TIF made the image colours even more inconsistent, a method was required to reclassify the images so that different land use classes could be identified. Using Deep learning Objects, the images were re-classified into useful consistent colours. Deep Learning Objects and Training The resulting mosaic was then prepared for reclassification using the Label Objects for Deep Learning tool in ArcGIS Pro. A training sample, "LandUseTrainingSamples20211220", was created in the geodatabase for all land use types as follows: Neighbourhoods Insitutional Natural Areas Core Employment Areas Mixed Use Areas Apartment Neighbourhoods Parks Roads Utility Corridors Other Open Spaces General Employment Areas Regeneration Areas Lettering (not a land use type, but an image colour (black), used to label streets). By identifying the letters, it then made the reclassification and vectorization results easier to clean up of unnecessary clutter caused by the labels of streets. Reclassification Once the training samples were created and saved, the raster was then reclassified using the Image Classification Wizard tool in ArcGIS Pro, using the Support...

  9. o

    10m Annual Land Use Land Cover (9-class)

    • registry.opendata.aws
    • collections.sentinel-hub.com
    Updated Jul 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Impact Observatory (2023). 10m Annual Land Use Land Cover (9-class) [Dataset]. https://registry.opendata.aws/io-lulc/
    Explore at:
    Dataset updated
    Jul 6, 2023
    Dataset provided by
    <a href="https://www.impactobservatory.com/">Impact Observatory</a>
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset, produced by Impact Observatory, Microsoft, and Esri, displays a global map of land use and land cover (LULC) derived from ESA Sentinel-2 imagery at 10 meter resolution for the years 2017 - 2023. Each map is a composite of LULC predictions for 9 classes throughout the year in order to generate a representative snapshot of each year. This dataset was generated by Impact Observatory, which used billions of human-labeled pixels (curated by the National Geographic Society) to train a deep learning model for land classification. Each global map was produced by applying this model to the Sentinel-2 annual scene collections from the Mircosoft Planetary Computer. Each of the maps has an assessed average accuracy of over 75%. These maps have been improved from Impact Observatory’s previous release and provide a relative reduction in the amount of anomalous change between classes, particularly between “Bare” and any of the vegetative classes “Trees,” “Crops,” “Flooded Vegetation,” and “Rangeland”. This updated time series of annual global maps is also re-aligned to match the ESA UTM tiling grid for Sentinel-2 imagery. Data can be accessed directly from the Registry of Open Data on AWS, from the STAC 1.0.0 endpoint, or from the IO Store for a specific Area of Interest (AOI).

  10. g

    Ontario Land Cover Compilation v.2.0

    • geohub.lio.gov.on.ca
    • anrgeodata.vermont.gov
    • +2more
    Updated Jan 21, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Land Information Ontario (2016). Ontario Land Cover Compilation v.2.0 [Dataset]. https://geohub.lio.gov.on.ca/documents/7aa998fdf100434da27a41f1c637382c
    Explore at:
    Dataset updated
    Jan 21, 2016
    Dataset authored and provided by
    Land Information Ontario
    License

    https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario

    Area covered
    Description

    The 3 combined land cover databases:

    Far North Land Cover v1.4 Southern Ontario Land Resource Information System (SOLRIS) v1.2 the Provincial Land Cover 2000 Edition

    While each of these source products has differing pixel resolutions, projections and classifications, the resulting OLCC database is a standardized product with a:

    pixel resolution of 15 metres coordinate system of Ontario Lambert Conformal Conic class structure of 29 land cover classes.

    The standardized classification has been accomplished at the expense of the more detailed class structures in the source land cover products. Where possible, the original land cover products should be used for analysis.

