Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
This is a full-day training, developed by UNEP CMB, to introduce participants to the basics of GIS, how to import points from Excel to a GIS, and how to make maps with QGIS, MapX and Tableau. It prioritizes the use of free and open software.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
How do you ensure your data is free of errors? While you may already leverage ArcGIS Data Reviewer for its automated validation capabilities, you might ocassionally encounter problems with certain challenging subsets of features. For example, think about a situation in which you expected an automated data check to return a certain error but it did not. You tried configuring the check over and over again, but did not figure out a method of automatically detecting the error.Visual review can help. Manually reviewing your data provides a way to find errors that are difficult to detect using automated methods, such as features that are missing, misplaced, miscoded, or redundant.The following graphic shows the topics that will be covered throughout the course. You will learn the associated workflows that take advantage of ArcGIS Data Reviewer functionality.After completing this course, you will be able to:Determine situations in which visual review is appropriate.Analyze a statistically significant sample.Create a QC grid and perform a systematic visual review.Indicate missing, misplaced, miscoded, or redundant features.Recognize how to find changes between versions.
This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about
In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.
Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.
Our Co-design team is from the University of Texas, working on a Department of Energy-funded project focused on the Beaumont-Port Arthur area. As part of this project, we will be developing climate-resilient design solutions for areas of the region. More on www.caee.utexas.edu.We captured aerial photos in the Port Arthur Coastal Neighborhood Community and the Golf Course on Pleasure Island, Texas, in June 2024.Aerial photos taken were through DroneDeploy autonomous flight, and models were processed through the DroneDeploy engine as well. All aerial photos are in .JPG format and contained in zipped files for each area.The processed data package includes 3D models, geospatial data, mappings, and point clouds. Please be aware that DTM, Elevation toolbox, Point cloud, and Orthomosaic use EPSG: 6588. And 3D Model uses EPSG: 3857.For using these data:- The Adobe Suite gives you great software to open .Tif files.- You can use LASUtility (Windows), ESRI ArcGIS Pro (Windows), or Blaze3D (Windows, Linux) to open a LAS file and view the data it contains.- Open an .OBJ file with a large number of free and commercial applications. Some examples include Microsoft 3D Builder, Apple Preview, Blender, and Autodesk.- You may use ArcGIS, Merkaartor, Blender (with the Google Earth Importer plug-in), Global Mapper, and Marble to open .KML files.- The .tfw world file is a text file used to georeference the GeoTIFF raster images, like the orthomosaic and the DSM. You need suitable software like ArcView to open a .TFW file.This dataset provides researchers with sufficient geometric data and the status quo of the land surface at the locations mentioned above. This dataset could streamline researchers' decision-making processes and enhance the design as well.
Free and reduced lunch data for each participating public school in Alaska. This data set includes the number of students receiving free lunches and reduced price lunches, and the percentage of the students enrolled in either of these programs. Students qualify for free and reduced meals under the National School Lunch Program.Where possible the data is mapped at the location of School that is associated with the program - however some data rows represent non-school entities. See source DEED data center https://education.alaska.gov/cnp/nslp for source dataSource: Alaska Department of Education & Early Development, School Nutrition Programs
This data has been visualized in a Geographic Information Systems (GIS) format and is provided as a service in the DCRA Information Portal by the Alaska Department of Commerce, Community, and Economic Development Division of Community and Regional Affairs (SOA DCCED DCRA), Research and Analysis section. SOA DCCED DCRA Research and Analysis is not the authoritative source for this data. For more information and for questions about this data, see: Alaska Department of Education & Early Development Data Center.
This web map references the live tiled map service from the OpenStreetMap project. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information such as free satellite imagery, and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap server: http://www.OpenStreetMap.org. See that website for additional information about OpenStreetMap. It is made available as a basemap for GIS work in Esri products under a Creative Commons Attribution-ShareAlike license.Tip: This service is one of the basemaps used in the ArcGIS.com map viewer and ArcGIS Explorer Online. Simply click one of those links to launch the interactive application of your choice, and then choose Open Street Map from the Basemap control to start using this service. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10.
