19 datasets found
  1. O

    VegMachine - Online Mapping Tool

    • data.qld.gov.au
    html
    Updated Sep 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environment, Tourism, Science and Innovation (2023). VegMachine - Online Mapping Tool [Dataset]. https://www.data.qld.gov.au/dataset/vegmachine-online-mapping-tool
    Explore at:
    html(100 bytes)Available download formats
    Dataset updated
    Sep 12, 2023
    Dataset authored and provided by
    Environment, Tourism, Science and Innovation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    VegMachine is an online tool that uses satellite imagery to summarise decades of change in Australia’s landscape. It’s simple to operate, easy to understand, and free to use.

    With VegMachine you can: view satellite image land cover products; measure land cover change and fire scars; generate comprehensive ground cover monitoring reports and better understand the links between management, climate and vegetation cover.

  2. I

    Interactive Map Creation Tools Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Interactive Map Creation Tools Report [Dataset]. https://www.marketreportanalytics.com/reports/interactive-map-creation-tools-55534
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 3, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The interactive map creation tools market is experiencing robust growth, driven by increasing demand for visually engaging data representation across diverse sectors. The market's value is estimated at $2 billion in 2025, exhibiting a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033. This growth is fueled by several factors, including the rising adoption of location-based services, the proliferation of readily available geographic data, and the growing need for effective data visualization in business intelligence and marketing. The individual user segment currently holds a significant share, but corporate adoption is rapidly expanding, propelled by the need for sophisticated map-based analytics and internal communication. Furthermore, the paid use segment is anticipated to grow more quickly than the free use segment, reflecting the willingness of businesses and organizations to invest in advanced features and functionalities. This trend is further amplified by the increasing integration of interactive maps into various platforms, such as business intelligence dashboards and website content. Geographic expansion is also a significant growth driver. North America and Europe currently dominate the market, but the Asia-Pacific region is showing significant promise due to rapid technological advancements and increasing internet penetration. Competitive pressures remain high, with established players such as Google, Mapbox, and ArcGIS StoryMaps vying for market share alongside innovative startups offering specialized solutions. The market's restraints are primarily focused on the complexities of data integration and the technical expertise required for effective map creation. However, ongoing developments in user-friendly interfaces and readily available data integration tools are mitigating these challenges. The future of the interactive map creation tools market promises even greater innovation, fueled by developments in augmented reality (AR), virtual reality (VR), and 3D visualization technologies. We expect to see the emergence of more sophisticated tools catering to niche requirements, further driving market segmentation and specialization. Continued investment in research and development will also play a crucial role in pushing the boundaries of what's possible with interactive map creation. The market presents opportunities for companies to develop tools which combine data analytics and interactive map design.

  3. n

    LANDISVIEW 2.0 : Free Spatial Data Analysis

    • cmr.earthdata.nasa.gov
    Updated Mar 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). LANDISVIEW 2.0 : Free Spatial Data Analysis [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214586381-SCIOPS
    Explore at:
    Dataset updated
    Mar 5, 2021
    Time period covered
    Jan 1, 1970 - Present
    Description

    LANDISVIEW is a tool, developed at the Knowledge Engineering Laboratory at Texas A&M University, to visualize and animate 8-bit/16-bit ERDAS GIS format (e.g., LANDIS and LANDIS-II output maps). It can also convert 8-bit/16-bit ERDAS GIS format into ASCII and batch files. LANDISVIEW provides two major functions: 1) File Viewer: Files can be viewed sequentially and an output can be generated as a movie file or as an image file. 2) File converter: It will convert the loaded files for compatibility with 3rd party software, such as Fragstats, a widely used spatial analysis tool. Some available features of LANDISVIEW include: 1) Display cell coordinates and values. 2) Apply user-defined color palette to visualize files. 3) Save maps as pictures and animations as video files (*.avi). 4) Convert ERDAS files into ASCII grids for compatibility with Fragstats. (Source: http://kelab.tamu.edu/)

  4. d

    California State Waters Map Series--Point Sur to Point Arguello Web Services...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Point Sur to Point Arguello Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-point-sur-to-point-arguello-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Point Arguello, California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Point Sur to Point Arguello map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Point Sur to Point Arguello map area data layers. Data layers are symbolized as shown on the associated map sheets.

  5. a

    QGIS - Open Source GIS Software

    • hub.arcgis.com
    • home-ecgis.hub.arcgis.com
    Updated Aug 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eaton County Michigan (2018). QGIS - Open Source GIS Software [Dataset]. https://hub.arcgis.com/documents/57198670f4234919bfab87fb64d40a82
    Explore at:
    Dataset updated
    Aug 9, 2018
    Dataset authored and provided by
    Eaton County Michigan
    Description

    This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.