    This is an update to OLCC v1.0. In this version the Far North Land Cover component has been updated and extends further south into the Area of Undertaking (AOU) and into Manitoba than the previous version.Now also available through a web service which exposes the data for visualization and geoprocessing.The service is best accessed through the ArcGIS REST API, either directly or by setting up an ArcGIS server connection using the REST endpoint URL. The service draws using the Web Mercator projection.For more information on what functionality is available and how to work with the service, read the Ontario Web Raster Services User Guide. If you have questions about how to use the service, email Land Information Ontario (LIO) at lio@ontario.ca.Service Endpointshttps://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/Thematic/Ontario_Land_Cover_Compilation_v2/ImageServerhttps://intra.ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/Thematic/Ontario_Land_Cover_Compilation_v2/ImageServer (Government of Ontario Internal Users)

    Additional Documentation

    Data Specification Document - Ontario Land Cover Compilation Version 2 (PDF)
    

    Data Specification Document - Far North Land Cover Version 1.4 (PDF)

    Data Specification Document - SOLRIS Version 1.2 (PDF)
    
    Data Specification Document - Provincial Land Cover (2000 Edition) (PDF)
    

    Status

    Completed: Production of the data has been completed

    Maintenance and Update Frequency

    As needed: Data is updated as deemed necessary

    Contact

    Joel Mostoway, Forest Resources Inventory Program, Science and Research Branch, joel.mostoway@ontario.ca

  11. 04 - How much rain? Linear equations - Esri GeoInquiries™ collection for...

    • hub.arcgis.com
    • geoinquiries-education.hub.arcgis.com
    Updated Apr 5, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri GIS Education (2017). 04 - How much rain? Linear equations - Esri GeoInquiries™ collection for Mathematics [Dataset]. https://hub.arcgis.com/documents/31b164e9bb4e46afa637db6a29a1f6f0
    Explore at:
    Dataset updated
    Apr 5, 2017
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri GIS Education
    Description

    Measure the distance between two rain gauges to estimate how much precipitation an intervening town receives by deriving a linear function. THE GEOINQUIRIES™ COLLECTION FOR MATHEMATICShttp://www.esri.com/geoinquiriesThe GeoInquiry™ collection for Mathematics contains 15 free, standards-based activities that correspond and extend spatial concepts found in course textbooks frequently used in introductory algebra or geometry classes. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the Common Core math national curriculum standards. Activities include:· Rates & Proportions: A lost beach· D=R x T· Linear rate of change: Steady growth· How much rain? Linear equations· Rates of population change· Distance and midpoint· The coordinate plane· Euclidean vs Non-Euclidean· Area and perimeter at the mall· Measuring crop circles· Area of complex figures· Similar triangles· Perpendicular bisectors· Centers of triangles· Volume of pyramids

    Teachers, GeoMentors, and school administrators can learn more at http://www.esri.com/geoinquiries.

  12. b

    Military Bases

    • geodata.bts.gov
    • s.cnmilf.com
    • +4more
    Updated Jun 30, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Transportation: ArcGIS Online (2010). Military Bases [Dataset]. https://geodata.bts.gov/maps/usdot::military-bases
    Explore at:
    Dataset updated
    Jun 30, 2010
    Dataset authored and provided by
    U.S. Department of Transportation: ArcGIS Online
    Area covered
    North Pacific Ocean, Pacific Ocean
    Description

    The Military Bases dataset was last updated on October 23, 2024 and are defined by Fiscal Year 2023 data, from the Office of the Assistant Secretary of Defense for Energy, Installations, and Environment and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The dataset depicts the authoritative locations of the most commonly known Department of Defense (DoD) sites, installations, ranges, and training areas world-wide. These sites encompass land which is federally owned or otherwise managed. This dataset was created from source data provided by the four Military Service Component headquarters and was compiled by the Defense Installation Spatial Data Infrastructure (DISDI) Program within the Office of the Assistant Secretary of Defense for Energy, Installations, and Environment. Only sites reported in the BSR or released in a map supplementing the Foreign Investment Risk Review Modernization Act of 2018 (FIRRMA) Real Estate Regulation (31 CFR Part 802) were considered for inclusion. This list does not necessarily represent a comprehensive collection of all Department of Defense facilities. For inventory purposes, installations are comprised of sites, where a site is defined as a specific geographic location of federally owned or managed land and is assigned to military installation. DoD installations are commonly referred to as a base, camp, post, station, yard, center, homeport facility for any ship, or other activity under the jurisdiction, custody, control of the DoD.

