4 datasets found
  1. Data from: X-ray CT data with semantic annotations for the paper "A workflow...

    • catalog.data.gov
    • s.cnmilf.com
    • +2more
    Updated May 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2024). X-ray CT data with semantic annotations for the paper "A workflow for segmenting soil and plant X-ray CT images with deep learning in Google’s Colaboratory" [Dataset]. https://catalog.data.gov/dataset/x-ray-ct-data-with-semantic-annotations-for-the-paper-a-workflow-for-segmenting-soil-and-p-d195a
    Explore at:
    Dataset updated
    May 2, 2024
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Description

    Leaves from genetically unique Juglans regia plants were scanned using X-ray micro-computed tomography (microCT) on the X-ray μCT beamline (8.3.2) at the Advanced Light Source (ALS) in Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA USA). Soil samples were collected in Fall of 2017 from the riparian oak forest located at the Russell Ranch Sustainable Agricultural Institute at the University of California Davis. The soil was sieved through a 2 mm mesh and was air dried before imaging. A single soil aggregate was scanned at 23 keV using the 10x objective lens with a pixel resolution of 650 nanometers on beamline 8.3.2 at the ALS. Additionally, a drought stressed almond flower bud (Prunus dulcis) from a plant housed at the University of California, Davis, was scanned using a 4x lens with a pixel resolution of 1.72 µm on beamline 8.3.2 at the ALS Raw tomographic image data was reconstructed using TomoPy. Reconstructions were converted to 8-bit tif or png format using ImageJ or the PIL package in Python before further processing. Images were annotated using Intel’s Computer Vision Annotation Tool (CVAT) and ImageJ. Both CVAT and ImageJ are free to use and open source. Leaf images were annotated in following Théroux-Rancourt et al. (2020). Specifically, Hand labeling was done directly in ImageJ by drawing around each tissue; with 5 images annotated per leaf. Care was taken to cover a range of anatomical variation to help improve the generalizability of the models to other leaves. All slices were labeled by Dr. Mina Momayyezi and Fiona Duong.To annotate the flower bud and soil aggregate, images were imported into CVAT. The exterior border of the bud (i.e. bud scales) and flower were annotated in CVAT and exported as masks. Similarly, the exterior of the soil aggregate and particulate organic matter identified by eye were annotated in CVAT and exported as masks. To annotate air spaces in both the bud and soil aggregate, images were imported into ImageJ. A gaussian blur was applied to the image to decrease noise and then the air space was segmented using thresholding. After applying the threshold, the selected air space region was converted to a binary image with white representing the air space and black representing everything else. This binary image was overlaid upon the original image and the air space within the flower bud and aggregate was selected using the “free hand” tool. Air space outside of the region of interest for both image sets was eliminated. The quality of the air space annotation was then visually inspected for accuracy against the underlying original image; incomplete annotations were corrected using the brush or pencil tool to paint missing air space white and incorrectly identified air space black. Once the annotation was satisfactorily corrected, the binary image of the air space was saved. Finally, the annotations of the bud and flower or aggregate and organic matter were opened in ImageJ and the associated air space mask was overlaid on top of them forming a three-layer mask suitable for training the fully convolutional network. All labeling of the soil aggregate and soil aggregate images was done by Dr. Devin Rippner. These images and annotations are for training deep learning models to identify different constituents in leaves, almond buds, and soil aggregates Limitations: For the walnut leaves, some tissues (stomata, etc.) are not labeled and only represent a small portion of a full leaf. Similarly, both the almond bud and the aggregate represent just one single sample of each. The bud tissues are only divided up into buds scales, flower, and air space. Many other tissues remain unlabeled. For the soil aggregate annotated labels are done by eye with no actual chemical information. Therefore particulate organic matter identification may be incorrect. Resources in this dataset:Resource Title: Annotated X-ray CT images and masks of a Forest Soil Aggregate. File Name: forest_soil_images_masks_for_testing_training.zipResource Description: This aggregate was collected from the riparian oak forest at the Russell Ranch Sustainable Agricultural Facility. The aggreagate was scanned using X-ray micro-computed tomography (microCT) on the X-ray μCT beamline (8.3.2) at the Advanced Light Source (ALS) in Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA USA) using the 10x objective lens with a pixel resolution of 650 nanometers. For masks, the background has a value of 0,0,0; pores spaces have a value of 250,250, 250; mineral solids have a value= 128,0,0; and particulate organic matter has a value of = 000,128,000. These files were used for training a model to segment the forest soil aggregate and for testing the accuracy, precision, recall, and f1 score of the model.Resource Title: Annotated X-ray CT images and masks of an Almond bud (P. Dulcis). File Name: Almond_bud_tube_D_P6_training_testing_images_and_masks.zipResource Description: Drought stressed almond flower bud (Prunis dulcis) from a plant housed at the University of California, Davis, was scanned by X-ray micro-computed tomography (microCT) on the X-ray μCT beamline (8.3.2) at the Advanced Light Source (ALS) in Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA USA) using the 4x lens with a pixel resolution of 1.72 µm using. For masks, the background has a value of 0,0,0; air spaces have a value of 255,255, 255; bud scales have a value= 128,0,0; and flower tissues have a value of = 000,128,000. These files were used for training a model to segment the almond bud and for testing the accuracy, precision, recall, and f1 score of the model.Resource Software Recommended: Fiji (ImageJ),url: https://imagej.net/software/fiji/downloads Resource Title: Annotated X-ray CT images and masks of Walnut leaves (J. Regia) . File Name: 6_leaf_training_testing_images_and_masks_for_paper.zipResource Description: Stems were collected from genetically unique J. regia accessions at the 117 USDA-ARS-NCGR in Wolfskill Experimental Orchard, Winters, California USA to use as scion, and were grafted by Sierra Gold Nursery onto a commonly used commercial rootstock, RX1 (J. microcarpa × J. regia). We used a common rootstock to eliminate any own-root effects and to simulate conditions for a commercial walnut orchard setting, where rootstocks are commonly used. The grafted saplings were repotted and transferred to the Armstrong lathe house facility at the University of California, Davis in June 2019, and kept under natural light and temperature. Leaves from each accession and treatment were scanned using X-ray micro-computed tomography (microCT) on the X-ray μCT beamline (8.3.2) at the Advanced Light Source (ALS) in Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA USA) using the 10x objective lens with a pixel resolution of 650 nanometers. For masks, the background has a value of 170,170,170; Epidermis value= 85,85,85; Mesophyll value= 0,0,0; Bundle Sheath Extension value= 152,152,152; Vein value= 220,220,220; Air value = 255,255,255.Resource Software Recommended: Fiji (ImageJ),url: https://imagej.net/software/fiji/downloads