  6. A

    Data from: California State Waters Map Series--Santa Barbara Channel Web...

    • data.amerigeoss.org
    • data.usgs.gov
    • +3more
    xml
    Updated Aug 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2022). California State Waters Map Series--Santa Barbara Channel Web Services [Dataset]. https://data.amerigeoss.org/dataset/california-state-waters-map-series-santa-barbara-channel-web-services-b23aa
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Aug 23, 2022
    Dataset provided by
    United States
    Area covered
    Santa Barbara Channel
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Santa Barbara Channel map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Santa Barbara Channel map area data layers. Data layers are symbolized as shown on the associated map sheets.

  7. d

    Data from: Geologic Map Index of Alaska

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Jul 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alaska Division of Geological & Geophysical Surveys (Point of Contact) (2023). Geologic Map Index of Alaska [Dataset]. https://catalog.data.gov/dataset/geologic-map-index-of-alaska1
    Explore at:
    Dataset updated
    Jul 5, 2023
    Dataset provided by
    Alaska Division of Geological & Geophysical Surveys (Point of Contact)
    Area covered
    Alaska
    Description

    The Geologic Map Index of Alaska (Map Index) is a GIS web feature service paired with an interactive web map application that provides access to an actively growing geographic index of geology-related maps of Alaska and adjacent areas. This online research tool provides the locations and outlines of most DGGS and U.S. Geological Survey (USGS) geologic maps of Alaska in a single, interactive web application. It allows searches of the map database by geographic area of interest, keywords, publishing agency, dates, and other criteria. The search results link DGGS's comprehensive, multi-agency publications database, where users can view and download publications for free. Map Index provides access to traditional geologic maps and sample location, geologic hazards, and geologic resources maps. In addition, DGGS plans to add outlines and data to the application for new and remaining geologic maps published by DGGS, USGS, U.S. Bureau of Mines, and U.S. Bureau of Land Management. Reports without maps can be accessed through DGGS's comprehensive publications database, .

  8. w

    Printed Topographic Map Index 100K/250K

    • data.wu.ac.at
    • datadiscoverystudio.org
    html, pdf
    Updated Jun 26, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Printed Topographic Map Index 100K/250K [Dataset]. https://data.wu.ac.at/schema/data_gov_au/NDE5NTdhNDgtZDE4Yy00OTc0LWI5MGEtNDUxZTAzNzJmNDYx
    Explore at:
    pdf, htmlAvailable download formats
    Dataset updated
    Jun 26, 2018
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    9720ae48684969b0cbdecc2cb101608b78ec9113
    Description

    The two versions of the printed Topographic Map Index are: -the 1:100 000 / 1:250 000 Topographic Map Index -the 1:50 000 Topographic Map Index

    Topographic map indexes are also available as digital data. Maps are listed by name on the back of the index. The 1:50 000 Index also lists availability of Orthophoto Map (OPM) and Topographic Line Map (TLM) for available 1:50 000 maps.

    Both indexes are available in printed form FREE from your nearest topographic map retailer or from the Geoscience Australia Sales Centre. You can also download PDFs of each index.

    Note: To print these PDFs at 100% requires an A0 printer. They are best for viewing on-screen. For new maps which may have been released after these indexes were published, please refer to the new releases page or use the Product Search tool.

    Product Specifications

    Coverage: Australia Currency: 2013 (PDF); 2013 (data) Coordinates: Geographical Datum: GDA94 Format: PDF ; Paper copy Medium: 2004 GIS Data Free online, free folded / download index. Forward Program: Updated annually

  9. Map of articles about "Teaching Open Science"

    • zenodo.org
    • data.niaid.nih.gov
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Isabel Steinhardt; Isabel Steinhardt (2020). Map of articles about "Teaching Open Science" [Dataset]. http://doi.org/10.5281/zenodo.3371415
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Isabel Steinhardt; Isabel Steinhardt
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This description is part of the blog post "Systematic Literature Review of teaching Open Science" https://sozmethode.hypotheses.org/839

    According to my opinion, we do not pay enough attention to teaching Open Science in higher education. Therefore, I designed a seminar to teach students the practices of Open Science by doing qualitative research.About this seminar, I wrote the article ”Teaching Open Science and qualitative methods“. For the article ”Teaching Open Science and qualitative methods“, I started to review the literature on ”Teaching Open Science“. The result of my literature review is that certain aspects of Open Science are used for teaching. However, Open Science with all its aspects (Open Access, Open Data, Open Methodology, Open Science Evaluation and Open Science Tools) is not an issue in publications about teaching.

