We offer historical price data for equity indexes, ETFs and individual stocks in a Open/High/Low/Close (OHLC) format and can add almost any other required metric. We cover all major markets and many minor markets. Available for one-time purchase or with regular updates. Real-time/near-time (usually anything quicker than a 15min delay) requires an additional licence from the respective exchange, anything slower does not.
https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified
The files are formatted as follows: Date, Time, Open, High, Low, Close, Volume Date – This provides the date as an integer where 20100527 would represent May 27th, 2010. Time – This gives the time as an integer where 1426 would represent 2:26PM EST. Open – The open price. High – The high price. Low – The low price. Close – The close price. Volume – The trading volume during the interval. Note that it is extremely difficult to get accurate volume information. The volume is adjusted for splits so that the total value of shares traded remains constant even if a split occurs.
FinFeedAPI provides equity market data covering over 11,000 symbols, featuring historical T+1 data with an unlimited loopback period. We deliver everything from detailed trade records and multiple levels of order book depth (Level 1-3) to crucial regulatory and system messages.
Our data is engineered for performance, featuring nano-second precision timestamps. This ensures a competitive edge for high-frequency trading by enabling fair, accurate, and auditable transaction sequencing, critical for regulatory compliance. Access comprehensive equity market intelligence directly through our robust API offerings.
Why FinFeedAPI?
Market Coverage & Data Depth: - Historical Data: T+1 data on 11K+ symbols with unlimited historical lookback. - Trade Feeds: Detailed trade records including timestamps, sizes, prices, and conditions (e.g., odd lot, intermarket sweep, extended hours). - Level 1 Quotes: Best bid/ask prices, sizes, and timestamps. - Level 2 Price Book: Market depth with multiple bid/ask prices and aggregate order sizes. - Level 3 Order Book: The complete order book detailing individual orders.
Essential Messages: - Admin Messages: Trading status, official open/close prices, auction states, short sale restrictions, retail liquidity indicators, security directory. - System Events: Exchange-level notifications for key trading session phases.
Precision & Reliability: - Nano-second Timestamps: Ensuring fair, accurate, and auditable transaction sequencing for HFT and compliance. - Institutional Trust: Relied upon by financial institutions for dependable equity market information.
Financial institutions and trading firms rely on FinFeedAPI for mission-critical equity market intelligence. We are committed to delivering clean, precise, and comprehensive data when it matters most. If you require dependable and granular stock market data, FinFeedAPI provides the actionable insights you need.
Get comprehensive coverage for 70+ trading venues with Databento's historical data APIs. Available in multiple data formats including MBO, MBP, and more.
Unfortunately, the API this dataset used to pull the stock data isn't free anymore. Instead of having this auto-updating, I dropped the last version of the data files in here, so at least the historic data is still usable.
This dataset provides free end of day data for all stocks currently in the Dow Jones Industrial Average. For each of the 30 components of the index, there is one CSV file named by the stock's symbol (e.g. AAPL for Apple). Each file provides historically adjusted market-wide data (daily, max. 5 years back). See here for description of the columns: https://iextrading.com/developer/docs/#chart
Since this dataset uses remote URLs as files, it is automatically updated daily by the Kaggle platform and automatically represents the latest data.
List of stocks and symbols as per https://en.wikipedia.org/wiki/Dow_Jones_Industrial_Average
Thanks to https://iextrading.com for providing this data for free!
Data provided for free by IEX. View IEX’s Terms of Use.
Get Nasdaq real-time and historical data with support for fast market replay at over 19 million book updates per second. Test our data for free with only 4 lines of code.
Nasdaq TotalView-ITCH is a proprietary data feed that disseminates full order book depth and last sale data from the Nasdaq stock market (XNAS). It delivers every quote and order at each price level, along with any event that updates the order book after an order is placed, such as trade executions, modifications, or cancellations. Nasdaq is the most active US equity exchange by volume and represented 13.03% of the average daily volume (ADV) as of January 2025.
With its L3 granularity, Nasdaq TotalView-ITCH captures information beyond the L1, top-of-book data available through SIP feeds and enables more accurate modeling of book imbalances, trade directionality, quote lifetimes, and more. This includes explicit trade aggressor side, odd lots, auction imbalance data, and the Net Order Imbalance Indicator (NOII) for the Nasdaq Opening and Closing Crosses and Nasdaq IPO/Halt Cross—the best predictor of Nasdaq opening and closing prices available. Other key advantages of Nasdaq TotalView-ITCH over SIP data include faster real-time dissemination and precise exchange-side timestamping directly from Nasdaq.
Real-time Nasdaq TotalView-ITCH data is included with a Plus or Unlimited subscription through our Databento US Equities service. Historical data is available for usage-based rates or with any subscription. Visit our pricing page for more details or to upgrade your plan.
Breadth of coverage: 20,329 products
Asset class(es): Equities
Origin: Directly captured at Equinix NY4 (Secaucus, NJ) with an FPGA-based network card and hardware timestamping. Synchronized to UTC with PTP.