  2. Aerial Docks And Boats Dataset

    • universe.roboflow.com
    zip
    Updated Aug 11, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Team Roboflow (2021). Aerial Docks And Boats Dataset [Dataset]. https://universe.roboflow.com/team-roboflow/aerial-docks-and-boats
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 11, 2021
    Dataset provided by
    Roboflow
    Authors
    Team Roboflow
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Variables measured
    Boats Bounding Boxes
    Description

    Overview

    Drone Example

    This dataset contains 74 images of aerial maritime photographs taken with via a Mavic Air 2 drone and 1,151 bounding boxes, consisting of docks, boats, lifts, jetskis, and cars. This is a multi class problem. This is an aerial object detection dataset. This is a maritime object detection dataset.

    The drone was flown at 400 ft. No drones were harmed in the making of this dataset.

    This dataset was collected and annotated by the Roboflow team, released with MIT license.

    https://i.imgur.com/9ZYLQSO.jpg" alt="Image example">

    Use Cases

    • Identify number of boats on the water over a lake via quadcopter.
    • Boat object detection dataset
    • Aerial Object Detection proof of concept
    • Identify if boat lifts have been taken out via a drone
    • Identify cars with a UAV drone
    • Find which lakes are inhabited and to which degree.
    • Identify if visitors are visiting the lake house via quad copter.
    • Proof of concept for UAV imagery project
    • Proof of concept for maritime project
    • Etc.

    This dataset is a great starter dataset for building an aerial object detection model with your drone.