    Based on this insight, I have started a systematic literature review. I realized quickly that I need help to analyse and interpret the articles and to evaluate my preliminary findings. Especially different disciplinary cultures of teaching different aspects of Open Science are challenging, as I myself, as a social scientist, do not have enough insight to be able to interpret the results correctly. Therefore, I would like to invite you to participate in this research project!

    I am now looking for people who would like to join a collaborative process to further explore and write the systematic literature review on “Teaching Open Science“. Because I want to turn this project into a Massive Open Online Paper (MOOP). According to the 10 rules of Tennant et al (2019) on MOOPs, it is crucial to find a core group that is enthusiastic about the topic. Therefore, I am looking for people who are interested in creating the structure of the paper and writing the paper together with me. I am also looking for people who want to search for and review literature or evaluate the literature I have already found. Together with the interested persons I would then define, the rules for the project (cf. Tennant et al. 2019). So if you are interested to contribute to the further search for articles and / or to enhance the interpretation and writing of results, please get in touch. For everyone interested to contribute, the list of articles collected so far is freely accessible at Zotero: https://www.zotero.org/groups/2359061/teaching_open_science. The figure shown below provides a first overview of my ongoing work. I created the figure with the free software yEd and uploaded the file to zenodo, so everyone can download and work with it:

    To make transparent what I have done so far, I will first introduce what a systematic literature review is. Secondly, I describe the decisions I made to start with the systematic literature review. Third, I present the preliminary results.

    Systematic literature review – an Introduction

    Systematic literature reviews “are a method of mapping out areas of uncertainty, and identifying where little or no relevant research has been done.” (Petticrew/Roberts 2008: 2). Fink defines the systematic literature review as a “systemic, explicit, and reproducible method for identifying, evaluating, and synthesizing the existing body of completed and recorded work produced by researchers, scholars, and practitioners.” (Fink 2019: 6). The aim of a systematic literature reviews is to surpass the subjectivity of a researchers’ search for literature. However, there can never be an objective selection of articles. This is because the researcher has for example already made a preselection by deciding about search strings, for example “Teaching Open Science”. In this respect, transparency is the core criteria for a high-quality review.

    In order to achieve high quality and transparency, Fink (2019: 6-7) proposes the following seven steps:

    1. Selecting a research question.
    2. Selecting the bibliographic database.
    3. Choosing the search terms.
    4. Applying practical screening criteria.
    5. Applying methodological screening criteria.
    6. Doing the review.
    7. Synthesizing the results.

    I have adapted these steps for the “Teaching Open Science” systematic literature review. In the following, I will present the decisions I have made.

    Systematic literature review – decisions I made

    1. Research question: I am interested in the following research questions: How is Open Science taught in higher education? Is Open Science taught in its full range with all aspects like Open Access, Open Data, Open Methodology, Open Science Evaluation and Open Science Tools? Which aspects are taught? Are there disciplinary differences as to which aspects are taught and, if so, why are there such differences?
    2. Databases: I started my search at the Directory of Open Science (DOAJ). “DOAJ is a community-curated online directory that indexes and provides access to high quality, open access, peer-reviewed journals.” (https://doaj.org/) Secondly, I used the Bielefeld Academic Search Engine (base). Base is operated by Bielefeld University Library and “one of the world’s most voluminous search engines especially for academic web resources” (base-search.net). Both platforms are non-commercial and focus on Open Access publications and thus differ from the commercial publication databases, such as Web of Science and Scopus. For this project, I deliberately decided against commercial providers and the restriction of search in indexed journals. Thus, because my explicit aim was to find articles that are open in the context of Open Science.
    3. Search terms: To identify articles about teaching Open Science I used the following search strings: “teaching open science” OR teaching “open science” OR teach „open science“. The topic search looked for the search strings in title, abstract and keywords of articles. Since these are very narrow search terms, I decided to broaden the method. I searched in the reference lists of all articles that appear from this search for further relevant literature. Using Google Scholar I checked which other authors cited the articles in the sample. If the so checked articles met my methodological criteria, I included them in the sample and looked through the reference lists and citations at Google Scholar. This process has not yet been completed.
    4. Practical screening criteria: I have included English and German articles in the sample, as I speak these languages (articles in other languages are very welcome, if there are people who can interpret them!). In the sample only journal articles, articles in edited volumes, working papers and conference papers from proceedings were included. I checked whether the journals were predatory journals – such articles were not included. I did not include blogposts, books or articles from newspapers. I only included articles that fulltexts are accessible via my institution (University of Kassel). As a result, recently published articles at Elsevier could not be included because of the special situation in Germany regarding the Project DEAL (https://www.projekt-deal.de/about-deal/). For articles that are not freely accessible, I have checked whether there is an accessible version in a repository or whether preprint is available. If this was not the case, the article was not included. I started the analysis in May 2019.
    5. Methodological criteria: The method described above to check the reference lists has the problem of subjectivity. Therefore, I hope that other people will be interested in this project and evaluate my decisions. I have used the following criteria as the basis for my decisions: First, the articles must focus on teaching. For example, this means that articles must describe how a course was designed and carried out. Second, at least one aspect of Open Science has to be addressed. The aspects can be very diverse (FOSS, repositories, wiki, data management, etc.) but have to comply with the principles of openness. This means, for example, I included an article when it deals with the use of FOSS in class and addresses the aspects of openness of FOSS. I did not include articles when the authors describe the use of a particular free and open source software for teaching but did not address the principles of openness or re-use.
    6. Doing the review: Due to the methodical approach of going through the reference lists, it is possible to create a map of how the articles relate to each other. This results in thematic clusters and connections between clusters. The starting point for the map were four articles (Cook et al. 2018; Marsden, Thompson, and Plonsky 2017; Petras et al. 2015; Toelch and Ostwald 2018) that I found using the databases and criteria described above. I used yEd to generate the network. „yEd is a powerful desktop application that can be used to quickly and effectively generate high-quality diagrams.” (https://www.yworks.com/products/yed) In the network, arrows show, which articles are cited in an article and which articles are cited by others as well. In addition, I made an initial rough classification of the content using colours. This classification is based on the contents mentioned in the articles’ title and abstract. This rough content classification requires a more exact, i.e., content-based subdivision and