Register your school for free GIS!
https://data.dhsgis.wi.gov/pages/gis-data-disclaimerhttps://data.dhsgis.wi.gov/pages/gis-data-disclaimer
This dataset contains boundaries for the FoodShare Employment and Training regions. The FoodShare Employment and Training (FSET) program is a free program that helps FoodShare members build their job skills and find jobs. There are eleven FSET regions. Each FSET region coordinates FSET services for the residents of counties located in that region.For more information please visit the Wisconsin Department of Health Services website: https://www.dhs.wisconsin.gov/fset/fset-regions.htm
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The tabular and visual dataset focuses on South African basic education and provides insights into the distribution of schools and basic population statistics across the country. This tabular and visual data are stratified across different quintiles for each provincial and district boundary. The quintile system is used by the South African government to classify schools based on their level of socio-economic disadvantage, with quintile 1 being the most disadvantaged and quintile 5 being the least disadvantaged. The data was joined by extracting information from the debarment of basic education with StatsSA population census data. Thereafter, all tabular data and geo located data were transformed to maps using GIS software and the Python integrated development environment. The dataset includes information on the number of schools and students in each quintile, as well as the population density in each area. The data is displayed through a combination of charts, maps and tables, allowing for easy analysis and interpretation of the information.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains information, opening times and locations related to Brisbane City Council golf courses.More information about these golf courses can be found on the Brisbane City Council website.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Template spreadheets to collect field data. These files have specific fields for geological and geomorphological observations as well as generic data like coordinates and associated files.
Free and reduced lunch data for each participating public school in Alaska. This data set includes the number of students receiving free lunches and reduced price lunches, and the percentage of the students enrolled in either of these programs. Students qualify for free and reduced meals under the National School Lunch Program.Where possible the data is mapped at the location of School that is associated with the program - however some data rows represent non-school entities. See source DEED data center https://education.alaska.gov/cnp/nslp for source dataSource: Alaska Department of Education & Early Development, School Nutrition Programs
This data has been visualized in a Geographic Information Systems (GIS) format and is provided as a service in the DCRA Information Portal by the Alaska Department of Commerce, Community, and Economic Development Division of Community and Regional Affairs (SOA DCCED DCRA), Research and Analysis section. SOA DCCED DCRA Research and Analysis is not the authoritative source for this data. For more information and for questions about this data, see: Alaska Department of Education & Early Development Data Center.
Explore the geographic context of Isaac’s Storm by Erik Larson and Their Eyes Were Watching God by Zora Neale Hurston. THE GEOINQUIRIES™ COLLECTION FOR AMERICAN LITERATUREhttp://www.esri.com/geoinquiriesThe GeoInquiry™ collection for American Literature contains 15 free, standards-based activities that correspond and extend map-based concepts found in course texts frequently used in high school literature. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the Common Core ELA national curriculum standards. Activities include:· Beyond religion: Scarlet Letter · Virus of fear: Witchcraft in Salem· Poe and the Red Death· The Red Badge of Courage· Twain: Travel blogger· Hurricane warning· Gatsby: Then and now· Our town, your town· The mockingbird sings for freedom· Depression, dust and Steinbeck· Hiroshima· Dr. King's road to a Birmingham aail· Finding Mango Street· F451: Ban or burn the books· Surviving the wild
Teachers, GeoMentors, and school administrators can learn more at http://www.esri.com/geoinquiries.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This is Version 4 of the CUSEC Building Safety Evaluation Survey123 Form (previously available as a Geoform or Collector App), created from feedback from MOSAVE, INSPARK, TNSAVE. For Training and Exercise Use Only.
Data collected with this form can be visualized in the Building Safety Evaluation Dashboard. More information: Following a large disaster, thousands of damaged buildings may need to be quickly surveyed to determine their safety and habitability. Traditional survey methods can be time consuming and inefficient. In 2015, the Central U.S. Earthquake Consortium (CUSEC) created a FREE mobile data collection app to address this issue. The "Safety Evaluation App" captures post-disaster safety assessments into a geographic information system (GIS) that can be used by emergency managers and decision makers to improve disaster response and recovery efforts. Trained engineers and architects can use the app quickly document whether or not buildings are safe to occupy following an earthquake, wind, or flood event. Instead of using paper forms that are time-consuming and cumbersome to enter into a GIS database, assessment teams can use the app on iOS, Android, or Windows-based smartphones and tablets. Updates and Improvements over Previous Version:Updated name to Building Safety Evaluation FormUpdated to use Survey123 (while Geoform and Collector are still supported, they are no longer being actively maintained).When opening this form using the native iOS or Android App, the basemap includes a GNIS survey grid and locations of previously collected building assessments.Survey automatically populates address information from the devices GPS location. This address can be changed by the user using the form. Please leave feedback or questions in the Comments section below.