    Getting Started

    Fork or download this dataset and follow our How to train state of the art object detector YOLOv4 for more. Stay tuned for particular tutorials on how to teach your UAV drone how to see and comprable airplane imagery and airplane footage.

    Annotation Guide

    See here for how to use the CVAT annotation tool that was used to create this dataset.

    About Roboflow

    Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless. :fa-spacer: Developers reduce 50% of their boilerplate code when using Roboflow's workflow, save training time, and increase model reproducibility. :fa-spacer:

    Roboflow Wordmark

  3. Data from: CVB: A Video Dataset of Cattle Visual Behaviors

    • researchdata.edu.au
    • data.csiro.au
    datadownload
    Updated Jun 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Flavio Pereira Alvarenga; Aaron Ingham; Lars Petersson; Brano Kusy; Vivien Rolland; Brendan Do; Neil Bagnall; Jody McNally; Greg Bishop-Hurley; Reza Arablouei; Ali Zia; Renuka Sharma (2023). CVB: A Video Dataset of Cattle Visual Behaviors [Dataset]. http://doi.org/10.25919/3G3T-P068
    Explore at:
    datadownloadAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    CSIROhttp://www.csiro.au/
    Authors
    Flavio Pereira Alvarenga; Aaron Ingham; Lars Petersson; Brano Kusy; Vivien Rolland; Brendan Do; Neil Bagnall; Jody McNally; Greg Bishop-Hurley; Reza Arablouei; Ali Zia; Renuka Sharma
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Time period covered
    Aug 1, 2022 - Apr 28, 2023
    Area covered
    Description

    Existing image/video datasets for cattle behavior recognition are mostly small, lack well-defined labels, or are collected in unrealistic controlled environments. This limits the utility of machine learning (ML) models learned from them. Therefore, we introduce a new dataset, called Cattle Visual Behaviors (CVB), that consists of 502 video clips, each fifteen seconds long, captured in natural lighting conditions, and annotated with eleven visually perceptible behaviors of grazing cattle. By creating and sharing CVB, our aim is to develop improved models capable of recognizing all important behaviors accurately and to assist other researchers and practitioners in developing and evaluating new ML models for cattle behavior classification using video data. The dataset is presented in the form of following three sub-directories. 1. raw_frames: contains 450 frames in each sub folder, representing 15 sec video, taking at a frames rate of 30 FPS, 2. annotations: contains the json files corresponding to the raw_frames folder. We have one json file for one video, containing the bounding box annotations for each cattle and their associated behaviors, and 3. CVB_in_AVA_format: contains the CVB data in the standard AVA dataset format which we have used to apply SlowFast model. Lineage: We use the Computer Vision Annotation Tool (CVAT) to collect our annotations. To make the procedure more efficient, we perform an initial detection and tracking of cattle in the videos using appropriate pre-trained models. The results are corrected by domain experts along with cattle behavior labeling in CVAT. The pre-hoc detection and tracking step significantly reduces the manual annotation time and effort.

  4. F

    Japanese Product Image OCR Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Japanese Product Image OCR Dataset [Dataset]. https://www.futurebeeai.com/dataset/ocr-dataset/japanese-product-image-ocr-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/data-license-agreementhttps://www.futurebeeai.com/data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    Introducing the Japanese Product Image Dataset - a diverse and comprehensive collection of images meticulously curated to propel the advancement of text recognition and optical character recognition (OCR) models designed specifically for the Japanese language.

    Dataset Contain & Diversity:

    Containing a total of 2000 images, this Japanese OCR dataset offers diverse distribution across different types of front images of Products. In this dataset, you'll find a variety of text that includes product names, taglines, logos, company names, addresses, product content, etc. Images in this dataset showcase distinct fonts, writing formats, colors, designs, and layouts.

    To ensure the diversity of the dataset and to build a robust text recognition model we allow limited (less than five) unique images from a single resource. Stringent measures have been taken to exclude any personally identifiable information (PII) and to ensure that in each image a minimum of 80% of space contains visible Japanese text.

    Images have been captured under varying lighting conditions – both day and night – along with different capture angles and backgrounds, to build a balanced OCR dataset. The collection features images in portrait and landscape modes.