  10. d

    California State Waters Map Series--Offshore of Coal Oil Point Web Services

    • catalog.data.gov
    • search.dataone.org
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Offshore of Coal Oil Point Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-offshore-of-coal-oil-point-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Coal Oil Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore Coal Oil Point map area data layers. Data layers are symbolized as shown on the associated map sheets.

  11. GeoJSON files for the MCSC's Trucking Industry Decarbonization Explorer...

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Danika Eamer; Danika Eamer; Micah Borrero; Micah Borrero; Noman Bashir; Noman Bashir (2025). GeoJSON files for the MCSC's Trucking Industry Decarbonization Explorer (Geo-TIDE) [Dataset]. http://doi.org/10.5281/zenodo.13207716
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 28, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Danika Eamer; Danika Eamer; Micah Borrero; Micah Borrero; Noman Bashir; Noman Bashir
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Summary

    Geojson files used to visualize geospatial layers relevant to identifying and assessing trucking fleet decarbonization opportunities with the MIT Climate & Sustainability Consortium's Geospatial Trucking Industry Decarbonization Explorer (Geo-TIDE) tool.

    Relevant Links

    Link to the online version of the tool (requires creation of a free user account).

    Link to GitHub repo with source code to produce this dataset and deploy the Geo-TIDE tool locally.

    Funding

    This dataset was produced with support from the MIT Climate & Sustainability Consortium.

    Original Data Sources

    These geojson files draw from and synthesize a number of different datasets and tools. The original data sources and tools are described below:

    Filename(s)Description of Original Data Source(s)Link(s) to Download Original Data
    License and Attribution for Original Data Source(s)

    faf5_freight_flows/*.geojson

    trucking_energy_demand.geojson

    highway_assignment_links_*.geojson

    infrastructure_pooling_thought_experiment/*.geojson

    Regional and highway-level freight flow data obtained from the Freight Analysis Framework Version 5. Shapefiles for FAF5 region boundaries and highway links are obtained from the National Transportation Atlas Database. Emissions attributes are evaluated by incorporating data from the 2002 Vehicle Inventory and Use Survey and the GREET lifecycle emissions tool maintained by Argonne National Lab.

    Shapefile for FAF5 Regions

    Shapefile for FAF5 Highway Network Links

    FAF5 2022 Origin-Destination Freight Flow database

    FAF5 2022 Highway Assignment Results

    Attribution for Shapefiles: United States Department of Transportation Bureau of Transportation Statistics National Transportation Atlas Database (NTAD). Available at: https://geodata.bts.gov/search?collection=Dataset.

    License for Shapefiles: This NTAD dataset is a work of the United States government as defined in 17 U.S.C. § 101 and as such are not protected by any U.S. copyrights. This work is available for unrestricted public use.

    Attribution for Origin-Destination Freight Flow database: National Transportation Research Center in the Oak Ridge National Laboratory with funding from the Bureau of Transportation Statistics and the Federal Highway Administration. Freight Analysis Framework Version 5: Origin-Destination Data. Available from: https://faf.ornl.gov/faf5/Default.aspx. Obtained on Aug 5, 2024. In the public domain.