Supported data encodings: DBN, CSV, JSON Learn more
Supported market data schemas: MBO, MBP-1, MBP-10, BBO-1s, BBO-1m, TBBO, Trades, OHLCV-1s, OHLCV-1m, OHLCV-1h, OHLCV-1d, Definition, Statistics, Status, Imbalance Learn more
Resolution: Immediate publication, nanosecond-resolution timestamps
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Throughout the 1920s, prices on the U.S. stock exchange rose exponentially, however, by the end of the decade, uncontrolled growth and a stock market propped up by speculation and borrowed money proved unsustainable, resulting in the Wall Street Crash of October 1929. This set a chain of events in motion that led to economic collapse - banks demanded repayment of debts, the property market crashed, and people stopped spending as unemployment rose. Within a year the country was in the midst of an economic depression, and the economy continued on a downward trend until late-1932.
It was during this time where Franklin D. Roosevelt (FDR) was elected president, and he assumed office in March 1933 - through a series of economic reforms and New Deal policies, the economy began to recover. Stock prices fluctuated at more sustainable levels over the next decades, and developments were in line with overall economic development, rather than the uncontrolled growth seen in the 1920s. Overall, it took over 25 years for the Dow Jones value to reach its pre-Crash peak.
📈 Daily Historical Stock Price Data for China Tourism Group Duty Free Corporation Limited (2009–2025)
A clean, ready-to-use dataset containing daily stock prices for China Tourism Group Duty Free Corporation Limited from 2009-10-15 to 2025-05-28. This dataset is ideal for use in financial analysis, algorithmic trading, machine learning, and academic research.
🗂️ Dataset Overview
Company: China Tourism Group Duty Free Corporation Limited Ticker Symbol: 601888.SS Date… See the full description on the dataset page: https://huggingface.co/datasets/khaledxbenali/daily-historical-stock-price-data-for-china-tourism-group-duty-free-corporation-limited-20092025.
https://optiondata.org/about.htmlhttps://optiondata.org/about.html
Free historical options data, dataset files in CSV format.
Global Shares Data Reference data on more than 80K stocks worldwide. Historical data from 2000 onwards. Pay only for the parameters you need. Flexible in customizing our product to the customer's needs. Free test access as long as you need for integration. Reliable sources: issues documents, disclosure website, global depositories data and other open sources. The cost depends on the amount of required parameters and re-distribution right.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Tracking United HealthCare Stock Performance Since IPO
This dataset provides historical stock data for UnitedHealth Group (UHG), one of the largest healthcare and insurance companies in the world. It covers stock prices, market capitalization, and trading volumes from the company's IPO to the present. As a Fortune 500 company with a significant market presence, analyzing UHG's stock performance can provide valuable insights into healthcare market trends, investment opportunities, and economic indicators.
This dataset is useful for:
CC0 (Public Domain) – This dataset is freely available for public and commercial use.
https://finazon.io/assets/files/Finazon_Terms_of_Service.pdfhttps://finazon.io/assets/files/Finazon_Terms_of_Service.pdf
The best choice for those looking for license-free US market data for commercial use is US Equities Basic, which includes data display, redistribution, professional trading, and more.
US Equities Basic is based upon a derived IEX feed. The volume coverage is 3-5% of the total trading volume in North America, which helps entities mitigate license expenses and start with real-time data.
US Equities Basic provides raw quotes, trades, aggregated time series (OHLCV), and snapshots. Both REST API and WebSocket API are available.
End-of-day price information disseminated after 12:00 AM EST does not require licensing in the United States by law. This applies to all exchanges, even those not included in the US Equities Basic. Finazon combines all price information after every trading day, meaning that while markets are open, real-time prices are available from a subset of exchanges, and when markets close, data is synced and contains 100% of US volume. All historical prices are adjusted for corporate actions and splits.
Tip: Individuals with non-professional usage are not required to get exchange licenses for real-time data and, hence, are better off with the US Equities Max dataset.
Download real-time and historical stock price data, including all buy and sell orders at every price level. Get each trade tick-by-tick and order queue composition at all prices. Access high-fidelity US equities stock market data using our Python, Rust, and C++ APIs. Providing full order book depth (MBO), OHLC aggregates, and more.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset contains historical technical data of Dhaka Stock Exchange (DSE). The data was collected from different sources found in the internet where the data was publicly available. The data available here are used for information and research purposes and though to the best of our knowledge, it does not contain any mistakes, there might still be some mistakes. It is not encourages to use this dataset for portfolio management purposes and use this dataset out of your own interest. The contributors do not hold any liability if it is used for any purposes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hascol
https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The latest closing stock price for Exxon as of June 27, 2025 is 109.38. An investor who bought $1,000 worth of Exxon stock at the IPO in 1984 would have $41,833 today, roughly 42 times their original investment - a 9.60% compound annual growth rate over 41 years. The all-time high Exxon stock closing price was 122.12 on October 07, 2024. The Exxon 52-week high stock price is 126.34, which is 15.5% above the current share price. The Exxon 52-week low stock price is 97.80, which is 10.6% below the current share price. The average Exxon stock price for the last 52 weeks is 112.58. For more information on how our historical price data is adjusted see the Stock Price Adjustment Guide.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
We offer historical price data for equity indexes, ETFs and individual stocks in a Open/High/Low/Close (OHLC) format and can add almost any other required metric. We cover all major markets and many minor markets. Available for one-time purchase or with regular updates. Real-time/near-time (usually anything quicker than a 15min delay) requires an additional licence from the respective exchange, anything slower does not.