    While every attempt has been made to provide the best available data quality, this data set is intended for use at mapping scales between 1:50,000 and 1:3,000,000. For this reason, boundaries in this data set may not perfectly align with DoD site boundaries depicted in other federal data sources. Maps produced at a scale of 1:50,000 or smaller which otherwise comply with National Map Accuracy Standards, will remain compliant when this data is incorporated. Boundary data is most suitable for larger scale maps; point locations are better suited for mapping scales between 1:250,000 and 1:3,000,000.

    If a site is part of a Joint Base (effective/designated on 1 October, 2010) as established under the 2005 Base Realignment and Closure process, it is attributed with the name of the Joint Base. All sites comprising a Joint Base are also attributed to the responsible DoD Component, which is not necessarily the pre-2005 Component responsible for the site.

  13. Irish Soil Information System National Soils Map

    • gis.epa.ie
    • cloud.csiss.gmu.edu
    • +2more
    html, png
    Updated Sep 30, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental Protection Agency (2015). Irish Soil Information System National Soils Map [Dataset]. https://gis.epa.ie/geonetwork/srv/api/records/2cd0c5e9-83b2-49a9-8c3e-79675ffd18bf
    Explore at:
    html, pngAvailable download formats
    Dataset updated
    Sep 30, 2015
    Dataset provided by
    Teagasc
    Authors
    Environmental Protection Agency
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 8, 2014 - Sep 30, 2015
    Area covered
    Description

    SIS SOIL:The new Irish Soil Information System concludes a 5 year programme, supported by the Irish Environmental Protection Agency (STRIVE Research Programme 2007-2013) and Teagasc, to develop a new 1:250,000 scale national soil map (http://soils.teagasc.ie). The Irish Soil Information System adopted a unique methodology combining digital soil mapping techniques with traditional soil survey application. Developing earlier work conducted by An Foras Talúntais, the project generated soil-landscape models for previously surveyed counties. These soil-landscape (‘soilscape’) models formed the basis for training statistical ‘inference engines’ for predicting soil mapping units, checked during field survey. 213 soil series are identified, each with differing characteristics, having contrasting environmental and agronomic responses. Properties were recorded in a database able to satisfy national and EU policy requirements. The Irish soil map and related soil property data will also serve public interest, providing the means to learn online about Irish soil resources. Use the Symbology layer file 'SOIL_SISNationalSoil.lyr' based on Value Field 'Association_Unit'. SIS SOIL DRAINAGE:In Ireland, soil drainage category is considered to have a predominant influence on soil processes (Schulte et al., 2012). The maritime climate of Ireland drives wet soil conditions, such that excess soil moisture in combination with heavy textured soils is considered a key constraint in relation to achieving productivity and environmental targets. Both soil moisture content and the rate at which water drains from the soil are critical indicators of soil physical quality and the overall functional capacity of soil. Therefore, a natural extension to the Irish Soil Information System included the development of an indicative soil drainage map for Ireland. The soil subgroup map was used to develop the indicative drainage map, based on diagnostic criteria relating to the subgroup categorization. Use the Symbology layer file 'SOIL_SISSoilDrainage.lyr' based on Value Field 'Drainage'. SIS SOIL DEPTH: Soil depth is a measure of the thickness of the soil cover and reflects the relationship between parent material and length of soil forming processes. Soil depth determines the potential rooting depth of plants and any restrictions within the soil that may hinder rooting depth. Plants derive nearly 80 per cent of their water needs from the upper part of the soil solum, i.e. where the root system is denser. The rooting depths depend on plant physiology, type of soil and water availability. Generally, vegetables (beans, tomatoes, potatoes, parsnip, carrots, leek, broccoli, etc.) are shallow rooted, about 50–60 cm; fruit trees and some other plants have medium rooting depths, 70–120 cm and other crops such as barley, wheat, oats, and maize may have deeper roots. Furthermore, rooting depths vary according to the age of the plants. The exact soil depth is difficult to define accurately due to its high variability across the landscape. The effective soil depth can be reduced by the presence of bedrock or impermeable layers. Use the Symbology layer file 'SOIL_SISSoilDepth.lyr' based on Valued Field 'Depth'. SIS SOIL TEXTURE:Soil texture is an important soil characteristic that influences processes such as water infiltration rates, rootability, gas exchanges, leaching, chemical activity, susceptibility to erosion and water holding capacity. The soil textural class is determined by the percentage of sand, silt, and clay. Soil texture also influences how much water is available to the plant; clay soils have a greater water holding capacity than sandy soils. Use the Symbology layer file 'SOIL_SISSoilTexture.lyr' based on Value Field 'Texture'. SIS SOIL SOC:In the previous national soil survey conducted by An Foras Taluntais, 14 counties were described in detail with soil profile descriptions provided for the representative soil series found within a county. Soil samples were taken at each soil horizon to a depth of 1 meter and analyses performed for a range of measurements, including soil organic carbon, texture, cation exchange capacity, pH; however in most cases no bulk density measurements were taken. This meant that while soil organic carbon concentrations were available this could not be related to a stock for a given soil series. In 2012/2013, 246 profile pits were sampled and analysed as part of the Irish Soil Information System project to fill in gaps in the description of representative profile data for Ireland. Use the Symbology layer file 'SOIL_SISSoilSOC.lyr' based on Value Field 'SOC'.