    Attribution for the 2022 Vehicle Inventory and Use Survey Data: United States Department of Transportation Bureau of Transportation Statistics. Vehicle Inventory and Use Survey (VIUS) 2002 [supporting datasets]. 2024. https://doi.org/10.21949/1506070

    Attribution for the GREET tool (original publication): Argonne National Laboratory Energy Systems Division Center for Transportation Research. GREET Life-cycle Model. 2014. Available from this link.

    Attribution for the GREET tool (2022 updates): Wang, Michael, et al. Summary of Expansions and Updates in GREET® 2022. United States. https://doi.org/10.2172/1891644

    grid_emission_intensity/*.geojson

    Emission intensity data is obtained from the eGRID database maintained by the United States Environmental Protection Agency.

    eGRID subregion boundaries are obtained as a shapefile from the eGRID Mapping Files database.

    eGRID database

    Shapefile with eGRID subregion boundaries

    Attribution for eGRID data: United States Environmental Protection Agency: eGRID with 2022 data. Available from https://www.epa.gov/egrid/download-data. In the public domain.

    Attribution for shapefile: United States Environmental Protection Agency: eGRID Mapping Files. Available from https://www.epa.gov/egrid/egrid-mapping-files. In the public domain.

    US_elec.geojson

    US_hy.geojson

    US_lng.geojson

    US_cng.geojson

    US_lpg.geojson

    Locations of direct current fast chargers and refueling stations for alternative fuels along U.S. highways. Obtained directly from the Station Data for Alternative Fuel Corridors in the Alternative Fuels Data Center maintained by the United States Department of Energy Office of Energy Efficiency and Renewable Energy.

    US_elec.geojson

    US_hy.geojson

    US_lng.geojson

    US_cng.geojson

    US_lpg.geojson

    Attribution: U.S. Department of Energy, Energy Efficiency and Renewable Energy. Alternative Fueling Station Corridors. 2024. Available from: https://afdc.energy.gov/corridors. In the public domain.

    These data and software code ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance"), for the U.S. Department of Energy ("DOE"), and may be used for any purpose whatsoever.

    daily_grid_emission_profiles/*.geojson

    Hourly emission intensity data obtained from ElectricityMaps.

    Original data can be downloaded as csv files from the ElectricityMaps United States of America database

    Shapefile with region boundaries used by ElectricityMaps

    License: Open Database License (ODbL). Details here: https://www.electricitymaps.com/data-portal

    Attribution for csv files: Electricity Maps (2024). United States of America 2022-23 Hourly Carbon Intensity Data (Version January 17, 2024). Electricity Maps Data Portal. https://www.electricitymaps.com/data-portal.

    Attribution for shapefile with region boundaries: ElectricityMaps contributors (2024). electricitymaps-contrib (Version v1.155.0) [Computer software]. https://github.com/electricitymaps/electricitymaps-contrib.

    gen_cap_2022_state_merged.geojson

    trucking_energy_demand.geojson

    Grid electricity generation and net summer power capacity data is obtained from the state-level electricity database maintained by the United States Energy Information Administration.

    U.S. state boundaries obtained from "https://www.sciencebase.gov/catalog/item/52c78623e4b060b9ebca5be5">this United

  12. n

    MedOBIS (EUROBIS)

    • cmr.earthdata.nasa.gov
    Updated Apr 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). MedOBIS (EUROBIS) [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214586056-SCIOPS.html
    Explore at:
    Dataset updated
    Apr 20, 2017
    Time period covered
    Jan 1, 1937 - Dec 31, 2000
    Area covered
    Description

    An attempt to collect, format, analyse and disseminate surveyed marine biological data deriving from the Eastern Mediterranean and Black Sea region is currently under development at the Hellenic Center for Marine Research (HCMR, Greece). The effort has been supported by the MedOBIS project (Mediterranean Ocean Biogeographic Information System) and has been carried out in cooperation with the Aristotelian University of Thessaloniki (Greece), the National Institute of Oceanography (Israel) and the Institute of Biology of the Southern Seas (Ukraine).

        The aim is to develop a taxon-based biogeography database and online data server with a link to survey and provide satellite environmental data. Currently, the primary features of the MedOBIS application are its offline GIS data formatting capabilities and its online Java and JavaScript enabling data server with taxon-based search, mapping and data downloading capabilities. In its completion, the MedOBIS online marine biological data system (http://www.iobis.org/OBISWEB/ObisDynPage1.jsp?content=meta/42.html) will be a single source of biological and environmental data (raw and analysed) as well as an online GIS tool for access of historical and current data by marine researchers. It will function as the Eastern Mediterranean and Black Sea node of EurOBIS (the European node of the International OBIS initiative, part of the Census of Marine Life).
    