    All these images were captured by native Japanese people to ensure the text quality, avoid toxic content and PII text. We used the latest iOS and Android mobile devices above 5MP cameras to click all these images to maintain the image quality. In this training dataset images are available in both JPEG and HEIC formats.

    Metadata:

    Along with the image data, you will also receive detailed structured metadata in CSV format. For each image, it includes metadata like image orientation, county, language, and device information. Each image is properly renamed corresponding to the metadata.

    The metadata serves as a valuable tool for understanding and characterizing the data, facilitating informed decision-making in the development of Japanese text recognition models.

    Update & Custom Collection:

    We're committed to expanding this dataset by continuously adding more images with the assistance of our native Japanese crowd community.

    If you require a custom product image OCR dataset tailored to your guidelines or specific device distribution, feel free to contact us. We're equipped to curate specialized data to meet your unique needs.

    Furthermore, we can annotate or label the images with bounding box or transcribe the text in the image to align with your specific project requirements using our crowd community.

    License:

    This Image dataset, created by FutureBeeAI, is now available for commercial use.

    Conclusion:

    Leverage the power of this product image OCR dataset to elevate the training and performance of text recognition, text detection, and optical character recognition models within the realm of the Japanese language. Your journey to enhanced language understanding and processing starts here.

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Agricultural Research Service (2024). X-ray CT data with semantic annotations for the paper "A workflow for segmenting soil and plant X-ray CT images with deep learning in Google’s Colaboratory" [Dataset]. https://catalog.data.gov/dataset/x-ray-ct-data-with-semantic-annotations-for-the-paper-a-workflow-for-segmenting-soil-and-p-d195a
Organization logo

Data from: X-ray CT data with semantic annotations for the paper "A workflow for segmenting soil and plant X-ray CT images with deep learning in Google’s Colaboratory"

Related Article
Explore at:
Dataset updated
May 2, 2024
Dataset provided by
Agricultural Research Servicehttps://www.ars.usda.gov/
Description