  14. 06 - Distance and midpoint - Esri GeoInquiries™ collection for Mathematics

    • geoinquiries-education.hub.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Apr 5, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri GIS Education (2017). 06 - Distance and midpoint - Esri GeoInquiries™ collection for Mathematics [Dataset]. https://geoinquiries-education.hub.arcgis.com/items/04624073da0945d08683d73645b7d149
    Explore at:
    Dataset updated
    Apr 5, 2017
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri GIS Education
    Description

    Site a water tower shared by two towns at the midpoint and determine the costs involved using the Pythagorean theorem. THE GEOINQUIRIES™ COLLECTION FOR MATHEMATICShttp://www.esri.com/geoinquiriesThe GeoInquiry™ collection for Mathematics contains 15 free, standards-based activities that correspond and extend spatial concepts found in course textbooks frequently used in introductory algebra or geometry classes. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the Common Core math national curriculum standards. Activities include:· Rates & Proportions: A lost beach· D=R x T· Linear rate of change: Steady growth· How much rain? Linear equations· Rates of population change· Distance and midpoint· The coordinate plane· Euclidean vs Non-Euclidean· Area and perimeter at the mall· Measuring crop circles· Area of complex figures· Similar triangles· Perpendicular bisectors· Centers of triangles· Volume of pyramids

    Teachers, GeoMentors, and school administrators can learn more at http://www.esri.com/geoinquiries.

  15. 01 - Rates & Proportions: A lost beach - Esri GeoInquiries™ collection for...

    • hub.arcgis.com
    Updated Jun 14, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri GIS Education (2017). 01 - Rates & Proportions: A lost beach - Esri GeoInquiries™ collection for Mathematics [Dataset]. https://hub.arcgis.com/documents/1c6c5b6c7d404782b8528894dbacf606
    Explore at:
    Dataset updated
    Jun 14, 2017
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri GIS Education
    Description

    Determine the rate of coastal erosion by estimating changes in historical aerial photos.THE GEOINQUIRIES™ COLLECTION FOR MATHEMATICShttp://www.esri.com/geoinquiriesThe GeoInquiry™ collection for Mathematics contains 15 free, standards-based activities that correspond and extend spatial concepts found in course textbooks frequently used in introductory algebra or geometry classes. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the Common Core math national curriculum standards. Activities include:· Rates & Proportions: A lost beach· D=R x T· Linear rate of change: Steady growth· How much rain? Linear equations· Rates of population change· Distance and midpoint· The coordinate plane· Euclidean vs Non-Euclidean· Area and perimeter at the mall· Measuring crop circles· Area of complex figures· Similar triangles· Perpendicular bisectors· Centers of triangles· Volume of pyramids

    Teachers, GeoMentors, and school administrators can learn more at http://www.esri.com/geoinquiries.