        INTRODUCTION
    
        The international and interdisciplinary nature of the biological degradation issue as well as the technological advances of the Internet capabilities allowed the development of a considerable number of interrelated online databases. The free dissemination of valuable historical and current biological, environmental and genetic information has contributed to the establishment of an interdisciplinary platform targeted towards information integration at regional and also at global scales and to the development of information-based management schemes about our common interest.
    
        The spatial component of these data has led to the integration of the information by means of the Geographic Information System (GIS) technology. The latter is widely used as the natural framework for spatial data handling (Wright & Bartlett 1999, Valavanis 2002). GIS serves as the basic technological infrastructure for several online marine biodiversity databases available on the Internet today. Developments like OBIS (Ocean Biogeographic Information System, "http://www.iobis.org/"), OBIS-SEAMAP (Spatial Ecological Analysis of Megavertebrate Populations, "http://seamap.env.duke.edu/") and FIGIS (FAO Fisheries Global Information System, http://www.fao.org/fishery/figis) facilitate the study of anthropogenic impacts on threatened species, enhance our ability to test biogeographic and biodiversity models, support modelling efforts to predict distribution changes in response to environmental change and develop a strong potential for the public outreach component. In addition, such online database systems provide a broader view of marine biodiversity problems and allow the development of management practices that are based on synthetic analysis of interdisciplinary data (Schalk 1998, Decker & O'Dor 2002, Tsontos & Kiefer 2002).
    
        Towards this end, a development of a new online marine biological information system is presented here in its initial phase. MedOBIS (Mediterranean Ocean Biogeographic Information System) intends to assemble, formulate and disseminate marine biological data for the Eastern Mediterranean and Black Sea regions focusing on the assurance and longevity of historical surveyed data, the assembly of current and new information and the dissemination of raw and integrated biological and environmental data and future products through the Internet.
    
        MedOBIS DESCRIPTION
    
        MedOBIS current development consists of four main phases (Fig. 1). The data assembly phase is based on the free contribution of biological data from various national and international scientific surveys in the region. The data formatting phase is based on a GIS (ESRI, 1994), under which the geographic location of data stations is used to convert station data and their attributes to GIS shapefiles. The data analysis phase is based on data integration through GIS and spatial analyses (e.g. species distribution maps, species-environment relations, etc). Finally, the dissemination phase is based on ALOV Map, a free portable Java application for publication of vector and raster maps to the Internet and interactive viewing on web browsers. It supports navigation and search capabilities and allows working with multiple layers, thematic maps, hyperlinked features and attributed data.
    
        During the on-going data assembly phase, a total number of 776 stations with surveyed benthic biological data was employed. These data include mainly benthic species abundance (for nearly 3000 benthic organisms), benthic substrate types and several environmental parameters. Currently, 100 stations have been assembled for the Ionian Sea, 570 stations for the Aegean Sea and 106 stations for the Black Sea. The temporal resolution of these data extends for the period 1937-2000 while most data cover the period 1986-1996. Additionally, monthly satellite images of sea surface temperature (SST) and chlorophyll (Chl-a) were assembled for the period 1998-2003. Satellite data were obtained from the Advanced Very High Resolution Radiometer (AVHRR SST) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS Chl-a). 
    
        During the data formatting phase, all assembled surveyed stations were converted to a GIS shapefile (Fig. 2). This GIS information layer includes the geographic coordinates of the stations as well as stations' identification number. Station data attributes were organised in an MS Access Database while satellite data were embedded in a GIS database as GIS regular grids. The MedOBIS data analysis phase is still at the initial stage. Several off line analytical published efforts (e.g. Arvanitidis et al. 2002, Valavanis et al. 2004a,b,c) will be included in the MedOBIS development, which mainly focus on species distribution maps, mapping of productive oceanic processes and species-environment interactions. 
    
        The MedOBIS dissemination phase ("http://www.medobis.org/") is based on ALOV Map ("http://www.alov.org/"), a joint project of ALOV Software and the Archaeological Computing Laboratory, University of Sydney, Australia. ALOV Map is a Java-based application for publication of GIS data on the Internet and interactive viewing on web browsers. ALOV Map is designed to display geographical information stored in shapefiles or in any SQL database or even in an XML (Extensible Markup Language) document serving as a database. MedOBIS uses ALOV Map's full capabilities and runs in a client-server mode (Fig. 3). ALOV Map is connected to an MS Access database via a servlet container. This architecture was needed to connect the biological data with the spatial data and facilitate search options, such as, which species are found at which stations. Additionally, a JavaScript code is invoked, which searches the data, pops up a window with the results and then shows the relevant stations on the map.
    