Goal 4Ensure inclusive and equitable quality education and promote lifelong learning opportunities for allTarget 4.1: By 2030, ensure that all girls and boys complete free, equitable and quality primary and secondary education leading to relevant and effective learning outcomesIndicator 4.1.1: Proportion of children and young people (a) in grades 2/3; (b) at the end of primary; and (c) at the end of lower secondary achieving at least a minimum proficiency level in (i) reading and (ii) mathematics, by sexSE_TOT_PRFL: Proportion of children and young people achieving a minimum proficiency level in reading and mathematics (%)Indicator 4.1.2: Completion rate (primary education, lower secondary education, upper secondary education)SE_TOT_CPLR: Completion rate, by sex, location, wealth quintile and education level (%)Target 4.2: By 2030, ensure that all girls and boys have access to quality early childhood development, care and pre-primary education so that they are ready for primary educationIndicator 4.2.1: Proportion of children aged 24-59 months who are developmentally on track in health, learning and psychosocial well-being, by sexiSE_DEV_ONTRK: Proportion of children aged 36−59 months who are developmentally on track in at least three of the following domains: literacy-numeracy, physical development, social-emotional development, and learning (% of children aged 36-59 months)Indicator 4.2.2: Participation rate in organized learning (one year before the official primary entry age), by sexSE_PRE_PARTN: Participation rate in organized learning (one year before the official primary entry age), by sex (%)Target 4.3: By 2030, ensure equal access for all women and men to affordable and quality technical, vocational and tertiary education, including universityIndicator 4.3.1: Participation rate of youth and adults in formal and non-formal education and training in the previous 12 months, by sexSE_ADT_EDUCTRN: Participation rate in formal and non-formal education and training, by sex (%)Target 4.4: By 2030, substantially increase the number of youth and adults who have relevant skills, including technical and vocational skills, for employment, decent jobs and entrepreneurshipIndicator 4.4.1: Proportion of youth and adults with information and communications technology (ICT) skills, by type of skillSE_ADT_ACTS: Proportion of youth and adults with information and communications technology (ICT) skills, by sex and type of skill (%)Target 4.5: By 2030, eliminate gender disparities in education and ensure equal access to all levels of education and vocational training for the vulnerable, including persons with disabilities, indigenous peoples and children in vulnerable situationsIndicator 4.5.1: Parity indices (female/male, rural/urban, bottom/top wealth quintile and others such as disability status, indigenous peoples and conflict-affected, as data become available) for all education indicators on this list that can be disaggregatedSE_GPI_PTNPRE: Gender parity index for participation rate in organized learning (one year before the official primary entry age), (ratio)SE_GPI_TCAQ: Gender parity index of trained teachers, by education level (ratio)SE_GPI_PART: Gender parity index for participation rate in formal and non-formal education and training (ratio)SE_GPI_ICTS: Gender parity index for youth/adults with information and communications technology (ICT) skills, by type of skill (ratio)SE_IMP_FPOF: Immigration status parity index for achieving at least a fixed level of proficiency in functional skills, by numeracy/literacy skills (ratio)SE_NAP_ACHI: Native parity index for achievement (ratio)SE_LGP_ACHI: Language test parity index for achievement (ratio)SE_TOT_GPI: Gender parity index for achievement (ratio)SE_TOT_SESPI: Low to high socio-economic parity status index for achievement (ratio)SE_TOT_RUPI: Rural to urban parity index for achievement (ratio)SE_ALP_CPLR: Adjusted location parity index for completion rate, by sex, location, wealth quintile and education levelSE_AWP_CPRA: Adjusted wealth parity index for completion rate, by sex, location, wealth quintile and education levelSE_AGP_CPRA: Adjusted gender parity index for completion rate, by sex, location, wealth quintile and education levelTarget 4.6: By 2030, ensure that all youth and a substantial proportion of adults, both men and women, achieve literacy and numeracyIndicator 4.6.1: Proportion of population in a given age group achieving at least a fixed level of proficiency in functional (a) literacy and (b) numeracy skills, by sexSE_ADT_FUNS: Proportion of population achieving at least a fixed level of proficiency in functional skills, by sex, age and type of skill (%)Target 4.7: By 2030, ensure that all learners acquire the knowledge and skills needed to promote sustainable development, including, among others, through education for sustainable development and sustainable lifestyles, human rights, gender equality, promotion of a culture of peace and non-violence, global citizenship and appreciation of cultural diversity and of culture’s contribution to sustainable developmentIndicator 4.7.1: Extent to which (i) global citizenship education and (ii) education for sustainable development are mainstreamed in (a) national education policies; (b) curricula; (c) teacher