  16. Highway Boundary (RedLine)

    • opendata.nationalhighways.co.uk
    • hub.arcgis.com
    Updated Feb 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Highways (2025). Highway Boundary (RedLine) [Dataset]. https://opendata.nationalhighways.co.uk/maps/95fced9066a342688b3264886bfa639f
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset authored and provided by
    National Highways
    Area covered
    Description

    This dataset is refreshed on a weekly basis from the datasets the team works on daily.Last update date: 06 March 2025.National Highways Operational Highway Boundary (RedLine) maps out the land belonging to the highway for the whole Strategic Road Network (SRN). It comprises two layers; one being the an outline and another showing the registration status / category of land of land that makes up the boundary. Due to the process involved in creating junctions with local highway authority (LHA) roads, land in this dataset may represent LHA highway (owned by National Highways but the responsibility of the LHA to maintain). Surplus land or land held for future projects does not form part of this dataset.The highway boundary is derived from:Ordnance Survey Mastermap Topography,HM Land Registry National Polygon Service (National Highway titles only), andplots researched and digitised during the course of the RedLine Boundary Project.The boundary is split into categories describing the decisions made for particular plots of land. These categories are as follows:Auto-RedLine category is for plots created from an automated process using Ordnance Survey MasterMap Topography as a base. Land is not registered under National Highways' name. For example, but not limited to, unregistered ‘ancient’ highway vested in Highways England, or bridge carrying highways over a rail line.NH Title within RedLine category is for plots created from Land Registry Cadastral parcels whose proprietor is National Highways or a predecessor. Land in this category is within the highway boundary (audited) or meets a certain threshold by the algorithm.NH Title outside RedLine category is for plots created in the same way as above but these areas are thought to be outside the highway boundary. Where the Confidence is Low, land in this category is yet to be audited. Where the Confidence is High, land in this category has been reviewed and audited as outside our operational boundary.National Highways (Technician) Data category is for plots created by National Highways, digitised land parcels relating to highway land that is not registered, not yet registered or un-registerable.Road in Tunnel category, created using tunnel outlines from Ordnance Survey MasterMap Topography data. These represent tunnels on Highways England’s network. Land is not registered under National Highways' name, but land above the tunnel may be in National Highways’ title. Please refer to the definitive land ownership records held at HM Land Registry.The process attribute details how the decision was made for the particular plot of land. These are as follows:Automated category denotes data produced by an automated process. These areas are yet to be audited by the company.Audited category denotes data that has been audited by the company.Technician Data (Awaiting Audit) category denotes data that was created by National Highways but is yet to be audited and confirmed as final.The confidence attribute details how confident you can be in the decision. This attribute is derived from both the decisions made during the building of the underlying automated dataset as well as whether the section has been researched and/or audited by National Highways staff. These are as follows:High category denotes land that has a high probability of being within the RedLine boundary. These areas typically are audited or are features that are close to or on the highway.Moderate category denotes land that is likely to be within the highway boundary but is subject to change once the area has been audited.Low category denotes land that is less likely to be within the highway boundary. These plots typically represent Highways England registered land that the automated process has marked as outside the highway boundary.Please note that this dataset is indicative only. For queries about this dataset please contact the GIS and Research Team.

  17. 08 - The Reformation - Esri GeoInquiries™ collection for World History

    • hub.arcgis.com
    • geoinquiries-education.hub.arcgis.com
    Updated Jun 5, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri GIS Education (2017). 08 - The Reformation - Esri GeoInquiries™ collection for World History [Dataset]. https://hub.arcgis.com/documents/ede9fe2bb00f4fa3aa7a4e2382539a80
    Explore at:
    Dataset updated
    Jun 5, 2017
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri GIS Education
    Description

    Explore the effects of the Reformation and Counter-Reformation. THE GEOINQUIRIES™ COLLECTION FOR WORLD HISTORYhttp://www.esri.com/geoinquiriesThe GeoInquiry™ collection for World History contains 15 free, standards-based activities that correspond and extend spatial concepts found in course textbooks frequently used in introductory world history classes. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the C3 Framework for social studies curriculum standards. Activities include:· Cradles of Civilization· Silk Roads: Then and now· Medieval Europe: Invasions· The Crusades· Trade and the Black Death· Russian expansion to the sea· Early European exploration· The Reformation· The first European Industrial Revolution· Latin American independence· Age of Napoleon· Africa's bounty and borders· Post-WWI and The League of Nations· African independence

    Cooperation since 1945Teachers, GeoMentors, and school administrators can learn more at http://www.esri.com/geoinquiries.

  18. 01 - Cradles of Civilization - Esri GeoInquiries™ collection for World...