        To provide a taxon-based search capability to the MedOBIS development, the sampling data as well as the relevant spatial data are stored in the database, so taxonomic data can be linked with the geographical data by SQL (Structured Query Language) queries. To reference each species to its location on the map, the database queries are stored and added to the applet as individual layers. A search function written in JavaScript searches the attribute data of that layer, displays the results in a separate window and marks the matching stations on the map (Fig. 4). Finally, selecting several stations by drawing a zooming rectangle on the map provides a list with predefined themes from which the user may select more information (Fig. 5). 
    
        CURRENT LIMITATIONS AND FUTURE PLANS
    
        A disadvantage of embedding information from the database as a layer is the relatively long download time due to the current MedOBIS-ALOV Map client-server architecture. An appropriate solution would be a direct search on the server side, which will allow partial data downloading to the client side. This work will be embedded in the MedOBIS application in the future (client-side architecture), when the size of assembled data becomes relatively 'heavy' for the current client-server architecture. This is an on-going process, since the MedOBIS initiative has been endorsed by the "Excellence of the Institute of Marine Biology of Crete (IMBC) in Marine Biodiversity", a Hellenic National Project that has been evaluated and approved by European experts. As more data will be assembled in time-series databases, an additional future work will include the development of MedOBIS data analysis phase, which is planned to include GIS modelling/mapping of species-environment interactions.
    
        Size reference: 2953 species; 776 stations
    
        [Source: The information provided in the summary was extracted from the MarBEF Data System at "http://www.marbef.org/data/eurobisproviders.php"]
    
  13. g

    California State Waters Map Series--Offshore of Santa Barbara Web Services |...

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California State Waters Map Series--Offshore of Santa Barbara Web Services | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_california-state-waters-map-series-offshore-of-santa-barbara-web-services/
    Explore at:
    Area covered
    Santa Barbara, California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Santa Barbara map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Santa Barbara to Pescadero Region data layers. Data layers are symbolized as shown on the associated map sheets.

  14. D

    Property Gateway

    • detroitdata.org
    • hub.arcgis.com
    • +1more
    Updated Apr 28, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oakland County, Michigan (2017). Property Gateway [Dataset]. https://detroitdata.org/dataset/property-gateway3
    Explore at:
    html, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Apr 28, 2017
    Dataset provided by
    Oakland County, Michigan
    Description

    Property Gateway is a leading-edge Internet tool built to provide free and fee-based online access to Oakland County's land and property information including tax parcel reports and maps. Reports and maps can be purchased via a credit card transaction; recurring users request a business account. Visit Property Gateway, HERE.

  15. n

    13 - We The People - Esri GeoInquiries collection for Government

    • library.ncge.org
    Updated Jun 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2020). 13 - We The People - Esri GeoInquiries collection for Government [Dataset]. https://library.ncge.org/documents/627d42c2a2dc4d11b8e4f6db4010fdb3
    Explore at:
    Dataset updated
    Jun 8, 2020
    Dataset authored and provided by
    NCGE
    Description

    THE GEOINQUIRIES™ COLLECTION FOR GOVERNMENT AND CIVICShttp://www.esri.com/geoinquiriesThe Esri GeoInquiry™ collection for Government and Civics contains 20 free, web-mapping activities that correspond and extend map-based concepts in leading middle school Government and Civics science textbooks. The activities use a standard inquiry-based instructional model, require about 15 minutes for a teacher to deliver, and are device agnostic. The activities harmonize with the C3 Framework. Fifteen activities are Level 1, requiring no login. Five activities are Level 2, requiring a login and use of the analysis tools in ArcGIS Online.All Government and Civics GeoInquiries™ can be found at: http://esriurl.com/govGeoInquiries All GeoInquiries™ can be found at: http://www.esri.com/geoinquiries

  16. d

    California State Waters Map Series--Offshore of Ventura Web Services

    • catalog.data.gov
    • data.usgs.gov
    • +3more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Offshore of Ventura Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-offshore-of-ventura-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Ventura, California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Ventura map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Ventura map area data layers. Data layers are symbolized as shown on the associated map sheets.