education; and (d) student assessmentTarget 4.a: Build and upgrade education facilities that are child, disability and gender sensitive and provide safe, non-violent, inclusive and effective learning environments for allIndicator 4.a.1: Proportion of schools offering basic services, by type of serviceSE_ACS_CMPTR: Schools with access to computers for pedagogical purposes, by education level (%)SE_ACS_H2O: Schools with access to basic drinking water, by education level (%)SE_ACS_ELECT: Schools with access to electricity, by education level (%)SE_ACC_HNDWSH: Schools with basic handwashing facilities, by education level (%)SE_ACS_INTNT: Schools with access to the internet for pedagogical purposes, by education level (%)SE_ACS_SANIT: Schools with access to access to single-sex basic sanitation, by education level (%)SE_INF_DSBL: Proportion of schools with access to adapted infrastructure and materials for students with disabilities, by education level (%)Target 4.b: By 2020, substantially expand globally the number of scholarships available to developing countries, in particular least developed countries, small island developing States and African countries, for enrolment in higher education, including vocational training and information and communications technology, technical, engineering and scientific programmes, in developed countries and other developing countriesIndicator 4.b.1: Volume of official development assistance flows for scholarships by sector and type of studyDC_TOF_SCHIPSL: Total official flows for scholarships, by recipient countries (millions of constant 2018 United States dollars)Target 4.c: By 2030, substantially increase the supply of qualified teachers, including through international cooperation for teacher training in developing countries, especially least developed countries and small island developing StatesIndicator 4.c.1: Proportion of teachers with the minimum required qualifications, by education leveliSE_TRA_GRDL: Proportion of teachers who have received at least the minimum organized teacher training (e.g. pedagogical training) pre-service or in-service required for teaching at the relevant level in a given country, by sex and education level (%)
Site a water tower shared by two towns at the midpoint and determine the costs involved using the Pythagorean theorem. THE GEOINQUIRIES™ COLLECTION FOR MATHEMATICShttp://www.esri.com/geoinquiriesThe GeoInquiry™ collection for Mathematics contains 15 free, standards-based activities that correspond and extend spatial concepts found in course textbooks frequently used in introductory algebra or geometry classes. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the Common Core math national curriculum standards. Activities include:· Rates & Proportions: A lost beach· D=R x T· Linear rate of change: Steady growth· How much rain? Linear equations· Rates of population change· Distance and midpoint· The coordinate plane· Euclidean vs Non-Euclidean· Area and perimeter at the mall· Measuring crop circles· Area of complex figures· Similar triangles· Perpendicular bisectors· Centers of triangles· Volume of pyramids
Teachers, GeoMentors, and school administrators can learn more at http://www.esri.com/geoinquiries.
Explore the effects of the Reformation and Counter-Reformation. THE GEOINQUIRIES™ COLLECTION FOR WORLD HISTORYhttp://www.esri.com/geoinquiriesThe GeoInquiry™ collection for World History contains 15 free, standards-based activities that correspond and extend spatial concepts found in course textbooks frequently used in introductory world history classes. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the C3 Framework for social studies curriculum standards. Activities include:· Cradles of Civilization· Silk Roads: Then and now· Medieval Europe: Invasions· The Crusades· Trade and the Black Death· Russian expansion to the sea· Early European exploration· The Reformation· The first European Industrial Revolution· Latin American independence· Age of Napoleon· Africa's bounty and borders· Post-WWI and The League of Nations· African independence
Cooperation since 1945Teachers, GeoMentors, and school administrators can learn more at http://www.esri.com/geoinquiries.
Explore the ethnic diversity of U.S. states and neighborhoods. This activity explores The House on Mango Street by Sandra Cisneros.THE GEOINQUIRIES™ COLLECTION FOR AMERICAN LITERATUREhttp://www.esri.com/geoinquiriesThe GeoInquiry™ collection for American Literature contains 15 free, standards-based activities that correspond and extend map-based concepts found in course texts frequently used in high school literature. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the Common Core ELA national curriculum standards. Activities include:· Beyond religion: Scarlet Letter · Virus of fear: Witchcraft in Salem· Poe and the Red Death· The Red Badge of Courage· Twain: Travel blogger· Hurricane warning· Gatsby: Then and now· Our town, your town· The mockingbird sings for freedom· Depression, dust and Steinbeck· Hiroshima· Dr. King's road to a Birmingham aail· Finding Mango Street· F451: Ban or burn the books· Surviving the wild
Teachers, GeoMentors, and school administrators can learn more at http://www.esri.com/geoinquiries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.