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Apr 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri GIS Education (2017). 01 - Cradles of Civilization - Esri GeoInquiries™ collection for World History [Dataset]. https://hub.arcgis.com/documents/cda41518dc0349338138950230935aed
    Explore at:
    Dataset updated
    Apr 27, 2017
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri GIS Education
    Area covered
    World
    Description

    Explore the geographic similarities and differences of the locations of the early river valley civilizations. THE GEOINQUIRIES™ COLLECTION FOR WORLD HISTORYhttp://www.esri.com/geoinquiriesThe GeoInquiry™ collection for World History contains 15 free, standards-based activities that correspond and extend spatial concepts found in course textbooks frequently used in introductory world history classes. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the C3 Framework for social studies curriculum standards. Activities include:· Cradles of Civilization· Silk Roads: Then and now· Medieval Europe: Invasions· The Crusades· Trade and the Black Death· Russian expansion to the sea· Early European exploration· The Reformation· The first European Industrial Revolution· Latin American independence· Age of Napoleon· Africa's bounty and borders· Post-WWI and The League of Nations· African independence

    Cooperation since 1945Teachers, GeoMentors, and school administrators can learn more at http://www.esri.com/geoinquiries.

  19. 03 - Medieval Europe: Invasions - Esri GeoInquiries™ collection for World...

    • hub.arcgis.com
    • geoinquiries-education.hub.arcgis.com
    Updated Jun 2, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri GIS Education (2017). 03 - Medieval Europe: Invasions - Esri GeoInquiries™ collection for World History [Dataset]. https://hub.arcgis.com/documents/f29daa277b3b4985892886159a2cdaa5
    Explore at:
    Dataset updated
    Jun 2, 2017
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri GIS Education
    Description

    Examine Viking, Magyar, and Islamic invasions and their impact on the development of Europe. THE GEOINQUIRIES™ COLLECTION FOR WORLD HISTORYhttp://www.esri.com/geoinquiriesThe GeoInquiry™ collection for World History contains 15 free, standards-based activities that correspond and extend spatial concepts found in course textbooks frequently used in introductory world history classes. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the C3 Framework for social studies curriculum standards. Activities include:· Cradles of Civilization· Silk Roads: Then and now· Medieval Europe: Invasions· The Crusades· Trade and the Black Death· Russian expansion to the sea· Early European exploration· The Reformation· The first European Industrial Revolution· Latin American independence· Age of Napoleon· Africa's bounty and borders· Post-WWI and The League of Nations· African independence

    Cooperation since 1945Teachers, GeoMentors, and school administrators can learn more at http://www.esri.com/geoinquiries.

  20. 10 - Latin American independence - Esri GeoInquiries™ collection for World...

    • geoinquiries-education.hub.arcgis.com
    Updated Jun 5, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri GIS Education (2017). 10 - Latin American independence - Esri GeoInquiries™ collection for World History [Dataset]. https://geoinquiries-education.hub.arcgis.com/documents/50eafe1486b640c2ba770e63c68167d7
    Explore at:
    Dataset updated
    Jun 5, 2017
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri GIS Education
    Description

    Explore the factors leading to the independence movement of Latin American colonies.THE GEOINQUIRIES™ COLLECTION FOR WORLD HISTORYhttp://www.esri.com/geoinquiriesThe GeoInquiry™ collection for World History contains 15 free, standards-based activities that correspond and extend spatial concepts found in course textbooks frequently used in introductory world history classes. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the C3 Framework for social studies curriculum standards. Activities include:· Cradles of Civilization· Silk Roads: Then and now· Medieval Europe: Invasions· The Crusades· Trade and the Black Death· Russian expansion to the sea· Early European exploration· The Reformation· The first European Industrial Revolution· Latin American independence· Age of Napoleon· Africa's bounty and borders· Post-WWI and The League of Nations· African independence

    Cooperation since 1945Teachers, GeoMentors, and school administrators can learn more at http://www.esri.com/geoinquiries.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff

QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems

Explore at:
htmlAvailable download formats
Dataset updated
Oct 5, 2021
Dataset provided by
Statistics Canada
License

Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically

Description

Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

Search
Clear search
Close search
Google apps
Main menu