  17. Australian Hydrogen Projects Dataset (June 2024)

    • ecat.ga.gov.au
    • researchdata.edu.au
    esri: map service +3
    Updated Aug 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Commonwealth of Australia (Geoscience Australia) (2024). Australian Hydrogen Projects Dataset (June 2024) [Dataset]. https://ecat.ga.gov.au/geonetwork/srv/api/records/f5ee6be8-33fe-4720-ab77-7fc32825c5a1
    Explore at:
    esri: map service, ogc:wfs, www:link-1.0-http--link, ogc:wmsAvailable download formats
    Dataset updated
    Aug 8, 2024
    Dataset provided by
    Geoscience Australiahttp://ga.gov.au/
    Area covered
    Description

    This dataset features Australian hydrogen projects that are active in the development, construction, or operating phase, and meet renewable hydrogen or carbon capture and storage (CCS) hydrogen production methods outlined in Australia's National Hydrogen Strategy. This dataset aims is to provide a detailed snapshot of hydrogen activity across Australia. It includes location data, proponent details, and descriptions for all hydrogen projects listed. Additional data is included, such as the energy source for hydrogen production, the method of hydrogen production, and the amount of hydrogen to be produced per year. This dataset is the basis of the point-location map of active Australian hydrogen projects featured on the Australia Hydrogen Opportunities Tool (AusH2.ga.gov.au). AusH2 aims to attract investment in Australia’s hydrogen industry, providing high quality, free, online geospatial analysis tools and data for mapping and understanding Australia’s hydrogen potential. It hosts key national-scale datasets, such as locations of wind and solar resources and distribution of infrastructure, as well as the Hydrogen Economic Fairways Tool (HEFT) that maps the economic viability of hydrogen production in Australia. The user can examine both hydrogen production by electrolysis using renewable energy sources and fossil fuel produced hydrogen coupled with CCS. AusH2 was produced by Geoscience Australia for the Council of Australian Governments (COAG) Energy Council’s Hydrogen Working Group in 2019. Updates to this dataset since September 2020 are coordinated with research.csiro.au/HyResource

  18. g

    National Trees Outside Woodland Map | gimi9.com

    • gimi9.com
    Updated Apr 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). National Trees Outside Woodland Map | gimi9.com [Dataset]. https://gimi9.com/dataset/uk_national-trees-outside-woodland-map/
    Explore at:
    Dataset updated
    Apr 5, 2025
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The National Trees Outside Woodland (TOW) V1 map is a vector product funded by DEFRA’s Natural Capital and Ecosystem Assessment (NCEA) programme produced under Forest Research’s Earth Observation for Trees and Woodlands (EOTW) project. The TOW map identifies canopy cover over 3m tall and 5m2 area which exists outside the National Forest Inventory (National Forest Inventory - Forest Research). Canopy cover is categorised into the following woodland types - lone trees, groups of trees and small woodlands. The data set was derived from the Vegetation Object Model (VOM) (Environment Agency, EA), the National Lidar Survey (EA), and Sentinel-2 (European Space Agency) imagery using spatial algorithms. The method is fully automated with no manual manipulation or editing. The map and its production method has been quality assured by DEFRA science assurance protocols and assessed for accuracy using ground truth data. Because the process classifies objects based on proximity to features within OS mapping, there could be some misclassifications of those objects not included in the OS (specifically: static caravans, shipping containers, large tents, marquees, coastal cliffs and solar farms). This is a first release of this dataset, the quality of the production methods will be reviewed over the next year, and improvements will be made where possible. The TOW map is available under open government licence and free to download from the Forestry Commission open data download website (Forestry Commission) and view online on the NCEA ArcGIS Online web portal (Trees Outside Woodland). A full report containing details on methodology, accuracy and user guide is available. TOW map web portal link : ncea.maps.arcgis.com/apps/instant/sidebar/index.html?appid=cf571f455b444e588aa94bbd22021cd3 FR TOW map web page : https://www.forestresearch.gov.uk/tools-and-resources/fthr/trees-outside-woodland-map/ Attribution statement: © Forestry Commission copyright and/or database right 2025. All rights reserved.

  19. d

    Data from: California State Waters Map Series--Monterey Canyon and Vicinity...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Monterey Canyon and Vicinity Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-monterey-canyon-and-vicinity-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Monterey County, Monterey Canyon
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Ventura map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery, seafloor-sediment and rock samples, digital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Monterey Canyon and Vicinity map area data layers. Data layers are symbolized as shown on the associated map sheets.

  20. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Environment, Tourism, Science and Innovation (2023). VegMachine - Online Mapping Tool [Dataset]. https://www.data.qld.gov.au/dataset/vegmachine-online-mapping-tool

VegMachine - Online Mapping Tool

Explore at:
html(100 bytes)Available download formats
Dataset updated
Sep 12, 2023
Dataset authored and provided by
Environment, Tourism, Science and Innovation
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

VegMachine is an online tool that uses satellite imagery to summarise decades of change in Australia’s landscape. It’s simple to operate, easy to understand, and free to use.

With VegMachine you can: view satellite image land cover products; measure land cover change and fire scars; generate comprehensive ground cover monitoring reports and better understand the links between management, climate and vegetation cover.

Search
Clear search
Close search
Google apps
Main menu