Leaves from genetically unique Juglans regia plants were scanned using X-ray micro-computed tomography (microCT) on the X-ray μCT beamline (8.3.2) at the Advanced Light Source (ALS) in Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA USA). Soil samples were collected in Fall of 2017 from the riparian oak forest located at the Russell Ranch Sustainable Agricultural Institute at the University of California Davis. The soil was sieved through a 2 mm mesh and was air dried before imaging. A single soil aggregate was scanned at 23 keV using the 10x objective lens with a pixel resolution of 650 nanometers on beamline 8.3.2 at the ALS. Additionally, a drought stressed almond flower bud (Prunus dulcis) from a plant housed at the University of California, Davis, was scanned using a 4x lens with a pixel resolution of 1.72 µm on beamline 8.3.2 at the ALS Raw tomographic image data was reconstructed using TomoPy. Reconstructions were converted to 8-bit tif or png format using ImageJ or the PIL package in Python before further processing. Images were annotated using Intel’s Computer Vision Annotation Tool (CVAT) and ImageJ. Both CVAT and ImageJ are free to use and open source. Leaf images were annotated in following Théroux-Rancourt et al. (2020). Specifically, Hand labeling was done directly in ImageJ by drawing around each tissue; with 5 images annotated per leaf. Care was taken to cover a range of anatomical variation to help improve the generalizability of the models to other leaves. All slices were labeled by Dr. Mina Momayyezi and Fiona Duong.To annotate the flower bud and soil aggregate, images were imported into CVAT. The exterior border of the bud (i.e. bud scales) and flower were annotated in CVAT and exported as masks. Similarly, the exterior of the soil aggregate and particulate organic matter identified by eye were annotated in CVAT and exported as masks. To annotate air spaces in both the bud and soil aggregate, images were imported into ImageJ. A gaussian blur was applied to the image to decrease noise and then the air space was segmented using thresholding. After applying the threshold, the selected air space region was converted to a binary image with white representing the air space and black representing everything else. This binary image was overlaid upon the original image and the air space within the flower bud and aggregate was selected using the “free hand” tool. Air space outside of the region of interest for both image sets was eliminated. The quality of the air space annotation was then visually inspected for accuracy against the underlying original image; incomplete annotations were corrected using the brush or pencil tool to paint missing air space white and incorrectly identified air space black. Once the annotation was satisfactorily corrected, the binary image of the air space was saved. Finally, the annotations of the bud and flower or aggregate and organic matter were opened in ImageJ and the associated air space mask was overlaid on top of them forming a three-layer mask suitable for training the fully convolutional network. All labeling of the soil aggregate and soil aggregate images was done by Dr. Devin Rippner. These images and annotations are for training deep learning models to identify different constituents in leaves, almond buds, and soil aggregates Limitations: For the walnut leaves, some tissues (stomata, etc.) are not labeled and only represent a small portion of a full leaf. Similarly, both the almond bud and the aggregate represent just one single sample of each. The bud tissues are only divided up into buds scales, flower, and air space. Many other tissues remain unlabeled. For the soil aggregate annotated labels are done by eye with no actual chemical information. Therefore particulate organic matter identification may be incorrect. Resources in this dataset:Resource Title: Annotated X-ray CT images and masks of a Forest Soil Aggregate. File Name: forest_soil_images_masks_for_testing_training.zipResource Description: This aggregate was collected from the riparian oak forest at the Russell Ranch Sustainable Agricultural Facility. The aggreagate was scanned using X-ray micro-computed tomography (microCT) on the X-ray μCT beamline (8.3.2) at the Advanced Light Source (ALS) in Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA USA) using the 10x objective lens with a pixel resolution of 650 nanometers. For masks, the background has a value of 0,0,0; pores spaces have a value of 250,250, 250; mineral solids have a value= 128,0,0; and particulate organic matter has a value of = 000,128,000. These files were used for training a model to segment the forest soil aggregate and for testing the accuracy, precision, recall, and f1 score of the model.Resource Title: Annotated X-ray CT images and masks of an Almond bud (P. Dulcis). File Name: Almond_bud_tube_D_P6_training_testing_images_and_masks.zipResource Description: Drought stressed almond flower bud (Prunis dulcis) from a plant housed at the University of California, Davis, was scanned by X-ray micro-computed tomography (microCT) on the X-ray μCT beamline (8.3.2) at the Advanced Light Source (ALS) in Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA USA) using the 4x lens with a pixel resolution of 1.72 µm using. For masks, the background has a value of 0,0,0; air spaces have a value of 255,255, 255; bud scales have a value= 128,0,0; and flower tissues have a value of = 000,128,000. These files were used for training a model to segment the almond bud and for testing the accuracy, precision, recall, and f1 score of the model.Resource Software Recommended: Fiji (ImageJ),url: https://imagej.net/software/fiji/downloads Resource Title: Annotated X-ray CT images and masks of Walnut leaves (J. Regia) . File Name: 6_leaf_training_testing_images_and_masks_for_paper.zipResource Description: Stems were collected from genetically unique J. regia accessions at the 117 USDA-ARS-NCGR in Wolfskill Experimental Orchard, Winters, California USA to use as scion, and were grafted by Sierra Gold Nursery onto a commonly used commercial rootstock, RX1 (J. microcarpa × J. regia). We used a common rootstock to eliminate any own-root effects and to simulate conditions for a commercial walnut orchard setting, where rootstocks are commonly used. The grafted saplings were repotted and transferred to the Armstrong lathe house facility at the University of California, Davis in June 2019, and kept under natural light and temperature. Leaves from each accession and treatment were scanned using X-ray micro-computed tomography (microCT) on the X-ray μCT beamline (8.3.2) at the Advanced Light Source (ALS) in Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA USA) using the 10x objective lens with a pixel resolution of 650 nanometers. For masks, the background has a value of 170,170,170; Epidermis value= 85,85,85; Mesophyll value= 0,0,0; Bundle Sheath Extension value= 152,152,152; Vein value= 220,220,220; Air value = 255,255,255.Resource Software Recommended: Fiji (ImageJ),url: https://imagej.net/software/fiji/downloads

Search
Clear search
Close search
Google apps
Main menu